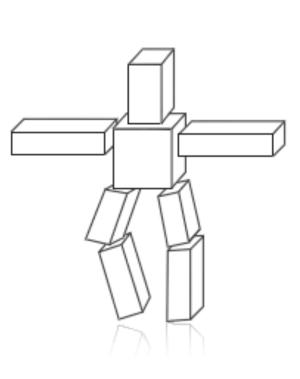
Digital Geometry - Geometry & Its Representation

Junjie Cao @ DLUT Spring 2019

http://jjcao.github.io/ComputerGraphics/

Increasing the complexity of our models

Transformations



Geometry

Materials, lighting, ...

What is geometry?

THEODEM 9.5. Let $\triangle ABC$ be inscribed in a semicircle with diameter

 \overline{A} \overline{C} .

Then $\angle ABC$ angle.

Statement

- 1. Draw radius OB. Then OB = OC = OA
- 2. $m\angle OBC = m\angle BCA$ $m\angle OBA = m\angle BAC$
- 3. $m\angle ABC = m\angle OBA + m$
- 4. $m\angle ABC + m\angle BCA$ BAC = 180
- 5. $m\angle ABC + m\angle OBA = 180$
- 6. 2 *m∠AP* 180
- 7. $m \angle b = 90$
- 8. $\angle ABC$ is a right angle

P

- Jiven
- osceles Triangle Theorem
- 3. Angre Postulate
- 4. The sum of the sum

B

0

- 5. Substitution (line
- 6. Substitution (line 3)
- 7. Division Property of Equality
- 8. Definition of Right Angle

What is geometry?



- 1. The study of shapes, sizes, patterns, and positions.
- 2. The study of spaces where some quantity (lengths, angles, etc.) can be *measured*.

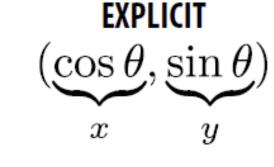
Plato: "...the earth is in appearance like one of those balls which have leather coverings in twelve pieces..."

How can we describe geometry?

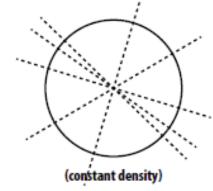
IMPLICIT

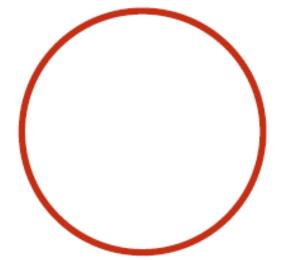
$$x^2 + y^2 = 1$$

LINGUISTIC "unit circle"

