Computer Graphics

-- Explicit Representation

Junjie Cao @ DLUT Spring 2019 http://jjcao.github.io/ComputerGraphics/

Explicit Shape Representation

Where does the shape come from?

- Modeling "by hand"
 - Higher-level representations,
 - Amenable to modification, control
- Acquired real-world objects
 - Discrete sampling
 - Points, meshes

Shape Acquisition

Sampling of real world objects

- Scanners
 - Laser
 - Depth imaging
- Properties & Operations
 - Potentially noisy, with outliers
 - Registration of multiple images
 - Non-uniform sampling, sparse, holes

180 frames per second (From David Gu)

What about explicit representations?

- Easiest representation: list of points (x,y,z)
- Often augmented with normals
- Easily represent any kind of geometry
- Useful for LARGE datasets (>>1 point/pixel)
- Difficult to draw in undersampled regions
- Hard to do processing / simulation

Points: Neighborhood information

• Why do we need neighbors?

- Need sub-linear implementations of
 - K-nearest neighbors to point x (knn)
 - In radius search
- Efficient point processing & modeling requires a spatial partitioning data structure

Kd-Tree

- Each cell is individually split along the median into two cells
- Same amount of points in cells
- Perfectly balanced tree
- Proximity search similar to the recursive search in an Octree.
- More data storage required for inhomogeneous cell dimensions

Polygon Mesh (Explicit)

- Store vertices and polygons (most often triangles or quads)
- Easier to do processing/simulation, adaptive sampling
- More complicated data structures
- Perhaps most common representation in graphics

Surface is the range of a function

 $\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$

2D example: A Circle $\mathbf{f} : [0, 2\pi] \to \mathrm{IR}^2$ $\mathbf{f}(t) = \begin{pmatrix} r \cos(t) \\ r \sin(t) \end{pmatrix}$

Polynomials are computable functions

$$f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t)$$

Taylor expansion up to degree p

$$g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i} + O(h^{p+1})$$

Error for approximation g by polynomial f

$$f(t_i) = g(t_i), \quad 0 \le t_0 < \dots < t_p \le h$$
$$|f(t) - g(t)| \le \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Approximation error is $O(h^{p+1})$

Improve approximation quality by

- increasing p_{\dots} higher order polynomials
- decreasing h ... shorter / more segments

Issues

- smoothness of the target data ($\max f^{(p+1)}(t)$)
- smoothness condition between segments

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

2D example: Island coast line

$$\mathbf{f}: [0, 2\pi] \to \mathrm{IR}^2$$
$$\mathbf{f}(t) = \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$$

Triangle Mesh (Explicit)

- Store vertices as triples of coordinates (x,y,z)
- Store triangles as triples of indices (i,j,k)
- E.g., tetrahedron:
 VERTICES
 X
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 <li

• Can think of triangle as *affine* map from plane into space:

- **Theorem** Given a smooth surface S and a given error $\varepsilon > 0$, there exists a piecewise linear surface (mesh) M, such that $|M S| < \varepsilon$ for all points of M.
 - Piecewise linear approximation \rightarrow error is O(h^2)
 - Error inversely proportional to #faces

- Piecewise linear approximation \rightarrow error is O(h^2)
- Arbitrary topology surfaces

- Piecewise linear approximation \rightarrow error is O(h^2)
- Arbitrary topology surfaces
- Piecewise smooth surfaces

- Piecewise linear approximation \rightarrow error is O(h^2)
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling

- Piecewise linear approximation \rightarrow error is O(h^2)
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing

finite element analysis

Spline & NURBS

- Extract analytical rep.
- Support interactive shape editing
- Compact rep.
- Major modeling techniques in CAD

Bernstein Basis

- Why limit ourselves to just affine functions?
- More flexibility by using higher-order polynomials
- Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

Bézier Curves (Explicit)

• A Bézier curve is a curve expressed in the Bernstein basis:

control points

For n=1, just get a line segment!

k=0

 $\gamma(s) := \sum B_{n,k}(s) p_k^{\prime}$

- For n=3, get "cubic Bézier":
- Important features:
 - 1. interpolates endpoints
 - 2. tangent to end segments
 - 3. contained in convex hull (nice for rasterization)

Higher-order Bézier Curves?

