Computer Graphics

-- Explicit Representation

Junjie Cao @ DLUT

Spring 2019
http://jjcao.github.io/ComputerGraphics/

Explicit Shape Representation

Where does the shape come from?

- Modeling "by hand"
- Higher-level representations,
- Amenable to modification, control
- Acquired real-world objects
- Discrete sampling
- Points, meshes

Shape Acquisition

Sampling of real world objects

- Scanners

- Laser
- Depth imaging
- Properties \& Operations
- Potentially noisy, with outliers
- Registration of multiple images
- Non-uniform sampling, sparse, holes

What about explicit representations?

- Easiest representation: list of points ($\mathbf{x}, \mathbf{y}, \mathbf{z}$)
- Often augmented with normals
- Easily represent any kind of geometry
- Useful for LARGE datasets (>>1 point/pixel)
- Difficult to draw in undersampled regions
- Hard to do processing / simulation

Points: Neighborhood information

- Why do we need neighbors?

need normals (for shading)
upsampling - need to count density
- Need sub-linear implementations of
- K-nearest neighbors to point x (knn)
- In radius search
- Efficient point processing \& modeling requires a spatial partitioning data structure

Kd-Tree

- Each cell is individually split along the median into two cells
- Same amount of points in cells
- Perfectly balanced tree
- Proximity search similar to the recursive search in an Octree.
- More data storage required for inhomogeneous cell dimensions

Polygon Mesh (Explicit)

- Store vertices and polygons (most often triangles or quads)
- Easier to do processing/simulation, adaptive sampling
- More complicated data structures
- Perhaps most common representation in graphics

Parametric Representation

- Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: A Circle

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{r \cos (t)}{r \sin (t)}
\end{aligned}
$$

Parametric Representation

Polynomials are computable functions

$$
f(t)=\sum_{i=0}^{p} c_{i} t^{i}=\sum_{i=0}^{p} \tilde{c}_{i} \phi_{i}(t)
$$

Taylor expansion up to degree p

$$
g(h)=\sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i}+O\left(h^{p+1}\right)
$$

Error for approximation g by polynomial f

$$
\begin{gathered}
f\left(t_{i}\right)=g\left(t_{i}\right), \quad 0 \leq t_{0}<\cdots<t_{p} \leq h \\
|f(t)-g(t)| \leq \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^{p}\left(t-t_{i}\right)=O\left(h^{(p+1)}\right)
\end{gathered}
$$

Parametric Representation

Approximation error is $O\left(h^{p+1}\right)$

Improve approximation quality by

- increasing p... higher order polynomials
- decreasing $h \ldots$ shorter / more segments

Issues

- smoothness of the target data $\left(\max _{t} f^{(p+1)}(t)\right)$
- smoothness condition between segments

Parametric Representation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: Island coast line

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{?}{?}
\end{aligned}
$$

Triangle Mesh (Explicit)

- Store vertices as triples of coordinates (x, y, z)
- Store triangles as triples of indices (i,j,k)
- E.g., tetrahedron:

	VERTICES				TRIANGLES		
	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{i}	\mathbf{j}	\mathbf{k}	
$\mathbf{0}:$	-1	-1	-1	0	2	1	
$\mathbf{1 :}$	1	-1	1	0	3	2	
$\mathbf{2 :}$	1	1	-1	3	0	1	
$\mathbf{3 :}$	-1	1	1		3	1	

- Can think of triangle as affine map from plane into space:

Polygonal meshes are a good compromise

- Theorem Given a smooth surface S and a given error $\varepsilon>0$, there exists a piecewise linear surface (mesh) M, such that $|\mathrm{M}-\mathrm{S}|<\varepsilon$ for all points of M .
- Piecewise linear approximation \rightarrow error is $\mathrm{O}\left(\mathrm{h}^{\wedge} 2\right)$
- Error inversely proportional to \#faces

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $\mathrm{O}\left(\mathrm{h}^{\wedge} 2\right)$
- Arbitrary topology surfaces

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $\mathrm{O}\left(\mathrm{h}^{\wedge} 2\right)$
- Arbitrary topology surfaces
- Piecewise smooth surfaces

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $\mathrm{O}\left(\mathrm{h}^{\wedge} 2\right)$
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $\mathrm{O}\left(\mathrm{h}^{\wedge} 2\right)$
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing

finite element analysis

Spline \& NURBS

- Extract analytical rep.
- Support interactive shape editing
- Compact rep.
- Major modeling techniques in CAD

Bernstein Basis

- Why limit ourselves to just affine functions?
- More flexibility by using higher-order polynomials
- Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

Bézier Curves (Explicit)

- A Bézier curve is a curve expressed in the Bernstein basis:

$$
\gamma(s):=\sum_{k=0}^{n} B_{n, k}(s) p_{k}^{\swarrow_{p}}
$$

- For $n=1$, just get a line segment!
- For n=3, get "cubic Bézier":
- Important features:

1. interpolates endpoints
2. tangent to end segments
3. contained in convex hull (nice for rasterization)

Higher-order Bézier Curves?