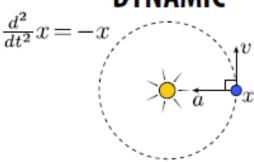


TOMOGRAPHIC



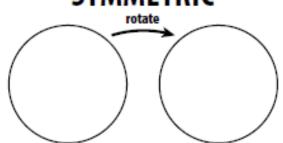


DYNAMIC

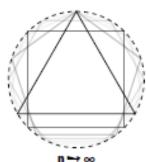


CURVATURE

$$\kappa = 1$$

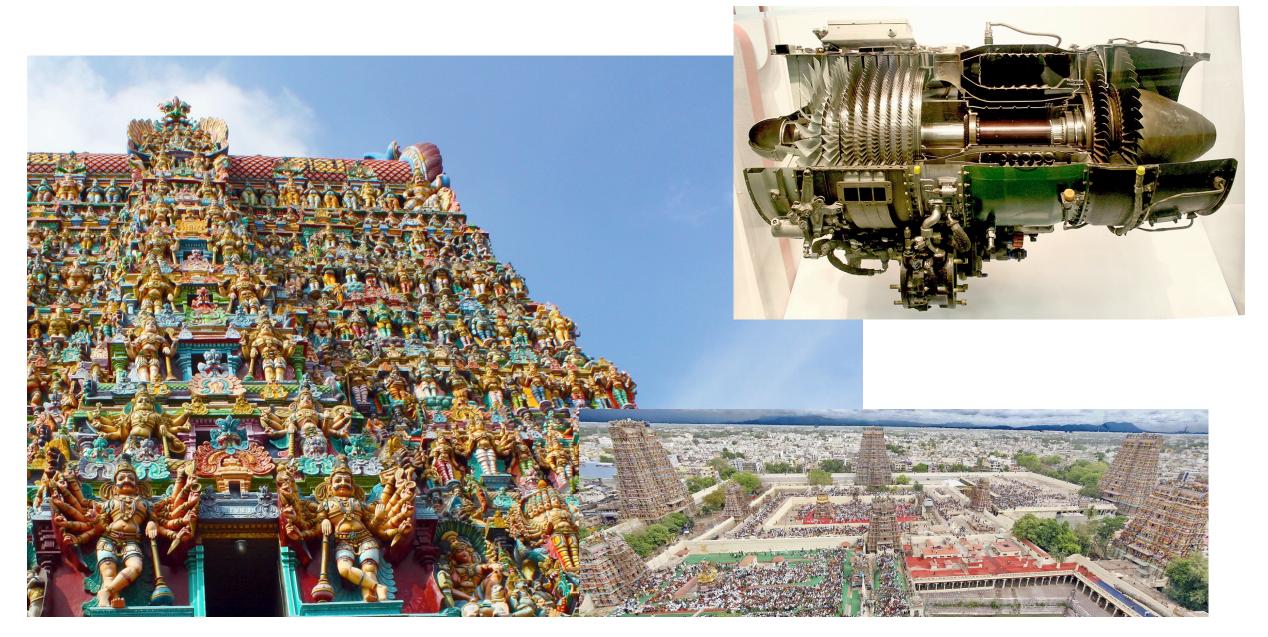


DISCRETE



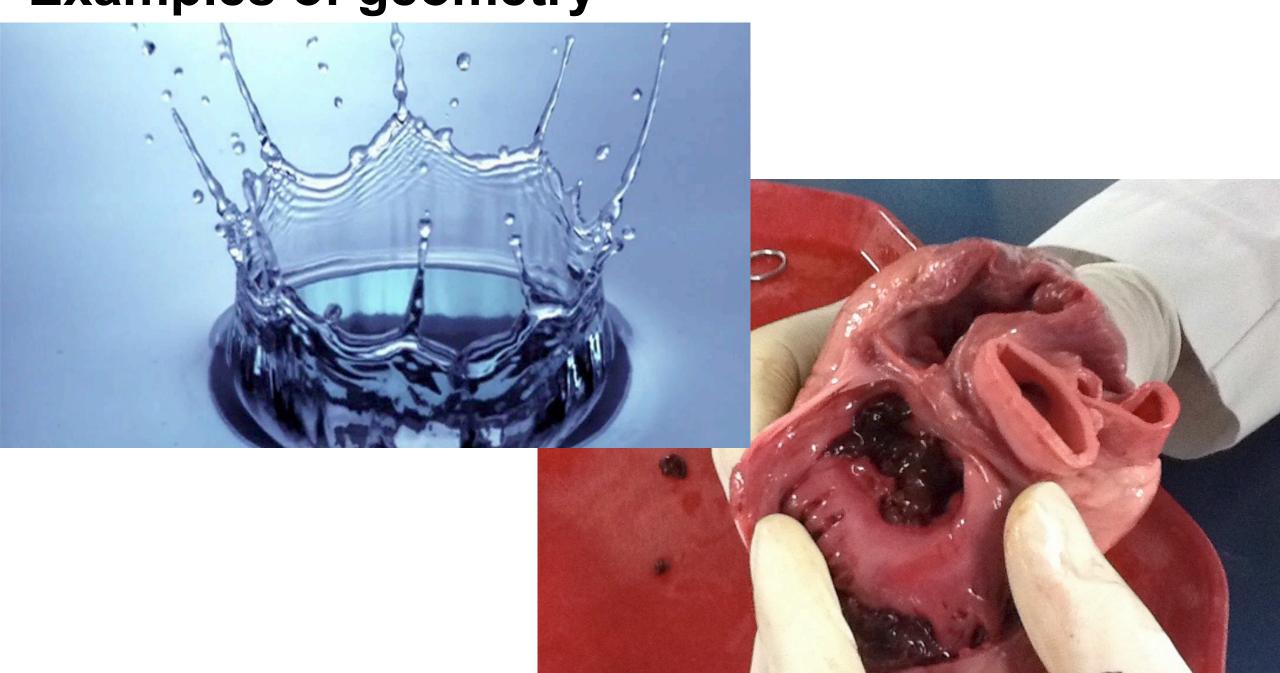
Given all these options, what's the best way to encode geometry on a computer?

