Computer Graphics

-- Implicit Representation

Junjie Cao @ DLUT

Spring 2019
http://jicao.github.io/ComputerGraphics/

"Implicit" Representations of Geometry

- Points aren't known directly, but satisfy some relationship
- E.g., unit sphere is all points x such that $x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2=1$
- More generally, $f(x, y, z)=0$
- Represent a surface as the zero set of a (regular) function defined in R^{3}.

$$
K=g^{-1}(0)=\left\{\mathbf{p} \in \mathbf{R}^{3}: g(\mathbf{p})=0\right\}
$$

$$
F(x, y)>0
$$

Many implicit representations in graphics

- algebraic surfaces
- constructive solid geometry
- level set methods
- blobby surfaces
- fractals
-...

(Will see some of these a bit later.)

$$
F(x, y, z)=a x^{2}+b y^{2}+c z^{2}
$$

Quadric Surfaces

$$
+2 f y z+2 h x y+2 p x+2 q y+2 r z+d
$$

Algebraic Surfaces (Implicit)

- Surface is zero set of a polynomial in x, y, z ("algebraic variety")
- Examples:

$$
\begin{array}{r}
\left(x^{2}+\frac{9 y^{2}}{4}+z^{2}-1\right)^{3}= \\
x^{2} z^{3}+\frac{9 y^{2} z^{3}}{80}
\end{array}
$$

Gradient of Algebraic Surfaces

- Gradient is orthogonal to level set
- Example

$$
\nabla g(x, y, z)=\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)^{\mathrm{T}}
$$

$$
\begin{aligned}
& g(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2} \\
& \nabla g(x, y, z)=(2 x, 2 y, 2 z)^{\mathrm{T}}
\end{aligned}
$$

- => normal ($1,1,0$)

Algebraic Surfaces (Implicit)

- What about more complicated shapes?
- Very hard to come up with polynomials!

Level Set Methods (Implicit)

-.55	-.45	-.35	-.30	-.25
-.30	-.25	-.20	-.10	-.10
-.20	-.15	-.10	.10	.15
-.05	.10	.05	.25	.35
.15	.20	.25	.55	.60

- Alternative: store a grid of values approximating function
- Surface is found where interpolated values equal zero
- Provides much more explicit control over shape (like a texture)

Level Sets from Medical Data (CT, MRI, etc.)

- Level sets encode, e.g., constant tissue density
- Natural representation for volumetric data: CT scans, density fields, etc.

Level Sets in Physical Simulation

- Level set encodes distance to air-liquid boundary
- Advantageous when modeling shapes with complex and/or changing topology (e.g., fluids)

See http://physbam.stanford.edu

Signed Distance Function

- SDF of a circle?
- General shapes

0.9	0	-4 0.2	0.9	1	1	1	1	1
-1	-0.9	-0.2	0.5	0.9	1	1	1	1
-1	0.9	0.3 0.1	0.2	0.8	1	1	1	1
-1	-0.9	0.40	0.2	0.8	1	1	1	1
-1	-1	-0.8-0.1	2	0.6	0.8	1		
-1	0.9	0.300	0.3	0.7	0.9	1	1	1
-1	-0.9	0.4	0.3	0.8	1	1	1	1
-0.9	-0.7	0.550	0.4	0.9	1	1	1	1
-0.1			0.4	1	1	1	1	1
1	1	11	1	1	1	1	1	1
	Truncated signed distance field (TSDF): Less memory than SDF							

SDF Discretization

- Regular cartesian 3D grid
- Compute signed distance at nodes
- Tri-linear interpolation within cells

$$
F_{110}
$$

$$
\begin{array}{rrrr}
F_{000} & (1-u) & (1-v) & (1-w)+ \\
F_{100} & u & (1-v) & (1-w)+ \\
F_{010} & (1-u) & v & (1-w)+ \\
F_{001} & (1-u) & (1-v) & w+ \\
\vdots & & & \\
F_{111} & u & v & w
\end{array}
$$

Implicit Representations

- Level Set Storage: storage for 2D surface is now O(n3)
- Reduce cost by storing only a narrow band around surface -Adaptive Grids
- Quadtree

Octree

- A hierarchical tree build by sequential subdivision (8) of a occupied cells.
- Adaptive, i.e. only splits when too many points in cell
- Widely used for complicated scenes that need faster processing
- E.g. Collision detection in real-time simulation or animation

Adaptively Sampled Distance Fields

12040 cells

895 cells

254 cells

- Adaptively Sampled Distance Fields: A general representation of shape for computer graphics, SIGGRAPH 2000
- Piecewise Linear Approximation of Signed Distance Fields, VMV 2003

RImplicit surface discretizations

- Uniform, regular voxel grids
- Adaptive, 3-color octrees
- Surface-adaptive refinement
$O\left(h^{-2}\right)$
- Feature-adaptive refinement
$O\left(h^{-1}\right)$
- Irregular hierarchies
- Binary space partition (BSP)
$O\left(h^{-1}\right)$

Constructive Solid Geometry (Implicit)

- Build more complicated shapes via Boolean operations
- Basic operations:

DIFFERENCE

- Then chain together expressions:

