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How can we model marine ecosystems?
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How can we model marine ecosystems?




Modelling one population

Dynamical model

source

Differential equation

P(t): state variable dP/dt = source - sink



Modelling one population

Constructing the model step by step!
From the most simple assumptions. ..

Dynamical model

source

Differential equation

P(t): state variable dP/dt = source - sink = birth - death



Modelling one population

Constructing the model step by step!
From the most simple assumptions. ..

Dynamical model

source

Case #1: linear processes

Differential equation

P(t): state variable dP/dt = source - sink = birth - death

Blackboard...




P'(t)

A

Modelling one population

P'(t) = r.P(t)
/

S This differential equation can be solved analytically
P(t)

Blackboard...




Modelling one population

A

P'(t) = r.P(t)
/

S This differential equation can be solved analytically

P'(t)

P(t)

NB: “Solving the equation”:

- Find the analytical solution, when possible
- If not ? Compute an approximation
=> numerical integration!

ard...




Modelling one population

* NB : Numerical integration

# Finding the exact solution

= Solving an equation using an approximation
It requires to:
=> Discretize the time into time steps At
= Estimate state at time P(t+At) from P(t)

Principle :
- Start from the initial condition

- Estimate the state after a very small time step, and so on (recursive)
On option is to use the Taylor’s developments, e.g. at order 1 :

P(t+dt) = Pt) + dP() gt
dt

Making the hypothesis that the terms of higher order can be neglected



Modelling one population

* NB : Numerical integration

# Finding the exact solution

= Solving an equation using an approximation
It requires to:
=> Discretize the time into time steps At
= Estimate state at time P(t+At) from P(t)

For the exponential growth of a population Numerical integration step by step:
P(t,=t,+At) =
AR P(t,=t,+At) =
dt P(t,=t,+At) =
P(t,=t,+At) =
P(O) = P,

Nota bene : This integration method is called Euler’s integration, but
many more (complex one) exist! E.g. Runge-Kutta...




Modelling one population

* NB : Numerical integration

# Finding the exact solution

= Solving an equation using an approximation
It requires to:
=> Discretize the time into time steps At
= Estimate state at time P(t+At) from P(t)

To keep in mind:

=> This is how dynamical model are simulated

= Several integration methods exist (more or less costly/precise)
=> This can lead to numerical diffusion is the time step is too small




P'(t)

Population size—

A

Modelling one population

P’(t) = r.P(t)

/

This differential equation can be solved analytically

P(t)

Malthus model

—— If r >1: Exponential growth is unlimited...
Which is unrealistic.... !

Let’s add a limitation term... Blackboard...




Modelling one population

e (Case #2: density-dependant mortality

Pierre-Frangois &1

Limiting term to avoid unlimited growth: Vet 804154
The growth is negative when the concentration becomes too high

P’(t) = r.P(t).[1 - P(t)/K]

Solution:

k Logistic growth

P(t)= 1+(k/P0-1).e"'°t (Verhulst’s model)




Modelling one population

e Case #2: density-dependant mortality

PEYEBANULST.

Pierre-Frangois &3

Limiting term to avoid unlimited growth: Verhus 1604~ 1649
The growth is negative when the concentration becomes too high

P’(t) = r.P(t).[1 - P(t)/K]

Much more realistic !

8
"""""""""""" " k: Carrying capacity

Population At the beginning: The growth
Concentration exponential e decelerates and
(103 ind/ml) growth ¢ The growth starts becomes null

’ decelerating (stable state)

(inflexion point)

0 50 100 150 200 250 300 350
Time (h)



How can we model marine ecosystems?




Modelling two populations

 Predatory-prey relationships

Again, constructing the model step by step!
From the most simple assumptions...

growth predation mortality

r: growth rate Simple case: linear processes only

a: grazing rate
e: efficiency of biomass/energy conversion
m: mortality rate Blackboard...




