Computer Graphics

-- Implicit Representation

Junjie Cao @ DLUT Spring 2019 http://jjcao.github.io/ComputerGraphics/

"Implicit" Representations of Geometry

- Points aren't known directly, but satisfy some relationship
 - E.g., unit sphere is all points x such that x^2+y^2+z^2=1
 - More generally, f(x,y,z) = 0
- Represent a surface as the zero set of a (regular) function defined in R³.

$$K = g^{-1}(0) = \{ \mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0 \}$$

Many implicit representations in graphics

- algebraic surfaces
- constructive solid geometry
- level set methods
- blobby surfaces
- fractals

(Will see some of these a bit later.)

Quadric Surfaces

Algebraic Surfaces (Implicit)

- Surface is zero set of a polynomial in x, y, z ("algebraic variety")
- Examples:

Gradient of Algebraic Surfaces

• Gradient is orthogonal to level set

$$\nabla g(x,y,z) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)^{1}$$

• Example

$$g(x,y,z) = x^{2} + y^{2} + z^{2} - r^{2}$$

 $\nabla g(x,y,z) = (2x,2y,2z)^{T}$

• => normal (1,1,0)

Algebraic Surfaces (Implicit)

- What about more complicated shapes?
- Very hard to come up with polynomials!

Level Set Methods (Implicit)

- Alternative: store a grid of values approximating function
- Surface is found where *interpolated* values equal zero
- Provides much more explicit control over shape (like a texture)

Level Sets from Medical Data (CT, MRI, etc.)

- Level sets encode, e.g., constant tissue density
- Natural representation for volumetric data: CT scans, density fields, etc.

Level Sets in Physical Simulation

- Level set encodes distance to air-liquid boundary
- Advantageous when modeling shapes with complex and/or changing topology (e.g., fluids)

See http://physbam.stanford.edu

Signed Distance Function

-0.9	-0.4	-01	0.2	0.9	1	1	1	1	1
-1	-0.9	-0.2	1	0.5	0.9	1	1	1	1
-1	-0.9	-0.3	0.	0.2	0.8	1	1	1	1
-1	-0.9	-0.4	0.2	0.2	0.8	1	1	1	1
-1	-1	-0.8	-0.1	9.2	0.6	0.8	1	1	1
-1	-0.9	-0.3	-0	0.3	0.7	0.9	1	1	1
-1	-0.9	-0.4	-9 1	0.3	0.8	1	1	1	1
-0.9	-0.7	-0.5	00	0.4	0.9	1	1	1	1
-0.1	-	0.0	1	0.4	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Truncated signed distance field (TSDF): Less memory than SDF

SDF Discretization

- Regular cartesian 3D grid
 - Compute signed distance at nodes
 - Tri-linear interpolation within cells

Implicit Representations

- Level Set Storage: storage for 2D surface is now O(n3)
- Reduce cost by storing only a narrow band around surface Adaptive Grids
 - Quadtree

Octree

- A hierarchical tree build by sequential subdivision (8) of a occupied cells.
- Adaptive, i.e. only splits when too many points in cell
- Widely used for complicated scenes that need faster processing
 - E.g. Collision detection in real-time simulation or animation

Paper: Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes

Adaptively Sampled Distance Fields

• Adaptively Sampled Distance Fields: A general representation of shape for computer graphics, SIGGRAPH 2000

Piecewise Linear Approximation of Signed Distance Fields, VMV 2003

- **RImplicit surface discretizations**
 - Uniform, regular voxel grids

 $O(h^{-2})$

 $O(h^{-1})$

 $O(h^{-1})$

- Adaptive, 3-color octrees
 - Surface-adaptive refinement
 - Feature-adaptive refinement
- Irregular hierarchies
 - Binary space partition (BSP)

Constructive Solid Geometry (Implicit)

- Build more complicated shapes via Boolean operations
- Basic operations:

• Then chain together expressions:

CSG Examples

Union

$$F_{C\cup S}(\cdot) = \min\left\{F_C(\cdot), F_S(\cdot)\right\}$$

Intersection

$$F_{C\cap S}(\cdot) = \max\left\{F_C(\cdot), F_S(\cdot)\right\}$$

Difference

$$F_{S\setminus C}(\cdot) = \max\left\{-F_C(\cdot), F_S(\cdot)\right\}$$

Constructive Solid Geometry (CSG)