Examples of geometry



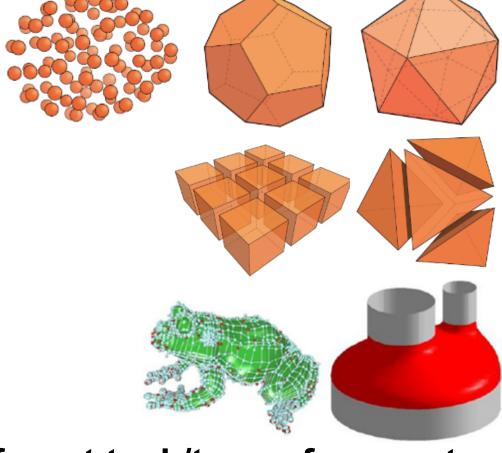
Examples of geometry

Examples of geometry



Many ways to digitally encode geometry

- EXPLICIT
 - point cloud
 - polygon mesh
 - subdivision, NURBS
 - L-systems
 - ___
- IMPLICIT
 - level set
 - algebraic surface
 - •



Each choice best suited to a different task/type of geometry

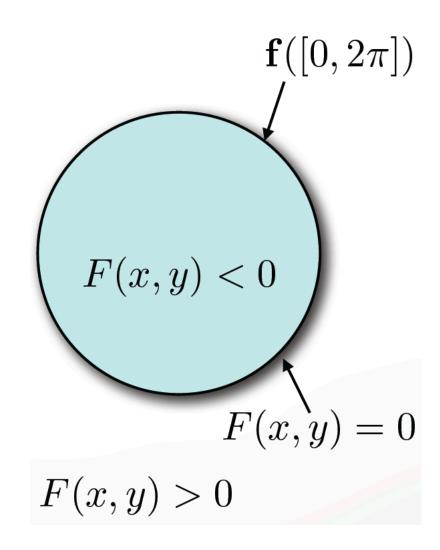
What do we need from shapes in CG?

- Modeling
 - Model anything with arbitrary precision (in principle)
 - Easy to build and modify (local control)
 - Smoothness and continuity
 - Ability to evaluate derivatives
- Efficient computations (for rendering, collisions, etc.)
- Easy to implement (a minor consideration...)
- No single technique solves all problems!

"Implicit" Representations of Geometry

- Points aren't known directly, but satisfy some relationship
 - E.g., unit sphere is all points x such that
 x^2+y^2+z^2=1
 - More generally, f(x,y,z) = 0
- Represent a surface as the zero set of a (regular) function defined in R³.

$$K = g^{-1}(0) = \{ \mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0 \}$$



Let's play a game:

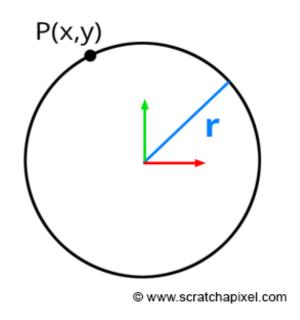
I'm thinking of an implicit surface f(x,y,z)=0.

Find any point on it.

Give up?

My function was

$$g(x,y,z) = x^2 + y^2 + z^2 - r^2$$



• Implicit surfaces make some tasks hard (like sampling).

Let's play another game.

I have a surface $f(x,y,z) = x^2 + y^2 + z^2 - 1$

I want to see if a point is inside it.

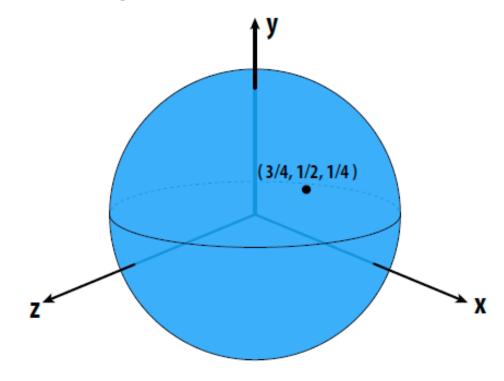
Check if this point is inside the unit sphere

How about the point (3/4, 1/2, 1/4)?