Modelling two populations

Lotka-Volterra model
— Linear growth of the prey P (growth rate r)

— Linear predation by the predator Z (predation rate a)
— Growth of the predator proportional to the predation (factor e)
— Linear mortality of the predator Z (mortality rate m)

° dP

P = - - Linear growth — linear death by predation= r.P-a.P.Z = f(P,Z)

Z = _ZZ_ = Growth by predation —linear mortality = eaPZ-m.Z = gP/Z)
t



Modelling two populations

Analytical study of the Lotka-Volterra model

Two equilibriums

Zz || —
4} o "'""m-...__ 5 { — predators P
" M preys
§ |
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(0,0) m/(ea) Temporal dynamics Time

Phase portrait




BUT: Biological/ecological processes are usually
NOT linear

For instance:

Phytoplankton growth is limited,
especially by light and nutrient availability

Predation is not linear: it saturates

How do we chose them?

“Functional responses”
For instance: Holling-type I, II, ...
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How can we model marine ecosystems?

A" How to represent space f‘—:_-:—_;_,‘
it \.. in marine ecosystem models? =
. Howto take into account physical forcing?

o



Representing space in models

Spatiotemporal scales

century

decade

year

month

:

Time scales

g | g
5|~<

Individual
movement

mm cm m 10m 100m km 10km  100km 1000k

Horizontal spatial scales

Time scales and spatial scales of oceanic processes




Representing space in models

Example of zooplankton in the austral ocean

Spatiotemporal scales

century

decade

year

month

week

day

Time scales

hour

min

B i

mm cm m 10m 100m km 10km  100km 1000k

Horizontal spatial scales

Time scales and spatial scales of oceanic processes




Representing space in models

Spatiotemporal scales

century

decade

year

The spatiotemporal scales that have to
monih be taken into account for a given model
will depend on the questions

this model aims to address !

£
1

Time scales
Q
2

- 3
o
c
=

mm cm m 10m 100m km 10km  100km 1000k

Horizontal spatial scales

Time scales and spatial scales of oceanic processes




Spatial dimensions

Example: modelling phytoplankton growth in the ocean



Spatial dimensions

Example: modelling phytoplankton growth in the ocean
* 0D: homogeneous mixed layer (box model)

Box model

Mixed layer Averaged light

Concentration of phytoplankton in the mixed layer in a 0D model




Spatial dimensions

Example: modelling phytoplankton growth in the ocean
* 1D: vertical model of the water column

Vertical profiles
of light and 4100
turbulence

(mixed layer)

A AMT-3 data 1 -D
X AMT-5 data

= AMT-7 data

— Model

-160

Depth (Z) w O.éO 0.;10 0.60 0.80

Chlorophyll @ (mg m™)

Vertical profile of chlorophyll concentration in the NE Atlantic
(observed and modelled, Lefevre et al. (2003).




Spatial dimensions

Example: modelling phytoplankton growth in the ocean
* Example of results from a 3D ocean model |

Latitude (y)

Longitude (x)
Depth (z)

40°N

Temporal evolution of vertical
[Ph(yjcqpllankjcoln]l at a fixed station

Latitude

J0°N —

Latitude (y)

Phytoplankton ipg

Surface

spring 4

Mesoscale processes:

Time (t) eddies, filaments, jet...
£
g / L
86w oo l - I s > Long|tUde (X)
T A M1 "1 A e A N R Longitucle.
TrMANS S ASOND Phytoplankton blooming in a 3D ocean model

Depth (z)

Ayata et al. 2014



Discrete vs continuous spatial models

How can we discretize space?



Horizontal grid in ocean models

Several gridding type along the horizontal

latitude

60“} 45’ 30° B 15
longitude
Regular vs. adaptive rectangular grids




Horizontal grid in ocean models

Several mesh sizes, with smaller grid cells close to the coast

Finite Element Grid for the
ADCIRC Model Domain,
Long Island Sound

Militello and Zundel 2002

NOAA / PMEL

Non-rectangular adaptive grids




Horizontal grid for calculus

Arakawa horizontal grids for calculus

When shall we
integrate the velocities
U and V and the
temperature T?

lru

Different options

Arakawa horizontal grids




Vertical dimension

Several coordinates systems along the vertical

Z-coordinates

Sea level D=H+n

?

Constant layer depth

Z vertical coordinate system




Vertical dimension

Several coordinates systems along the vertical
* o-coordinates (sigma)

sealevel D=H+n
/ Proportion

/1]
/11
/ /1]

e/

/
/]
/
7/

Sigma vertical coordinate system




Vertical dimension in the ocean

Several coordinates systems along the vertical

i Along density lines
* Isopycnal-coordinates

/ Sea level

P4
-
Pn-1
Pn

NB: hydrid models using

Density-layer (or isopycnal) vertical coordinate system  differenttypes of vertical
coordinates exist...




3D modelling in the ocean

3D grid combining 1D vertical grid and 2D horizontal grid

Example of a 3D grid in the ocean




3D modelling in the ocean

Realistic regional circulation models are available

50

Coastal Gulf
of Alaska

They can include sea ice,
coupling to atmospheric

models, and to larger scale
models

Southern Africa

West Antarctic
Peninsula

Examples of realistic regional circulation models




Dynamical equations in biophysical models

General equation in 1D

The variable C varies with time t and space x: C(x,t)

The evolution of C(x,t) with time depends on physics and biogeochemistry

0C (zx,t)
ot

— P(C,z,t) + J(C,z,1)
| | J

J

. | !
Temporal 9V0|Uf“0n of i Biogeochemical source/
the concentration of Physical transport sink transformation
variable C (dye, plankton...) (advection + diffusion) processes

Equations for physical transport?




Transport model in 1D or more

Physical processes affecting the transport: advection and diffusion

Advection
(transport due to mean flow)

W;?ii% %

Horizontal dimension (x)

\4
- s

Sinking of particles in a water column

Flow in a river



Transport model in 1D or more

Physical processes affecting the transport: advection and diffusion

Diffusion
(transport due to flow’s variability)

\ O Oo
\ \:‘1&/,_,\\ Qobooé

L Q;;%( O O
> »;» ' x\ C’ io
@@@. \} \\ oo éoo

@)

Diffusion /" \ 0

O

Molecular diffusion induced by Eddy diffusion caused by
random motion of particles turbulent mixing of particles



Temporal evolution of the concentration

Conservation of mass of a tracer C (here in 1D)

Advective flux

oC 0 0 oC
o = 5.0+ 5 (DG )+

Biogeochemical
Temporal source or sink

: Advective flux
evolution of C , e processes
divergence Diffusive flux

divergence

Contribution due to fluid flow
(advection)
u: velocity of the flow
C: concentration



Temporal evolution of the concentration

Conservation of mass of a tracer C (here in 1D)
Diffusion

oC 9, 9, oC
5 = 5.0 +5 (DG )+

Biogeochemical

Temporal , source or sink
: Advective flux
evolution of C , e processes
divergence Diffusive flux
divergence
D: molecular diffusivity
(or K: eddy diffusivity) Follows the gradient of concentration
(of the order of 10°m?s! for most — Second derivative!

substances in the ocean)



Temporal evolution of the concentration

Conservation of mass of a tracer C (here in 1D)

Biogeochemistry

oC 9, 9, oC
5 = 5.0 + 5 (DG) HT

Biogeochemical
Temporal source or sink

: Advective flux
evolution of C , e processes
divergence Diffusive flux
divergence Biological production
or consumption,
Radioactive production
or decay,



Temporal evolution of the concentration

oC 0 0 oC
ot 3_:1:(UC) | 8:1:(D8:c) 1

Advection Diffusion  Biogeochemistry

NB: Eulerian framework

This equation is cast in terms of fixed-space frame of reference.
a It is equivalent to sitting in a particular spot in the ocean and
& making measurements over time, such as moorings and ship-

based time series, or numerical models constructed on a fix
geographic grid.



Temporal evolution in 3D

Let us consider the advection-diffusion equation in 3 spatial dimensions:

oC
o O T RO

3D velocity field 3D turbulent diffusivity tension

with the operator §7 the 3D gradient operator, given by:

wi 3’5.@;,3,, z the unit-length vectors
and x, y, z the directions

V—:?:ﬁ-i-Ag-l-é2
- T Oz y@y 0z



Numerical diffusion

o =02 (1)~ 5z (v52) +

Pay attention when doing numerical integration!!

Attention must be paid to the integration time At and space Ax!

Indeed, the advection-diffusion equation can be used only under the
following condition. If the current u or the diffusivity K are too big, then
the matter in a given grid of the model will be completely advected or
diffused to the adjacent grids, and the initial grid will be totally emptied!
This is called numerical diffusion. You can detect it if you model

calculates negative or infinite values for concentration.



