Computer Graphics

- Meshes and Manifolds

Junjie Cao @ DLUT
Spring 2019
http://jjcao.github.io/ComputerGraphics/

Music is dynamic, while score is static;
Movement is dynamic, while law is static.

Review: overview of geometry

 Many types of geometry in nature
 Demand sophisticated representations

 Two major categories:

 IMPLICIT - “tests” if a point is in shape
 EXPLICIT - directly “lists” points

 Lots of representations for both

Bitmap Images, Revisited
* To encode images, we used a regular grid of pixels:

r

® File Edit Goodies Font FontSize Style
- e untitled
A
©
(
A7
|l

P4 y . .
" YK — = S
f}z}{ e I A

L .4

But images are not fundamentally
made of little squares:
So why did we choose a square grid?

...rather than dozens of alternatives?

Regular grids make life easy

* One reason: SIMPLICITY / EFFICIENCY

 E.g., always have four neighbors
« Easy to index, easy to filter...
« Storage is just a list of numbers

* Another reason: GENERALITY

« Can encode basically any image

* Are regular grids always the best choice for bitmap images?

(2,3-1)

(i-llj)

(2,3)

(1+1,3)

(2,3+1)

* No! E.g., suffer from anisotropy, don’t capture edges, ...

« But more often than not are a pretty good choice
* Will see a similar story with geometry...

So, how should we encode surfaces?

iiiii

CGAL manual

Andrzej Barabasz

spheres approximate
sphere

Where Meshes Come From

* Model manually
* Write out all polygons
» Write some code to generate them
* Interactive editing: move vertices in space

 Acquisition from real objects
« 3D scanners, vision systems
« Generate set of points on the surface
* Need to convert to polygons

IoN

resolutl

igh

langles from a h

llion

A large mesh
tr

10 m

/]]

i

iy
IIII”

5 12 T o1/
3

vard.Clubjof

y

[¢] u

Hotel ll.||eS Sq\uale.. £ 1‘ $

YorkCity”

/]
/]
1,

D\;D Stlo_rgs;

/
/
iy

/]

1y,
Ui,

U

iy
%IIIZI”
IIIII[I
!IIII,III

,;lll”,,
Uiy

iy
i,

]
it
U1yl

i
I

/]
iy

(]

§
y
&

" Winter Vil age
.

e

rk
t Bryant.RPa
a

4 :

~
: .
g ."I ././

S

70
o ™ ./

e

‘:‘ - S
” N {\!)
‘.~:

éé‘/ &l“\r;T.('I
el e
od fits ‘
s A #\
% ldwi
_ r d
. WO 3
o g rocess
oy e
e trillio i
_ g :
', I-aut
abo. 30

se
from

»

~
.

V N
. i [-
- n
’ < N
!\\‘ S [
' "r’ » :
& \~_
o R k\
/ . -
oogle gl S
o 'e {
"'C\':oog
/ "- ‘
/2 / /4 '
ReA
nOut(fit?'ers 4
K &
3 A+ 3

Polygon Mesh

 Polygon meshes are C?9 piecewise linear surface
representations.

» Analogous to piecewise functions:

yA
6 if v <—2
— \ f(z) =< 2? if + >-2and = < 2

/\ 10— if x >-2

Polygon Mesh

v'1D: This line piece approximates the given shape (circle) only locally.

000

v’ 2D: This triangle piece approxs the given shape (sphere) only locally.

Polygon Mesh

« Approximation error decreases as # pieces increases.

LU

Polygon Mesh

v Approximation error is quadratic.
v'As # pieces doubled, error decreases one forth.

25% 6.5% 1.7% 0.4%

Polygonal meshes are a good compromise

 Theorem Given a smooth surface S and a given error € > 0, there
exists a piecewise linear surface (mesh) M, such that [M — S| < ¢ for
all points of M.