9/16 + 4/16 + 1/16 = 7/8

7/8 < 1

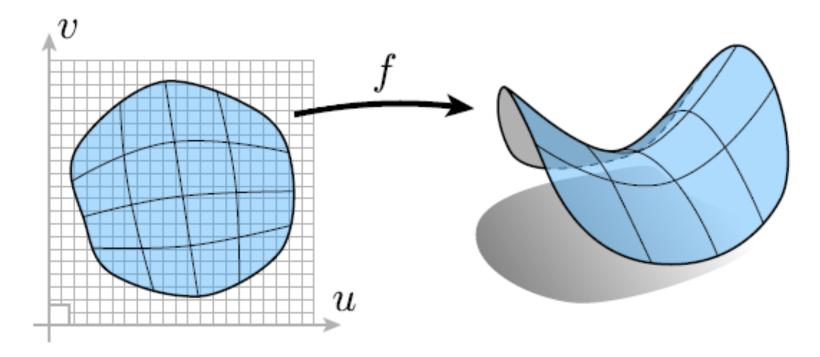
YES.



Implicit surfaces make other tasks easy (like inside/outside tests).

"Explicit" Representations of Geometry

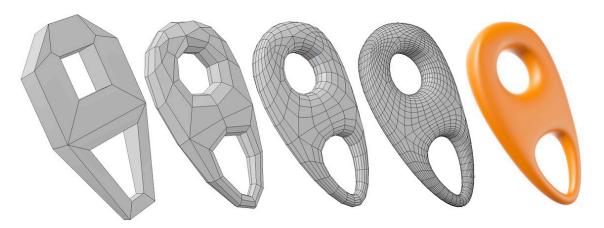
- All points are given directly
- **E.g., points on sphere are** $(\cos(u)\sin(v),\sin(u)\sin(v),\cos(v)),$ for $0 \le u < 2\pi$ and $0 \le v \le \pi$
- More generally: $f: \mathbb{R}^2 \to \mathbb{R}^3; (u,v) \mapsto (x,y,z)$

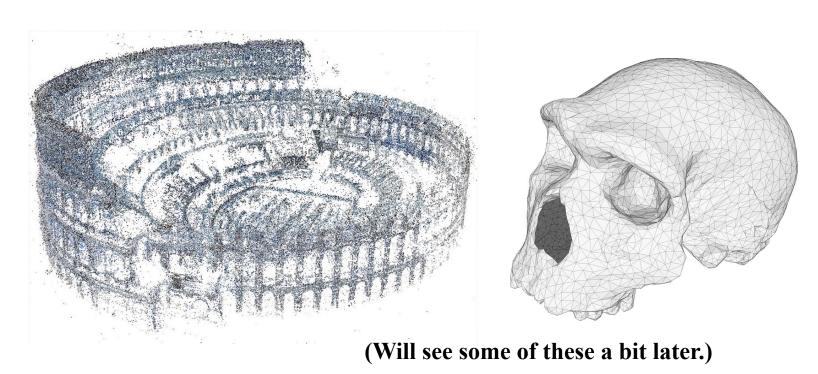


Many explicit representations in graphics

- triangle meshes
- polygon meshes
- subdivision surfaces
- NURBS
- point clouds

• ...





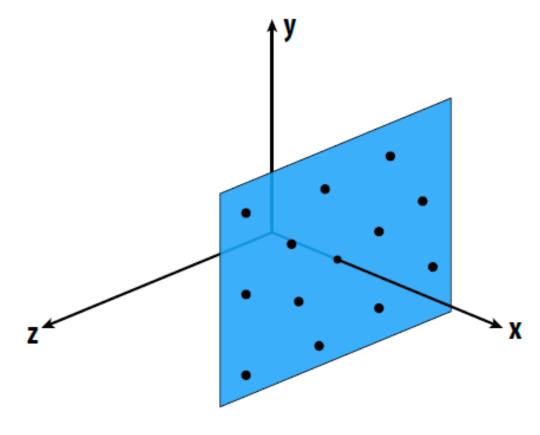
But first, let's play a game:

I'll give you an explicit surface.

You give me some points on it.

Sampling an explicit surface

- My surface is f(u, v) = (1.23, u, v).
- Just plug in any values (u,v)!