Numerical diffusion

o =02 (1)~ 5z (v52) +

Pay attention when doing numerical integration!!

Conditions on the time step At and on the spatial resolution Ax

To avoid numerical diffusion, the following constraints must be verified in

all directions: o & K on (A:r;)2
v At z At
Uz At << Ax K At << (Azx)?

Otherwise the biological tracer of concentration C will be advected
or diffused artificially because of the grid and time step that you
have chosen are to small and to large, respectively.



How can we model marine ecosystems?




Physical forcing

Which physical forcing should be considered to model the marine

ecosystem? Atmospheric forcing

* Temperature
* Pressure

* Wind

* Precipitation
* Evaporation

Gravity and tides * Heat exchanges

* Element inputs

Fresher water

Boundary conditions
River runoffs

Bathymetry

Sea floor

Example of physical forcing in the ocean




Coupled bio-physical modelling

Light

Gravity

Tides

Bathymetry

Biogeochemical and
biological processes

Atmospheric forcing
* Temperature
* Pressure
* Wind
* Precipitation
* Evaporation
* Heat exchanges
* Elemental inputs

Boundary conditions
River runoffs

Sea floor




Example of ocean models

NEMO: Nucleus for European Modelling of the Ocean
MARS-3D: Model for Application at Regional Scales
ROMS: Regional Ocean Modeling System
POM: Princeton Ocean Model

HYCOM: Hybrid Coordinate Ocean Model

POM

PO EIETATION & BUEY. CURRENTE(M/E) {UN 30 1884

45N

40N

35N

aoN |}

3050
0

350

Romsi

o n|

’:-355 r

“.

s




Bio-physical coupling

Biophysical coupling through the advection-diffusion equation of transport and
biogeochemical source/sink terms

%C _z%(@) ai(@gi)JrJ




Bio-physical coupling

Biophysical coupling act at every scales of the marine ecosystems

or L2 @] 25|+

Top predators

— Larger fish

Larval fish
Planktivorous fish

Zooplankton

Phytoplankton

Nutrients and
biogeochemistry




Bio-physical coupling

Biophysical models are systems of interconnected modules

Temperature
Salinity

Transport Prey field
Temperature field

Heat exchanges

FISH IBM

(Individual Based Model)
or
ECOPHYSIOLOGICAL MODEL

Examples of a bio-physical model with interconnected modules
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Plankton functional types (PFTs)

Simple view of planktonic ecosystem

NPZ
7 Zooplankton
P Phytoplankton

Irradiance Nutrient



Plankton functional types (PFTs)
Getting into more details...

Plankton Functional Groups

Here focusing on phytoplankton:
Several phytoplankton functional types Z

| N Various phytoplankton types can
be considered:

Different ecological and biogeochemical roles! - cyanobacteria (prokaryotes)
cyanobacteria diatom dinoflagellate green algac coccolithophore - diatoms (Si)
: ' ' - dinoflagellates
- calcifious ppk (Ca)
- picoplankton




Plankton functional types (PFTs)

Different equations for each type of phytoplankton!
(Le Quéré et al, 2005)

Global Change Biology (2005) 11, 20162040, doi: 10.1111/j.1365-2486.2005.01004.x

for global ocean biogeochemistry models

2Tra its Of eaCh PFT CORINNE LE QUERE*, SANDY P. HARRISON*f, I. COLIN PRENTICE*,

ERIK T. BUITENHUIS* OLIVIER AUMONTS, LAURENT BOPPY, HERVE CLAUSTRE|,
LETICIA COTRIM DA CUNHA®* RICHARD GEIDER*, XAVIER GIRAUD*?, CHRISTINE
KLAAS*+, KAREN E. KOHFELD**, LOUIS LEGENDRE|, MANFREDI MANIZZA*,
TREVOR PLATTS§§, RICHARD B. RIVKINY Y, SHUBHA SATHYENDRANATHSS,

JULIA UITZ|, ANDY J. WATSON{{, and DIETER WOLF-GLADROW ¥

Ecosystem dynamics based on plankton functional types

Table 1 Biomass and size distribution of Plankton Functional Types (PFT)

