Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

DGP-IRL: Deep Gaussian Process for Inverse Reinforcement Learning

How to use the code

To run the algorithm, please first download the toolbox by Levine et. al. (2010): http://graphics.stanford.edu/projects/gpirl/irl_toolkit.zip

Then put the folder of deepGPIRL and Binaryworld in the same folder, and add the paths to these folders. You don't need to specify the parameters to start with. You can modify them in the file deepgpirldefaultparams.m .

Example to run the DGP-IRL algorithm on binary world benchmark: test_result_dgpirl = runtest('deepgpirl',struct(),'linearmdp','binaryworld',struct('n',12),struct('training_sample_lengths',12^2,'training_samples',8,'verbosity',1));

Reference

Ming Jin, Andreas Damianou, Pieter Abbeel, and Costas Spanos, "Inverse reinforcement learning via deep Gaussian Process", In Conference on Uncertainty in Artificial Intelligence (UAI 2017)

About

Deep Gaussian Process for Inverse Reinforcement Learning

Resources

License

Releases

No releases published

Packages

No packages published

Languages