Explicit surfaces make some tasks easy (like sampling).

Let's play another game.

I have a new surface f(u,v).

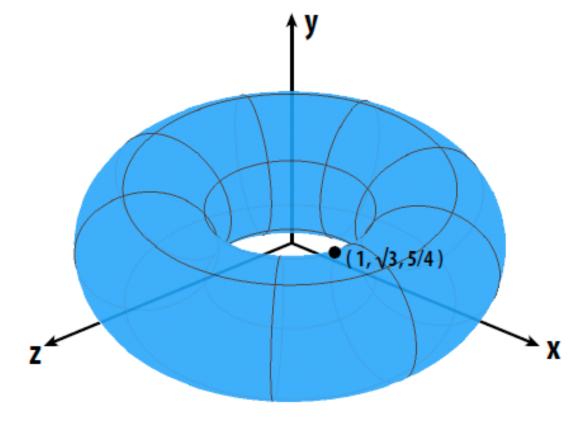
I want to see if a point is inside it.

Check if this point is inside the torus

My surface is $f(u,v) = (2+\cos(u))\cos(v)$, $2+\cos(u))\sin(v)$, $\sin(u)$)

How about the point $(1,\sqrt{3},5/4)$?

...NO!

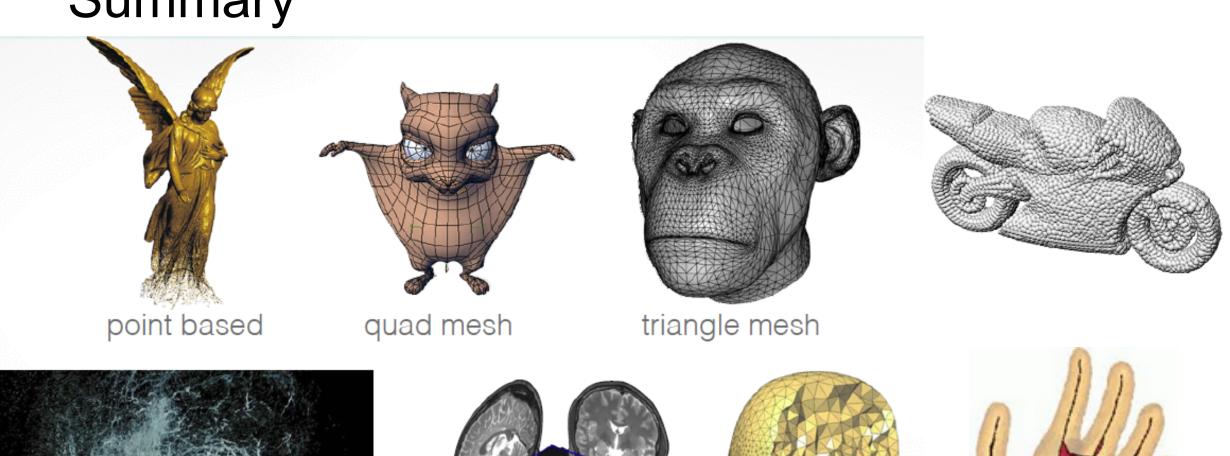


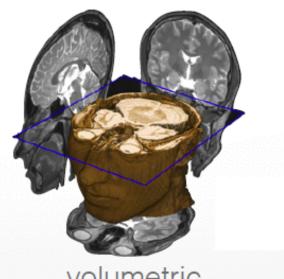
Explicit surfaces make other tasks hard (like inside/outside tests).

CONCLUSION:

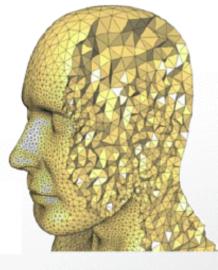
Some representations work better than others—depends on the task!

Summary





volumetric



tetrahed?ons

What do we need from shapes in Computer Graphics?

- Local control of shape for modeling
- Ability to model what we need
- Smoothness and continuity
- Ability to evaluate derivatives
- Ability to do collision detection
- Ease of rendering

No single technique solves all problems!

Resources

- read & display a mesh: jjcao_plot/eg_trisurf.m
- Read & display a huge point set (100k to 1 million points)
 - PC_processing_1.0
 - jjcao_code/tools/pcd_viewer