Size class Biomass (PgC) PFT name
Bacteria
Pico 0.35* Pico-heterotrophs
Phytoplankton
Pico 0.28" Pico-autotrophs
Phytoplankton N,-fixers
Nano 0.39" Phytoplankton calcifiers

Phytoplankton DMS-producers
Mixed-Phytoplankton

Micro 0.11* Phytoplankton silicifiers
Zooplankton

Proto 0.16" Proto-zooplankton

Meso 0.10/ Meso-zooplankton

Macro Unknown Macro-zooplankton

Cell Size (um)

0.3-1.0

0.7-2.0
0.5-2.0*
5-10

5§
2-200
20-200

5-200
200-2000
>2000




Different equations for each type of phytoplankton!
(Le Quéré et al, 2005)

—Parameters for each PFT

Plankton functional types (PFTs)

Table 2 Traits that characterize different Plankton Functional Types

Light Half-saturation
Max growth Max mortality Other nutritional
rate at 0°C* (day ")  rate (day ") Affinity'  Stress*0to1 P (@M) Fel @M) source’"
Bacteria
Pico-heterotrophs 2.1 No data 5 (DOM)
Phytoplankton
Pico-autotrophs 0.6 0.05 3.2 0 19 No data
Phytoplankton N,-fixers 0.04 0.05 1.6 No data 75 120 0 (N)
Phytoplankton calcifiers 0.2 0.05 1.6 1 4 20 1.9 (DOP)
Phytoplankton DMS producers 0.6 0.05 1.6 No data 700 20
Phytoplankton silicifiers 0.6 0.05 5.1 0 75 120
Mixed-phytoplankton 0.6 0.05 1.6 0.5 19 20
Zooplankton
Proto-zooplankton 0.6 1e'-proto 18
Meso-zooplankton 0.24 0.058 0.29
Macro-zooplankton No data No data No data

Examples of PI curves

P

—_

Photosynthesis rate (day™")
o

0.0

hotosynthésis-lrradién'cel)

Diatoms

Cyanobacteria

Flagellates

Dinoflagellotes

100 200
Irradiance (umolphotonsm™2s™ ")

Fig. 2 Example of productivity vs. irradiance at 15-25°C for
different phytoplankton groups (Geider et al., 1997). The diatoms




Plankton functional types (PFTs)

Example of results from PFT global models
(Le Quéré et al, 2005)

1.0

Surface Chla (mgChl m™)
o
(@]

0.5

Data (HPLC + sat.) Pico size class

Nano size class

Micro size class

Dynamic Green Ocean Model

Mixed-phytoplankton

Latitude

Fig. 4 Zonal average of the contribution of different phytoplank-
ton plankton functional types to the total chla (in mg Chlm ) for
the (top) micro-, nano-, and pico-size classes estimated using the
combination of the statistical analysis of an HPLC pigment
database and monthly composite SeaWiFS scenes of the year 2000
(Uitz et al., 2005) and (bottom) silicifiers, calcifiers, and mixed-
phytoplankton estimated using a Dynamic Green Ocean Model.



Plankton functional types (PFTs)

Examples of Plankton Functional Type models

| Si(OH), zP
\‘/0
\?%“
.

N 03 Photosyniness PL

A

3

E

E
N H4 Photosynthesis PS

%
Excretion " ‘g '?«\
Excretion 2 s
SIS
% A Egesti
Decomposition DON Decomposition PON
Sinking

NEMURO (Kishi et al, 2004) v

Ammonium

Nitrate C,Fe, Chl

Nanophyto.

(1

Phosphate ><
C, Fe, Chl, Si

»| Diatoms

Iron

Silicate

C

mesS0zZoo.

PISCES (Aumont et al. 2015) v

v
co,

!

TCO, TA

HAMOCC (Maier-Reimer et al, 2005)
Figure from llyina et al (2013)

realistic topography with sedimen
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Plankton functional types (PFTs)

Solving Plankton Functional Type models

Interests of modelling PFTs:
- Even more mechanistic because resolving key functional
groups and processes

BUT
- May require hundreds of empirical parameters!