- What if we want a more interesting curve?
- High-degree Bernstein polynomials don't interpolate well:

Very hard to control!

B-Spline Curves (Explicit)

- Instead, use many low-order Bézier curve (B-spline)
- Widely-used technique in software (Illustrator, Inkscape, etc.)

- Formally, piecewise Bézier curve:
B-spline
- Location of ui parameters are called "knots"

B-Splines - tangent continuity

- To get "seamless" curves, want tangents to line up:
- Ok, but how?
- Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1u) 3 p3
- Q: How many degrees of freedom in a single cubic Bézier
- Tangents are difference between first two \& last two points
- Q: How many degrees of freedom per B-spline segment?
- Q: Could you do this with quadratic Bézier? Linear Bézier?

Rational B-Splines (Explicit)

- B-Splines can't exactly represent conics-not even the circle!
- Solution: interpolate in homogeneous coordinates, then
- project back to the plane:

Result is called a rational B-spline.

NURBS (Explicit)

- (N)on-(U)niform (R)ational (B)-(S)pline
- knots at arbitrary locations (non-uniform)
- expressed in homogeneous coordinates (rational)
- piecewise polynomial curve (B-Spline)
- Homogeneous coordinate w controls "strength" of a vertex:

Tensor product

- Use a pair of curves to get a surface
- Value at any point (u, v) given by product of a curve f at u and a curve g at v

Bezier patches

- Bezier patch is a sum of (tensor) product of Bernstein bases.

Bezier surface

- Just as we connect Bezier curves, can connect Bezier patches to get a surface

- Very easy to draw: just dice each patch into a regular (u, v) grid!
- Q: Can we always get tangent continuity?
(Think: How many constraints? How many degrees of freedom?)

Bezier patches are too simple

Notice that exactly four patches meet around every vertex!

In practice, far too constrained.

To make interesting shapes (with good continuity), we need patches that allow more interesting connectivity...

NURBS Surface (Explicit)

- Much more common than using NURBS for curves
- Use tensor product of scalar NURBS curves to get a patch:

$$
S(u, v):=N_{i}(u) N_{j}(v) p_{i j}
$$

- Multiple NURBS patches form a surface

- Pros: easy to evaluate, exact conics, high degree of continuity
- Cons: Hard to piece together patches, hard to edit (many DOFs)

Spline patch schemes

- There are many alternatives
- NURBS, Gregory, Pm, polar ...
- Tradeoffs:
- Degree of freedoms
- Continuity
- Difficulty of editing
- Cost of evaluation
- Generality
- ...
- As usual: pick the right tool for the job

Subdivision (Explicit)

- Alternative starting point for curves: subdivision
- Start with control curve
- Insert new vertex at each edge midpoint
- Update vertex positions according to fixed rule
- For careful choice of averaging rule, yields smooth curve
- Some subdivision schemes correspond to well-known spline schemes!

Subdivision Surfaces (Explicit)

- Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging
- Many possible rule:
- Catmull-Clark (quads)
- Loop (triangles)
- ...

- Common issues:
- interpolating or approximating?
- continuity at vertices?
- Easier than splines for modeling

Other representations

Generalized cylinder rep.

- A shape $=$ \{axis, a cross-section curve, a scaling function\}
- Good for symmetric shapes with few local details and with clear skeletal structure
- Widely used in vision community for shape recognition, and shape recover

Skeleton Rep.

- A thin 1D or 2D representation of 2D/3D objects
- A (hierarchical) set of bones + attached skins
- Widely used in animation, matching, object recognition

pg10_B-Mesh: A Fast Modeling System for Base Meshes of 3D Articulated Shapes

Overview of our B-Mesh modeling approach. (a) Specifying the skeleton and key-balls at the nodes by users; (b) creating inbetween-balls (in gray) by interpolating the key-balls; (c) generating an initial mesh; (d) subdividing the mesh (c); (e) evolving the mesh (d); (f) obtaining the final mesh with more subdivision and evolution.

Gm13_Geometry Curves: A Compact Representation for 3D Shapes

Geometry curves

Geometry Curve
Representation

Geometry curves

Mesh connectivity

Mean curvature

3D Shape