CSG Examples

Union

$$
F_{C \cup S}(\cdot)=\min \left\{F_{C}(\cdot), F_{S}(\cdot)\right\}
$$

Intersection

$$
F_{C \cap S}(\cdot)=\max \left\{F_{C}(\cdot), F_{S}(\cdot)\right\}
$$

Difference

$$
F_{S \backslash C}(\cdot)=\max \left\{-F_{C}(\cdot), F_{S}(\cdot)\right\}
$$

Constructive Solid Geometry (CSG)

- Machine an object - saw parts off, drill holes, glue pieces together
- This is sensible for objects that are actually made that way (human-made, particularly machined objects)

Implicit Surfaces -- smoot set opeation

- Standard operations: union and intersection

$$
\begin{aligned}
& \bigcup_{i} g_{i}(\mathbf{p})=\min g_{i}(\mathbf{p}) \\
& \bigcap_{i} g_{i}(\mathbf{p})=\max g_{i}(\mathbf{p})
\end{aligned}
$$

- In many cases, smooth blending is desired
- Pasko and Savchenko [1994]

$$
\begin{aligned}
& g \cup f=\frac{1}{1+\alpha}\left(g+f-\sqrt{g^{2}+f^{2}-2 \alpha g f}\right) \\
& g \cap f=\frac{1}{1+\alpha}\left(g+f+\sqrt{g^{2}+f^{2}-2 \alpha g f}\right)
\end{aligned}
$$

- alpha

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 1} g \cup f=\frac{1}{2}\left(g+f-\sqrt{(g-f)^{2}}\right)=\frac{g+f}{2}-\frac{|g-f|}{2}=\min (g, f) \\
& \lim _{\alpha \rightarrow 1} g \cap f=\frac{1}{2}\left(g+f+\sqrt{(g-f)^{2}}\right)=\frac{g+f}{2}+\frac{|g-f|}{2}=\max (g, f)
\end{aligned}
$$

Shape Modeling with Implicits

Shape Modeling with Implicits

$$
f_{1}(x)=0
$$

$$
f(\boldsymbol{x})=(1-t) f_{1}(\boldsymbol{x})+t f_{2}(\boldsymbol{x})
$$

$$
\overline{f_{2}(x)}=0
$$

Negative Objects

- Use point-by-point boolean functions
- remove a volume by using a negative object
- e.g. drill a hole by subtracting a cylinder

From

To get

- Inside(BLOCK-CYL) = Inside(BLOCK) And Not(Inside(CYL))

Set Operations

- UNION: Inside(A) || Inside(B)

Join A and B

- INTERSECTION: Inside(A) \&\& Inside(B)

Chop off any part of A that sticks out of B

- SUBTRACTION: Inside(A) \&\& (! Inside(B))

Use B to Cut A

- Examples:
- Use cylinders to drill holes
- Use rectangular blocks to cut slots
- Use half-spaces to cut planar faces
- Use surfaces swept from curves as jigsaws, etc

Implicit Functions for Booleans

- Recall the implicit function for a solid: $F(x, y, z)$
- Boolean operations are replaced by arithmetic
- MAX replaces And (intersection)
- MIN replaces OR (union)
- MINUS replaces NOT(unary subtraction)
- Thus
- $F($ Intersect $(A, B))=\operatorname{MAX}(F(A), F(B))$
- $F($ Union $(A, B))=\operatorname{MIN}(F(A), F(B))$
- $F($ Subtract $(A, B))=\operatorname{MAX}(F(A),-F(B))$

Boolean Operations with Implicits

Blobby Surfaces (Implicit)

- Instead of Booleans, gradually blend surfaces together:

- Easier to understand in 2D:
$\phi_{p}(x):=e^{-|x-p|^{2}} \quad$ (Gaussian centered at \mathbf{p})
$f:=\phi_{p}+\phi_{q} \quad$ (Sum of Gaussians centered at different points)

Blending Distance Functions (Implicit)

- A distance function gives distance to closest point on object
- Can blend any two distance functions $\mathrm{d}_{1}, \mathrm{~d}_{2}$:

- Similar strategy to points, though many possibilities. E.g.,

$$
f(x):=e^{-d_{1}(x)^{2}}+e^{-d_{2}(x)^{2}}-\frac{1}{2}
$$

- Appearance depends on exactly how we combine functions

■ Q: How do we implement a simple Boolean union?

- A: Just take the product: $f(x):=d_{1}(x) d_{2}(x)$

Scene of pure distance functions (not easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Fractals (Implicit)

- No precise definition; exhibit self-similarity, detail at all scales
- New "language" for describing natural phenomena
- Hard to control shape!

How to draw implicit surfaces?

- It's easy to ray trace implicit surfaces
- because of that easy intersection test
- Volume Rendering can display them
- Convert to polygons: the Marching Cubes algorithm
- Divide space into cubes
- Evaluate implicit function at each cube vertex
- Do root finding or linear interpolation along each edge
- Polygonize on a cube-by-cube basis

Implicit Representations - Pros \& Cons

- Pros:

- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)
- Cons:
- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes
- Level set is easy to represent complex shapes, but still difficult to model ...

Implicit Representations - Pros \& Cons

- Pros:
- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)
- Cons:
- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes

