
Computer Graphics
-- Explicit Representation

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/

Explicit Shape Representation
Where does the shape come from?
• Modeling “by hand”

• Higher-level representations,
• Amenable to modification, control

• Acquired real-world objects
• Discrete sampling
• Points, meshes

Shape Acquisition
Sampling of real world objects

• Scanners
• Laser
• Depth imaging

• Properties & Operations
• Potentially noisy, with outliers
• Registration of multiple images
• Non-uniform sampling, sparse, holes

180 frames per second (From David Gu)

What about explicit representations?
• Easiest representation: list of points (x,y,z)
• Often augmented with normals
• Easily represent any kind of geometry
• Useful for LARGE datasets (>>1 point/pixel)
• Difficult to draw in undersampled regions
• Hard to do processing / simulation

Points: Neighborhood information
• Why do we need neighbors?

• Need sub-linear implementations of
• K-nearest neighbors to point x (knn)
• In radius search

• Efficient point processing & modeling requires a spatial
partitioning data structure

Kd-Tree
• Each cell is individually split along the median into two cells
• Same amount of points in cells
• Perfectly balanced tree
• Proximity search similar to the recursive search in an Octree.
• More data storage required for inhomogeneous cell dimensions

Polygon Mesh (Explicit)
• Store vertices and polygons (most often triangles or quads)
• Easier to do processing/simulation, adaptive sampling
• More complicated data structures
• Perhaps most common representation in graphics

Parametric Representation

Parametric Representation

Parametric Representation

Parametric Representation

Triangle Mesh (Explicit)
• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)
• E.g., tetrahedron:

• Can think of triangle as affine map from plane into space:

Polygonal meshes are a good compromise
• Theorem Given a smooth surface S and a given error 𝜀 > 0,

there exists a piecewise linear surface (mesh) M, such that
|M − S| < 𝜀 for all points of M.

• Piecewise linear approximation → error is O(h^2)
• Error inversely proportional to #faces

Polygonal meshes are a good compromise
• Piecewise linear approximation → error is O(h^2)
• Arbitrary topology surfaces

Polygonal meshes are a good compromise
• Piecewise linear approximation → error is O(h^2)
• Arbitrary topology surfaces
• Piecewise smooth surfaces

Polygonal meshes are a good compromise
• Piecewise linear approximation → error is O(h^2)
• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling

Polygonal meshes are a good compromise
• Piecewise linear approximation → error is O(h^2)
• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling
• Efficient GPU-based rendering/processing

Spline & NURBS
• Extract analytical rep.
• Support interactive shape editing
• Compact rep.

• Major modeling techniques in CAD

Bernstein Basis
• Why limit ourselves to just affine functions?
• More flexibility by using higher-order polynomials
• Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

Bézier Curves (Explicit)
• A Bézier curve is a curve expressed in the Bernstein basis:

• For n=1, just get a line segment!
• For n=3, get “cubic Bézier”:
• Important features:

1. interpolates endpoints
2. tangent to end segments
3. contained in convex hull (nice for rasterization)

Higher-order Bézier Curves?
• What if we want a more interesting curve?
• High-degree Bernstein polynomials don’t interpolate well:

Very hard to control!

B-Spline Curves (Explicit)
• Instead, use many low-order Bézier curve (B-spline)
• Widely-used technique in software (Illustrator, Inkscape,

etc.)

• Formally, piecewise Bézier curve:

• Location of ui parameters are called “knots”

B-Splines — tangent continuity
• To get “seamless” curves, want tangents to line up:

• Ok, but how?
• Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-

u)3p3
• Q: How many degrees of freedom in a single cubic Bézier
• Tangents are difference between first two & last two points
• Q: How many degrees of freedom per B-spline segment?
• Q: Could you do this with quadratic Bézier? Linear Bézier?

Rational B-Splines (Explicit)
• B-Splines can’t exactly represent conics—not even the

circle!
• Solution: interpolate in homogeneous coordinates, then
• project back to the plane:

Result is called a rational B-spline.

NURBS (Explicit)
• (N)on-(U)niform (R)ational (B)-(S)pline

• knots at arbitrary locations (non-uniform)
• expressed in homogeneous coordinates (rational)
• piecewise polynomial curve (B-Spline)

• Homogeneous coordinate w controls “strength” of a vertex:

Tensor product
• Use a pair of curves to get a surface
• Value at any point (u,v) given by product of a curve f at u and a

curve g at v

Bezier patches
• Bezier patch is a sum of (tensor) product of Bernstein bases.

Bezier surface
• Just as we connect Bezier curves, can connect Bezier patches

to get a surface

• Very easy to draw: just dice each patch into a regular (u,v) grid!
• Q: Can we always get tangent continuity?
(Think: How many constraints? How many degrees of freedom?)

Bezier patches are too simple

NURBS Surface (Explicit)
• Much more common than using NURBS for curves
• Use tensor product of scalar NURBS curves to get a patch:

• Multiple NURBS patches form a surface

• Pros: easy to evaluate, exact conics, high degree of continuity
• Cons: Hard to piece together patches, hard to edit (many DOFs)

Spline patch schemes
• There are many alternatives

• NURBS, Gregory, Pm, polar …
• Tradeoffs:

• Degree of freedoms
• Continuity
• Difficulty of editing
• Cost of evaluation
• Generality
• …

• As usual: pick the right tool for the job

Subdivision (Explicit)
• Alternative starting point for curves: subdivision
• Start with control curve
• Insert new vertex at each edge midpoint
• Update vertex positions according to fixed rule
• For careful choice of averaging rule, yields smooth curve

• Some subdivision schemes correspond to well-known spline
schemes!

Subdivision Surfaces (Explicit)
• Start with coarse polygon mesh (“control cage”)
• Subdivide each element
• Update vertices via local averaging
• Many possible rule:

• Catmull-Clark (quads)
• Loop (triangles)
• ...

• Common issues:
• interpolating or approximating?
• continuity at vertices?

• Easier than splines for modeling

Other representations

Generalized cylinder rep.

• A shape = {axis, a cross-section curve, a scaling function}
• Good for symmetric shapes with few local details and with clear

skeletal structure
• Widely used in vision community for shape recognition, and shape

recover

Skeleton Rep.
• A thin 1D or 2D representation of 2D/3D objects
• A (hierarchical) set of bones + attached skins
• Widely used in animation, matching, object recognition

pg10_B-Mesh: A Fast Modeling System
for Base Meshes of 3D Articulated Shapes

Overview of our B-Mesh modeling approach. (a) Specifying the skeleton and key-balls at the nodes by
users; (b) creating inbetween-balls (in gray) by interpolating the key-balls; (c) generating an initial mesh; (d)
subdividing the mesh (c); (e) evolving the mesh (d); (f) obtaining the final mesh with more subdivision and
evolution.

Gm13_Geometry Curves: A Compact
Representation for 3D Shapes