* Piecewise linear approximation — error is O(h”*2) (Error inversely
proportional to #faces)

- Arbitrary topology surfaces I
- Piecewise smooth surfaces
« Adaptive sampling

« Efficient GPU-based rendering/processing
* Finite element

:‘, |
AN 2 7
R
Y s

/3

4
iy
v

2
o

,
%
w
\/
=S
e
‘,?

,__;. E
<
\\"
_\\VS\

N
i

‘ »
Wi

PR

ég\‘.;' s;
4\‘ (//4,(
VINAL
N

\/
N

finite element analysis

What is a Mesh?

What is a Mesh?

» AMesh is a pair (PK), where P is a set of point positions P = {p. € R’ 11<i<n}
and K is an abstract simplicial complex which contains all topological information.

K=VUEUF

. Vertices v = {7} e V

*Edges e={i,j}eFE Face
. .. . Edg .
Faces fz{zl,zz,...,znf}eF =7,
Vertex

(X.y.2)

* A Graph is a pair G=(V,E)

Polygonal Meshes

* The vertex positions capture the geometry of the surface
* The mesh connectivity captures the topology of the surface

geometry v; ¢ R’ topology (’i,fi - IR3

Polygonal Meshes

« Geometry
 Embedding — Vertex coordinates
« Riemannian metrics — Edge lengths
« Conformal Structure — Corner angles (and other variant definitions)

 Topology
« connectivity of the vertices
« Simplicial Complex, Combinatorics

Triangle Meshes

v An undirected graph, with triangle faces.

Vertex degree or valence = # incident edges
deg(A) =4 deg(B) =3

k-regular mesh if all vertex degrees are
equal to k.

Triangle Meshes

v An undirected graph, with triangle faces.

B

connected if every pair of vertices are
connected by a path (of edges).

Topological validity - Consistent orientation

* QOrientation of a face is defined by ordering of its vertices, which
determines its normal direction, it can be clockwise or counter-
clockwise => “front”

A mesh is consistent oriented (orientable) if all faces can be oriented
consistently (all CCW or all CW) such that each edge has two opposite
orientations for its two adjacent faces

C C

B A B A
OK bad
* Not every mesh can be well oriented.

non-orientable surfaces

Topological validity -- Manifold assumption

manifold not

. manifold
« strongest property: be a manifold %&
» edge: each edge must have exactly 2 triangles

« vertex: each vertex must have one loop of triangles

- slightly looser: manifold with boundary with boundary

NG| B

Isn’t every shape manifold?
 Which of these shapes are manifold?

Center point never looks like the plane, no matter how close we get.

Polygon Mesh Types

\ :l- o ‘.’
4 'f'_'»,_ |
T (5 g

Single component, With boundaries
closed, triangular, 2-manifold
2-manifold

Multiple components Not only triangles
2-manifold 2-manifold

Non manifold

%'

2-manifoldness

A collection of tetrahedrons

Ok, but why is the manifold
assumption useful?

Keep it Simple!

« Same motivation as for images:

 make some assumptions about our geometry to keep data
structures/algorithms simple and efficient

* in many common cases, doesn’t fundamentally limit what we can
do with geometry

(ilj-l)

(2-1,3)| (2,3) |(i+l,3)

(1,3+1)

Geometric validity

« generally want non-self-intersecting surface

* hard to guarantee in general
* because far-apart parts of mesh might intersect

Global Topology: Genus

* Genus: Maximal number of closed simple cutting curves that do
not disconnect the graph into multiple components.

A disc (plane with boundary) / planar graph has genus zero

Euler-Poincarée Formula

Relates the number of cells in a mesh with the characteristics of the surface it
represents:

» Euler characteristic y= V-E+F=2(C-G)-B

* V : number of vertices V = 16
* E : number of edges E=232
« F : number of faces F=16
* C : number of connected components g - i
* G : number of genus (holes, handles) =0

B : number of boundaries

: 16-32+16=2(1-1)-0
 Euler Formula: V-E+F = 2 when C=1, G=0

handle

This is not a handle,
it’s a boundary loop

§

Euler Formula V-E+F = 2

Euler formula for planar graphs help us derive cool mesh statistics.