Growth rates of PFTs

25

PFT modelsare  _ ” I .| Still significant variability of
based on : “l | traits within groups!
community § — J
averages i |

05

0 | | |
Diatoms Coccos Dinofl Greens



Trait-based models

Defining traits for each component:

invertebrate
predation

nutrient
recycling

fish predation

Zooplankton

grazing, nutrition

(growth rate, migration,
size)

grazing, nutrition

Phytoplankton
(growth rate, sinking,
size, N-fixation)

nutrient uptake
light-dependent growth

Bacteria
(growth rate, available
substrates, size)

Nutrients (N, P, Si, Fe) »
Light

nutrient uptake, regeneration



Trait-based models

Global size-structured plankton community model

Large-cell community

Small-cell community

Figure 2 Size-spectral slope in a global size-structured plankton community model (data from Ward ez @/ 2012). ‘A’ indicates a subtropical location with telatively few
large cells present (mote negative slope), whereas ‘B’ indicates a subpolar location with a greater representation of large cells in the community (less negative slope).



Trait-based and adaptive dynamic approach

May the best one win!

PFT model Trait-based model
NPZ Many Species
7 Z
P
P.[|P,[|P




Adaptive dynamic approach & Trait evolution

Modeling plankton communities using size-classes (trait-based approach + competition)
Zooplankton /~

Size-classes

Phytoplankton

Competition for limited resources

mortality,
sloppy

nutrient

feeding
and

primary .
egestion

production

Predator-prey interactions

Nutrients

Model structure : n times (NPZD) with quota
= About 60 biogeochemical parameters
= About 50 “species”
= About 300 state variables

Fig. 2. Schematic representation of the ecosystem model.
Not all size classes and not all predator-prey interactions
are shown.



Trait evolution

Modeling plankton communities using size-classes (trait-based approach + competition)

a) Observed NO, b) Modeled NO, Exa m ple Of resu ItS

¢) SeaWiFS derived chlorophyll a d) Modeled chlorophyll a 20
e e . ° °
B 5 Nitrate, chl a & primary
production
0.5
0.1
0.01

Cf. DARWIN’s model (developed at MIT)



Trait evolution

Example: biogeography of plankton communities
Modeling plankton communities using size-classes (trait-based approach + competition)

Example of results

a) Pico-eukaryotes, prokaryotes b) Modeled pico-eukaryotes,
Synechococcus and Prochlorococcus

and Prochlorococcus

Phytoplankton types’
distribution

f) Modeled diatoms and
¢) Diatoms and dinoflagellates other large eukaryotes |
' 0.5

0.2
0.1
0.05
0.02
(mg Chl m~)#0.01

Ward et al 2012



Adaptive model

www.sciencemag.org SCIENCE VOL 315 30 MARCH 2007

Emergent Biogeography of Microbial

Communities in a Model Ocean
Bruggeman and KOOijman (2007) L&O Michael ]. Follows,** Stephanie Dutkiewicz,* Scott Grant,+ Sallie W. Chisholm®

Light vs nutrient competitive ability in a seasonal 1D water column
Clark et al. (2013) L&O

Cell size in a global ocean model
Follows et al. (2007) Science

Optimum temperature and irradiance in a global ocean model
Dutkiewicz et al. (2013) Global Biogeochemical Cycles

Ecological and biogeochemical consequences of global warming

Sauterey et al. (2015)

=> Emergent properties



Plankton
size

mtentuptake and

Adaptive model

Trophic Strategy

prmary production mortality,

Mutrients s

renureralis abon

Detritus

=> Considering continuous
trophic strategy

=> A way for solving the
mixotroph problem!



End-to-end model

From plankton to top predators!



End-to-end model

N g
\\\\ » Stock sizes and magnitude of change well
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e et e » Responses time and phases of the
/’//4”2 1ati
D Bk ol variations not well reproduced
ight,
ND
A S5
7 e |
z ‘ESZ S3 Ce10/ =S i S—
—_— \ - 1000 .
LT & c1c2[ca[ca[cs[ce[cT> N oA
Module e il P | ﬁ
z_’H1H2H3£1 IIIIIIIII AAAAAARANZ AN AL \

0
0 2 4 6 810121416182022242628303234363840

H5} 5
s 1963-2003 blomass in the Baltic Sea




Available online at www.sciencedirect.com
- Progress in

*.” ScienceDirect Oceanography

ELSEVIER Progress in Oceanography 75 (2007) 751-770 e ———
E n d -t O = e n d m O d e I ‘www.clsevier.com/locate/poccan
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Lower trophic Higher trophic

Human societies

Aims to represent the entire food web and the associated abiotic environment
*  Multiple species or functional groups are represented at each of the key trophic levels
. in the system are also included

Requires the integration of physical and biological processes at different scales

Implements two-way interactions between ecosystem components (from
higher to lower trophic levels and from lower to higher trophic levels)

Accounts for the dynamic forcing effect of climate and human impacts at
multiple trophic levels (represented in a dynamical manner)



End-to-end model

* Coupling of four models:
1) Physical model: 3-dimensional ROMS

2) Plankton model: NEMURO
3) Fish model: multiple-species individual-based model

4) Fishing fleet dynamics



End-to-end model

1) Physical model: 3-dimensional ROMS
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End-to-end model

2) Plankton model: NEMURO
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Fig. 1 - Schematic view of the NEMURO lower trophic level ecosystem model. Solid black arrows indicate nitrogen flows and
dashed blue arrows indicate silicon. Dotted black arrows represent the exchange or sinking of the materials between the
modeled box below the mixed layer depth.



End-to-end model

3) Fish model: multiple-species individual-based model (IBM)

Both sardine and anchovy are fully modelled:

- Reproduction (T-dependant)

- Growth (T- and Plankton-dependant)

- Mortality: constant, starvation, predation, fishing
- Movement (T-dependant + transport + swimming)
Anchovy - Competition (for food and space)

- Predators

Sardine

Migratory predators are not fully modelled:
QW B g P 4 - Enter and exit the grid,
’* T . %l X - Movement
‘k%h—’—" . .
N - Consumption of sardine and anchovy only
- Typically : albacore tuna

A

‘‘‘

Migratory predators



End-to-end model

Example: Sardine & anchovy in the California current
4) Fishing fleet dynamics

Fishing fleet:
- 100 boats and 5 ports for fishing the sardine
- Day boats so complete a trip in 24 hours
- Daily evaluation
- Compute expected net revenue (ENR) based on:
- Perceived CPUE (10-day average)
- Price per pound
- Cost per km
- Return to nearest port




End-to-end model

Examples of results
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End-to-end model

Solving everything simultaneously

Code is thousands of lines

Computing speed

Two-way coupling between fish and zooplankton
Mass balance

Eulerian with Lagrangian

Full life cycle of fishes
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Data assimilation in marine ecosystem models

Traditional methods:

e.g. using ocean color data, time-series data...

=> Parameter optimization, e.g. microgenetic algorithm (Ayata et al. 2013)
=Gradient descent/ variational methods (3D-VAR)

ML-based methods?
=> Used for physical models so far (e.g. high resolution)
=> Cf. Patrick Gallinari’s lecture and Rédouane Lguensat’s lab

An open field of research!



Using ML for marine ecosystem modelling

Examples of recent articles...??

Conference paper

Artificial Intelligence, Machine Learning and Modeling for
Understanding the Oceans and Climate Change

Nayat Sanchez-Pi ', Luis Marti ', André Abreu 2, Olivier Bernard 2, Colomban de Vargas # , Damien Eveillard > ¢ , Alejandro Maass 7 ,
Pablo A. Marquet & , Jacques Sainte-Marie ¢ , Julien Salomon ¢ , Marc Schoenauer '° , Michele Sebag '°

Ecological Modelling -
Volume 451, 1 July 2021, 109578

Global assessment of marine phytoplankton
primary production: Integrating machine
learning and environmental accounting
models

ELSEVIER

F. Mattei » © 4 & & E. Buonocore ¢, P.P. Franzese ® ¢, M. Scardi ® ¢

Still a lot of opportunities!



Using ML for marine ecosystem modelling

Perspectives?
* Combining ML-based prediction with dynamical models
e cf. Jean-Olivier Irisson’s lecture and TD of Tuesday
e Using ML to represent unresolved process
e cf. sub-grid dynamics in Al-informed physical models (next lecture)
e Symbolic Al? Hybrid Al?
* cf. the ongoing ANR IA-Biodiv Challenge...

&4 1A-BloDIV

Recherche en intelligence artificielle dans le champ de la biodiversité
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Thank you for your attention!