- What if we want a more interesting curve?
- High-degree Bernstein polynomials don't interpolate well:

Very hard to control!

B-Spline Curves (Explicit)

- Instead, use many low-order Bézier curve (B-spline)
- Widely-used technique in software (Illustrator, Inkscape, etc.)

- Formally, piecewise Bézier curve: B-spline $\gamma(u) := \gamma_i \left(\frac{u - u_i}{u_{i+1} - u_i} \right), \quad u_i \le u < u_{i+1}$ Bézier
- Location of ui parameters are called "knots"

B-Splines — tangent continuity

• To get "seamless" curves, want *tangents* to line up:

- Ok, but how?
- Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-u)3p3
- Q: How many degrees of freedom in a single cubic Bézier
- Tangents are difference between first two & last two points
- Q: How many degrees of freedom per B-spline segment?
- Q: Could you do this with quadratic Bézier? Linear Bézier?

Rational B-Splines (Explicit)

- B-Splines can't exactly represent conics—not even the circle!
- Solution: interpolate in homogeneous coordinates, then
- project back to the plane:

Result is called a *rational* B-spline.

NURBS (Explicit)

- (N)on-(U)niform (R)ational (B)-(S)pline
 - knots at arbitrary locations (non-uniform)
 - expressed in homogeneous coordinates (rational)
 - piecewise polynomial curve (B-Spline)
- Homogeneous coordinate w controls "strength" of a vertex:

Tensor product

- Use a pair of curves to get a surface
- Value at any point (u,v) given by product of a curve f at u and a curve g at v

Bezier patches

• Bezier patch is a sum of (tensor) product of Bernstein bases.

Bezier surface

 Just as we connect Bezier curves, can connect Bezier patches to get a surface

- Very easy to draw: just dice each patch into a regular (u,v) grid!
- Q: Can we always get tangent continuity?
- (Think: How many constraints? How many degrees of freedom?)

Bezier patches are too simple

Notice that exactly four patches meet around *every* vertex!

In practice, far too constrained.

To make interesting shapes (with good continuity), we need patches that allow more interesting connectivity...

NURBS Surface (Explicit)

- Much more common than using NURBS for curves
- Use *tensor product* of scalar NURBS curves to get a patch:

 $S(u,v) := N_i(u)N_j(v)p_{ij}$

Multiple NURBS patches form a surface

- Pros: easy to evaluate, exact conics, high degree of continuity
- Cons: Hard to piece together patches, hard to edit (many DOFs)

Spline patch schemes

- There are many alternatives
 - NURBS, Gregory, Pm, polar ...
- Tradeoffs:
 - Degree of freedoms
 - Continuity
 - Difficulty of editing
 - Cost of evaluation
 - Generality
 - •
- As usual: pick the right tool for the job

Subdivision (Explicit)

- Alternative starting point for curves: subdivision
- Start with control curve
- Insert new vertex at each edge midpoint
- Update vertex positions according to fixed rule
- For careful choice of averaging rule, yields smooth curve
 - Some subdivision schemes correspond to well-known spline schemes!

Subdivision Surfaces (Explicit)

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging
- Many possible rule:
 - Catmull-Clark (quads)
 - Loop (triangles)

- Common issues:
 - interpolating or approximating?
 - continuity at vertices?
- Easier than splines for modeling

Other representations

Generalized cylinder rep.

- A shape = {axis, a cross-section curve, a scaling function}
- Good for symmetric shapes with few local details and with clear skeletal structure
- Widely used in vision community for shape recognition, and shape recover

Skeleton Rep.

- A thin 1D or 2D representation of 2D/3D objects
- A (hierarchical) set of bones + attached skins
- Widely used in animation, matching, object recognition

pg10_B-Mesh: A Fast Modeling System for Base Meshes of 3D Articulated Shapes

Overview of our B-Mesh modeling approach. (a) Specifying the skeleton and key-balls at the nodes by users; (b) creating inbetween-balls (in gray) by interpolating the key-balls; (c) generating an initial mesh; (d) subdividing the mesh (c); (e) evolving the mesh (d); (f) obtaining the final mesh with more subdivision and evolution.

Gm13_Geometry Curves: A Compact Representation for 3D Shapes