- Machine an object saw parts off, drill holes, glue pieces together
- This is sensible for objects that are actually made that way (human-made, particularly machined objects)

Implicit Surfaces -- Smooth set operation

• Standard operations: union and intersection

- In many cases, smooth blending is desired
 - Pasko and Savchenko [1994]

$$g \cup f = \frac{1}{1+\alpha} \left(g + f - \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$
$$g \cap f = \frac{1}{1+\alpha} \left(g + f + \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$

alpha

$$\lim_{\alpha \to 1} g \cup f = \frac{1}{2} \left(g + f - \sqrt{(g - f)^2} \right) = \frac{g + f}{2} - \frac{|g - f|}{2} = \min(g, f)$$
$$\lim_{\alpha \to 1} g \cap f = \frac{1}{2} \left(g + f + \sqrt{(g - f)^2} \right) = \frac{g + f}{2} + \frac{|g - f|}{2} = \max(g, f)$$

 $\bigcup g_i(\mathbf{p}) = \min g_i(\mathbf{p})$

 $\bigcap g_i(\mathbf{p}) = \max g_i(\mathbf{p})$

 $\alpha = 0$

 $\alpha = 1$

Shape Modeling with Implicits

Shape Modeling with Implicits

Negative Objects

- Use point-by-point boolean functions
 - remove a volume by using a negative object
 - e.g. drill a hole by subtracting a cylinder

Inside(BLOCK-CYL) = Inside(BLOCK) And Not(Inside(CYL))

Set Operations

- UNION: Inside(A) || Inside(B) Join A and B
- INTERSECTION: Inside(A) && Inside(B)

Chop off any part of A that sticks out of B

• SUBTRACTION: Inside(A) && (! Inside(B))

Use B to Cut A

- Examples:
 - Use cylinders to drill holes
 - Use rectangular blocks to cut slots
 - Use half-spaces to cut planar faces
 - Use surfaces swept from curves as jigsaws, etc

Implicit Functions for Booleans

- Recall the implicit function for a solid: F(x,y,z)
- Boolean operations are replaced by arithmetic
 - MAX replaces And (intersection)
 - MIN replaces OR (union)
 - MINUS replaces NOT(unary subtraction)
- Thus
 - F(Intersect(A,B)) = MAX(F(A),F(B))
 - F(Union(A,B)) = MIN(F(A),F(B))
 - F(Subtract(A,B)) = MAX(F(A), -F(B))

Boolean Operations with Implicits

Blobby Surfaces (Implicit)

Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

 $f := \phi_p + \phi_q$

 $=\frac{1}{2}$

 $\phi_p(x) := e^{-|x-p|^2}$ (Gaussian centered at p)

(Sum of Gaussians centered at different points)

Blending Distance Functions (Implicit)

- A distance function gives distance to closest point on object
- Can blend any two distance functions d₁, d₂:

Similar strategy to points, though many possibilities. E.g.,

$$f(x) := e^{-d_1(x)^2} + e^{-d_2(x)^2} - \frac{1}{2}$$

- Appearance depends on exactly how we combine functions
- Q: How do we implement a simple Boolean union?
- A: Just take the product: $f(x) := d_1(x)d_2(x)$

Scene of pure distance functions (not easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Fractals (Implicit)

- No precise definition; exhibit self-similarity, detail at all scales
- New "language" for describing natural phenomena
- Hard to control shape!

How to draw implicit surfaces?

- It's easy to ray trace implicit surfaces
 - because of that easy intersection test
- Volume Rendering can display them
- Convert to polygons: the Marching Cubes algorithm
 - Divide space into cubes
 - Evaluate implicit function at each cube vertex
 - Do root finding or linear interpolation along each edge
 - Polygonize on a cube-by-cube basis

Implicit Representations - Pros & Cons

• Pros:

- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)

• Cons:

- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes
 - Level set is easy to represent complex shapes, but still difficult to model ...

Implicit Representations - Pros & Cons

- Pros:
 - description can be very compact (e.g., a polynomial)
 - easy to determine if a point is in our shape (just plug it in!)
 - other queries may also be easy (e.g., distance to surface)
 - for simple shapes, exact description/no sampling error
 - easy to handle changes in topology (e.g., fluid)
- Cons:
 - expensive to find all points in the shape (e.g., for drawing)
 - very difficult to model complex shapes