J =28
E=12
F=6

Yy =8+6—-12=2

Average Valence of Closed Triangle Mesh

 Theorem: For any closed manifold triangle mesh
vF ~ 2V
vE ~ 3V
v'Average vertex degree D is 6.

* Proof:

« Each face has 3 edges & each edge is counted twice: 3F = 2E

* by Euler’s formula: 2=V-E+F = V-3/2F+F=V-1/2F => F=2V-4 ~2V for large V
Similar approach => E ~3V

DV=2E => D=7
by Euler’s formula: V+F-E = V+2E/3-E = 2-2¢g
Thus E = 3(V-2+29)

=>D = 2E/V = 6(V-2+2g)/V ~ 6 for large V

W\
)

How many pentagons;~iZ

 every vertex has valence 3

e
LN

fullerene (carbon)

Euler Consequences

Triangle mesh statistics
« F=x2V
- Ex3V

* Average valence = 6

Quad mesh statistics
e eV
- F 2V

» Average valence = 4

1T @:

——y

-

How do we actually encode all this data?

/, it A AL O
.

S i

; v . S : - —

G Y e
: IS I‘ 3 ",.x: \
)

u" ‘;:;ff v ;" \E : 3"'-, é’fi\ _\ﬁ_“.‘(' .Q:j\-:\’ Lt.\‘.) / R
b .:l __..--, -4) ¥ : N N . : - Il'_> : . ;I ‘l“l - %\j ll\

/

W22
= Tl
Al T
i\

—
" ‘
4 -
»
. WA
| v-’v.‘g S) .
o o — A
R yy P
- AN +f \ ’
o G L1

R oy e e \ e -~ Y
- e Ly e o - LEL Af = 4 1 T = .
R /{7 \ Tl y o g - k o py l'l S \
= -t - \ Pt L i \ AT “
> L T L o T —— T
. 5 = ™
Nl - e ¥

W
—]

Ve

i

.~

-;"i'.a ATV TS

- -

Face set (STL) - Polygon Soups / Separate

triangles

tris[O]

- array of triples of points tris{1]

* float[nf][3][3]: about 72 bytes per vertex
* 4 bytes per coordinate (float)
« 3 coordinates per vertex
» 3 vertices per triangle => 36 byte per face

0] [1]]

XoYor4o X2:¥Y2:22 X1.Y1.41
Xo Y040 X3:.¥Y3:43 X Y24

» 2 triangles per vertex (on average, Euler Consequences: |F|~2|V])

 various problems
« wastes space (each vertex stored 6 times)
« cracks due to roundoft
« difficulty of finding neighbors at all

O 00 N O U A WDNPRE

Neighborhood relations [Weller 1985]

Vertex —\Vertex VvV
Vertex - Edge VE
VvV VE VF

Vertex —Face VF

Edge —Vertex EV

Edge —Edge EE ﬂ m ﬂ
Edge —Face EF

Face — Vertex FV EV EE EF

Face — Edge FE
Face — Face FF D o c E < F
EV FE FF

Knowing some types of relation, we can discover other (but not necessary all) topological information
e.g. If in addition to VV, VE and VF, we know neighboring vertices of a face, we can discover all neighboring
edges of the face

37

Data Structures

* What should be stored?

« Geometry: 3D vertex coordinates
« Connectivity: Vertex adjacency
* Attributes:

 normals, color, texture coordinates, etc.
» Per Vertex, per face, per edge

normal tangent planes

= — | =5

& ___ _ o cylinder

38

How to think about vertex normals

* Piecewise planar approximation converges pretty quickly
to the smooth geometry as the number of triangles
Increases

« For mathematicians: error is O(h2)

* But the surface normals don’t converge so well

* normal is constant over each triangle, with discontinuous jumps across
edges
 for mathematicians: error is only O(h)

» Better: store the “real” normal at each vertex, and
interpolate to get normals that vary gradually across
triangles

Interpolated normals—2D example

* Approximating circle with increasingly
many segments

« Max error in position error drops by T
factor of 4 at each step

8%, 11°

« Max error in normal only drops by
factor of 2

0.5%, 3°

Mesh Data Structures

* How to store geometry & connectivity?

- Compact storage and file formats W\ - |
- Efficient algorithms on meshes \M N | |
Edge

e Renderin g T Vertex lEdge lEdge 1 Vertex

Collapse | Split Split Flip Relocation

 Queries AN { } h
« What are the vertices of face #37 \>7\: / <> <><>

* |s vertex #6 adjacent to vertex #127
* Which faces are adjacent to face #77?

. Modifications ﬁg;
* Remove/add a vertex/face gﬁ%
- Ry

* Vertex split, edge collapse SIS
L7

41

Mesh Data Structures

v Applications of edge split: @
v" Increase resolution to catch details in 3D reconstruction

Edge
v' Paper: Shape from silhouette using topology-adaptive mesh deformation +**

v' Split short edge
if midpoint is OUT:

Mesh Data Structures

v" Applications of edge split:
v Increase resolution for smoother surfaces: Subdivision

Surfaces T
v’ Loop subdivision | y
% AV

v 32 (original) to 1628
vertices in 3 iterations:

4 }— 1\\

Mesh Data Structures @

v Applications of edge split: o
v Increase resolution for smoother surfaces: Subdivision Surfaces .
v" Loop subdivision
v Updating the topology (connectivity)
split all edges, by inserting a midpoint subdivide each face into 4 triangles

Mesh Data Structures

v Applications of edge split:

v" Increase resolution for smoother surfaces: Subdivision Surfaces

v" Loop subdivision
v' Updating the geometry (coordinates)
First compute edge points wuy,

vo

(%)

_ 3 3 1 1
’U;—g’UQ‘Fg’UQ‘I‘g’Ul‘i‘g?M

<

Edge
! Split

N g

Compute new locations v/ of initial vertices

(V) /
Us 3 / U3

V2 Vly

vl =(1—ad)v,+a Z;-lzl v;,

3 ifd =3

3 ifd >3

d is the degree of vertex v;

&
vj, is the j-th neighbor of v; a

esh Data Structures

Applications of edge collapse:

Decrease resolution for efficiency Edge Vertex
v' Detail-preservina v

Mesh Data Structures @

v" Applications of edge collapse: Collapse Ispm

v Decrease resolution for efficiency
v Detail-oblivious (level-of-detail)

Mesh Data Structures

v Applications of edge flip:
v Better triangulations, e.g., w/ less skinny triangles
v" Finite element modeling, simulations, terrain construction

)

Edge
Flip

Different Data Structures

* Time to construct (preprocessing)

* Time to answer a query
« Random access to vertices/edges/faces
 Fast mesh traversal
« Fast Neighborhood query

* Time to perform an operation
 split/merge

« Space complexity
 Redundancy

 Most important ones are face and edge-based (since they
encode connectivity)

49

Mesh Representations

* Face-vertex meshes
* Problem: different topological structure for triangles and quadrangles

* Winged-edge meshes
* Problem: traveling the neighborhood requires one case distinction

- Half-edge meshes
 Quad-edge meshes, Corner-tables, Vertex-vertex meshes, ...

* LR (Laced Ring): more compact than halfedge [siggraph2011:
compact connectivity representation for triangle meshes]
» Suited for processing meshes with fixed connectivity

Mesh Representations

* Choice

« Each of the representations
above have particular
advantages & drawbacks

« Choice is governed by
« Application,
« Performance required,
« Size of the data,
« and Operations to be performed.

* Example
* it is easier to deal with triangles than

general polygons, especially in
computational geometry:.

For certain operations it is necessary to
have a fast access to topological
Information such as edges or neighboring
faces; this requires more complex
structures such as half-edge
representation.

For hardware rendering, compact, simple
structures are needed; thus the corner-
table (triangle fan) is commonly
Incorporated into low-level rendering APIs
such as DirectX and OpenGL.

Indexed Face set - Shared Vertex (OBJ,OFF)

« Store each vertex once
« Each triangle points to its three vertices

Triangles

Vertices
(i ,v; (o, Yo, 20)
v3 |v1\| V2 (w1, Y1, z1)
Uy |U3 : v2
\\:
R i
e S TN TN
Un—1
NANANANAN

12 B/v + 12 B/f = 36B/v

Triangles

X11 Vi1 211 | X12 Y12 212 (X13 Vi3 213

X21 V21 Z21 | X22 Y22 Z22 (X23 V23 223

Xr1 Yr1 2r1 | XF2 YrF2 Zr2 | XF3 YF3 Zr3

Face-Set data structure with various problems
* wastes space (each vertex stored 6 times)

* cracks due to roundoff

* difficulty of finding neighbors at all

52

Transversal operations

* Most operations are slow for the connectivity info is not explicit.
* Need a more efficient representation

iterate over V E F
collect
adjacent
\/ quadratic |quadratic ||inear
E quadratic |quadratic ||inear
F quadratic | quadratic ||inear

Examplel: Iterate {fi}; find fI' s vertices for computing face
normal: linear operations

1. Iterate {fi}. O(|F|), |F|~|2V|, so O(V);

2. For each fi, find its vertices: O(1).

Example2: Iterate {vi}; find 1-ring vertex neighbors of each vi
to compute Laplacian or averaging some vertex property:
quadratic operations

1. Iterate {vi}: O(V);

2. For vi, search {fi} to find all faces {fj}

O(IFI), [F[~|2V], so O(V);
3. For each fjof vi' s 1-ring faces, find vi' s 1-ring
vertices: O(1).

containing vi:

Face-Based Connectivity

 \Vertex: g
e position
1 face

 Face:

3 vertices
3 face neighbors

12(v position4+*3) + 12+2(f vertices4+3) + 4(v 1 face) + 12+2(f 3face neighbors)=64 B/v

Face-vertex meshes

1. locating neighboring faces and vertices Is constant time

2. asearch is still needed to find all the faces surrounding a given
face.

3. Other dynamic operations, such as splitting or merging a face,
are also difficult with face-vertex meshes.

Face List Vertex List
v4

fo | vOva vsS v0 10,00 |10 11 f12 115 7
f1 vo vs vl vl [100 |12 13 f13 f12 f
f2 |vivsve v2 |1,0,0 |fa 15 f14 f13 3
f3 | vl v6 v2 v3 10,10 |16 17 115 14 5
f4 v2 v6 V7 vd4 1001 |16 1710 18 M
fs | v2vZ V3 vs 1101 [fofi f2 O 8
f6 v3 v7 v4 ve I |121314 1O 9
f7 |v3v4 v vZ7 10,11 |14 5 f6 f11 110
fg | v8 v5 v4 v8 |.5,50| 18 19 f10111
fo | v8 v6 vs v9 |5.51]| 112131415 f1
f10| v8 v7 v6 f3
f11 | v8 v4 v7 vO
f12 | v9 v5 v4
f13 | V9 v6 V5
f14 | vO v7 v6
f15 | vO va4 v7 //VZ

vl 55

Edges always have the same topological structure

v

Efficient handling of polygons with variable valence

(Winged) Edge-Based Connectivity

* Vertex:
 position
* 1 edge

* Edge:
» 2 vertices
« 2 faces
* 4 edges

120 B/v
 Face:

* 1 edge

Winged-edge meshes

 explicitly represent the vertices, faces, and edges of a mesh.

* greatest flexibility in dynamically changing the mesh
* large storage requirements and increased complexity due to

maintaining many indic -
V4<
fO

vO

wv

V7
> v6
f6
f7 f5
V3
L 1 f\
\' .vo f14
. "% 2" f13
v2 \\\ o —— —

f4

Winged-edge meshes

f1
f2
f3
f4
f5
f6

f8

f10
f11
f12
f13
f14
f15

Face List

48 9

0109

S

10

1

12

n

12

13

14

13

14

15

8

15

16

19

17

16

18

17

19

18

23

20

20

21

21

22

WIN| =IOl Nl wWw NN O -

22

23

el
el
e2
e3
ed
e5
eb
e/
e
20
el0
ell
el2
el3
el4
el5
el6
el?7
el8
el9
e20
e2l
e22
e23

Edge List

vovl |fifi2]| 9 23 10 20
viv2 |[f3f13 |11 20 12 21
v2v3 |f5f14 |13 21 14 22
v3v0 |f7f15 |15 22 8 23
v4 v5 |fo f8 19 8 16 9
vS v6 [f2 f9 1610 17 1
ve v7 |f4 f10 |17 12 18 13
vZv4 |f6f11 |18 14 19 15
vov4 |7 fO 39 7 4
vO v5 | fO f1 8 0 4 10
vivs |12 011 9 5

vive |2 f3 101 512
v2v6 (34 113 11 6

v2v7 |f4 {5 122 6 14
v3v7 |f5f6 215 13 7

v3 v4 | f6 7 143 715
vs v8 | f8 9 45 1917

vé6 v8 | 9110 56 1618
vZv8 |fl0f11| 6 7 1719
v4 v8 |f1118 74 1816
vivo [fiI2n3| O 1 23 2]
v2vo [f13f14] T 2 20 22
v3vo |f14f15] 2 3 21 23
vovo |fi5f12] 3 0 22 20

Vertex List

v0 (0,00 |8 9 0 23
vi [100 10111 20
v2 11012132 2
v3 [01,0 [14153 22
v4 (0,01 |8 157 19
vs [1,01 |10 9 4 16
vé 101 12115717
v7 (01,1 |1413618
v8 |5,.50] 161718 19
v9 |5,51]|20 21 2223

NiIovn sl ~lolw

back CCW edge
face 1

edge

face 2
back CW edge

Winged Edge Structure

front CCW edge

.-’-”'/' other
outgoing
edges

front CW edge

59

Render dynamic meshes

combines winged-edge meshes and face-vertex meshes
require slightly less storage space than standard winged-edge meshes,

and can be directly rendered by graphics hardware since the face list
contains an index of vertices.

Operation Vertex—vertex Face—vertex Winged—edge Render dynamic
o All vertices around L. V—-f1, 2, £f3, ... = vl, v2, |V — el, €2, €3, ... =& vl, v2, |V — el, €2, e3, ... — vl, v2,
V-V Explicit
vertex v3, ... v3, ... v3, ...
F(a,b,c) — {a, b}, {b,c},
E-F All edges of a face . s F — {a,b}, {b,c}, {a,c} Explicit Explicit
1a, €J
V-F | All vertices of a face F(a,b,c) — {a,b,c} Explicit F — el, €2, e3 = a, b, ¢ Explicit
i All faces around a . o V = el, e2, e3 — f1, £f2, £3, o
F-V Pair search Explicit Explicit
vertex e
) All edges around a V — {v,v1l}, {v,v2}, vV — fl, f2, f3, ... — vl, v2, o o
E-V . Explicit Explicit
vertex {v,v3}, ... v3, ...
BESE Both faces of an edge List compare List compare Explicit Explicit
V-E Both vertices of an edge E(a,b) — {a, b} E(a,b) — {a, b} Explicit Explicit
Find face with given]
Flook o F(a,b,c) — {a,b,c} Set intersection of vl, v2, v3 Set intersection of vl, v2, v3 Set intersection of vl, v2, v3
vertices
Vxkavg (V, V) 3F + V¥avg(F,V) 3F + 8E + Vxavg(E, V) 6F + 4E + Vxavg(E, V)
Storage size Example with 10 vertices, 16 faces, 24 edges:
10 * 5 = 50 3%16 + 10%5 = 98 3%16 + 8%24 + 10%5 = 290 6%16 + 4%24 + 10%5 = 242

Figure 6: summary of mesh representation operations

Half-Edge Data Structure

 Half-edge: each edge is duplicated by also considering
its orientation

* An edge corresponds to a pair of sibling half-edges with
opposite orientations

« Each half-edge stores half topological information
concerning the edge

Half-Edge Data Structure

* VVertex:
* position
* 1 halfedge
* Edge:
* 1 vertex
« 1 face
1, 2, or 3 halfedges \ |

* Face:
* 1 halfedge

96 to 144 B/v

Half-Edge Data Structure

« 64-144 bytes/vertex depending on number of references to
adjacent edges

« reference to sibling half-edge can be avoided by storing siblings at
consecutive entries of a vector

* for triangle meshes, just one reference to either next or previous half-
edge is sufficient

 Efficient traversal and update operations
* Attributes for edges must be stored separately

Half-Edge Data Structure

* One-ring traversal (V* relations):

1. start at vertex o

>

Half-Edge Data Structure

* One-ring traversal (V* relations):

1.start at vertex

O
2.outgoing half-edge / \

Half-Edge Data Structure

* One-ring traversal (V* relations):

1.start at vertex

O
2.outgoing half-edge //

3.opposite half-edge 0\/
\ /o

@)

O

/\/

.
—

Half-Edge Data Structure

* One-ring traversal (V* relations):

1.start at vertex o
2.outgoing half-edge
3.opposite half-edge

4next half-edge \
/\

Half-Edge Data Structure

* One-ring traversal (V* relations):

1.start at vertex o
2.outgoing half-edge

3.opposite half-edge / /'
4.next half-edge \ |
\O

5.0pposite

Half-Edge Data Structure

* One-ring traversal (V* relations):

1.start at vertex ®

2.outgoing half-edge / \
3.opposite half-edge
4.next half-edge \ /

5.0pposite

How HDS can -- OpenMesh

\r/ "y
1

o EV

T =T

;6?

:)N
v

FF

/ \ All basic queries take constant O(1) time!

70

Halfedge meshes are easy to edit

« Remember key feature of linked list: insert/delete elements
« Same story with halfedge mesh (“linked list on steroids™)
* E.g., for triangle meshes, several atomic operations:

fli c
g

b b

 How? Allocate/delete elements; reassigning pointers.
 Must be careful to preserve manifoldness!

Comparison of Polygon Mesh Data Structures

Case study: Incidence
' Polygon Sou . Halfedge Mesh
triangles. Y9 P Matrices g
storage cost* ~3 X #vertices ~33 x #vertices ~36 X #vertices
constant-time
neighborhood access? NO YES YES
easy to add/remove NO NO VES
mesh elements?
nonmanifold YES VES NO
geometry?

Conclusion: pick the right data structure for the job!

*number of integer values and/or pointers required to encode connectivity
(all data structures require same amount of storage for vertex positions)

Ok, but what can we actually do with
our fancy new data structure?

Subdivision Modeling

« Common modeling paradigm in modern 3D tools:
« Coarse “control cage”
* Perform local operations to control/edit shape
* Global subdivision process determines final surface

Subdivision Modeling—Local Operations

* For general polygon meshes, we can dream up lots of local
mesh operations that might be useful for modeling:

--and many, many more!

TOOLS

* Meshlab (meshlab.sourceforge.net) - free:
* triangle mesh processing with many features
* based on the VCGlib
* OpenFlipper (www.openflipper.orq) - free:
* polygon mesh modeling and processing
* based on OpenMesh
 Graphite (alice.loria.fr)-free:
« polygon mesh modeling, processing and rendering
* based on CGAL

EnVirOnment —_— C++ Where is the source code: D:flibigl/tutorial

fhere to build the binaries: D:flibigl/tutorial/build
* Visual studio 2015 community

Search: Grouped Advanced E
« CMAKE
_ Name Value
* Eigen - EMBREE
. ENABLE
. GLFW
* Libigl (Indexed based) 4 LIBIGL
_ _ LIBIGL_USE_STATIC_LIBRARY)
* VCGIib (Adjacency based) LIBIGL VIEWER WITH_NANOGUI

- CGAL (Half-edge based)
* OpenMesh (Half-edge based)

7

Environment - Matlab

* Matlab 2015b
» jjcao_code: https://github.com/jjcao/jjcao_code.git

Lab

e Lab1

« Chapter 1 of libigl tutorial or
jjcao_code\toolbox\jjcao_plot\eg_trisurf.m

» Lab2 [optional]
« See User manual of Halfedge Data Structures of CGAL

* run the examples or
jjcao_code\toolbox\jjcao_mesh\datastructure\test_to_halfedge.m

Alternatives to Halfedge

Paul Heckbert (former CMU prof.)
Many very similar data structures: Quadedge code - http://bit.Iy/1QzLHos

- winged edge
- corner table

quadedge L
cube & oct

dodec 4> oS

m Eachstores local neighborhood information
m Similar tradeoffs relative to simple polygon list:

- CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements, intuitive
traversal of local neighborhoods

(Food for thought: can gou design a halfedge-like data
structure with reasonably coherent data storage?)

Design, Implementation, and Evaluation of theSurface_mesh Data Structure

¢
‘o .

SASUTHRE Iy 1
Wt ety ' - £ : w0
o Ca o e vt P ilavater e .
2% o rael) camt € et s 3
B3, aMrstcresiiant atars i oo
1

tetare Il syl 2
}
' AN DA s ciTeamm’
A 4 Jl'b.,'.->l.‘ L] ' A " ‘s 'l‘.‘ 4 A

- !
o Mrssirm,
'
8 L 3 1. I Sl
- " o el crnel)
‘T O
TULE LT
/ J P30 Nt Xeawmid
Lol G rutie '
i
' -.l.v‘-.'l‘- ::

Q e

el

-

-—

Design, Implementation and Evaluation of the Surface mesh Data Structure, /MR 2011. has code 81

Resources

* https://github.com/jjcao/jjcao code.qit
* SourceTree

» Gabriel Peyre’s numerical tour!

« Wiki
* OFF file format specification

« Xianfeng Gu, lecture 8 halfedge data structure

82

Old assignment

Assignment 1: Mesh processing “Hello World”

» Goals: learn basic mesh data structure
programming + rendering (flat/gouraud shaded,
wireframe) + basic GUI programmlng

* by MATLAB or VC

85

Assignment 2: selection + operation
ools

* Goals: implement image-space selection tools and
perform local operations (smoothing, etc.) on

selected region
«VC

)
Export tles +{ Sxport ties +§ [|
Crseretizaion Tests 1 | Crserstizaion Tests 1| e |
M Rogdanzason - Mk Rogdarizason =} nrn %
7 &t Moy 7 EatMods P Taivien
Regulmwizsnon Type Regulwizston Type ! Sopdmions Tow
= tngeelis emeotting = Bngeelis eothing | g Sastion
~ a1t squares mashes ~ w3t squares mashes VT b o
Requisnzation Made Reguianzation Made e
& mean curvatuie anchors & mean curvatuia anchory X s b
€ i singe ancher € e singe anchar ,...':"-
LH5 0 Lanh HE 00
Ssns Ak et b 00 bk e sy
e v © rean vae | 2
7 AN curvim nomal - mean curvabuty nomal | i e
.-
ROU Weigtang Type RO! weigtang Typs. |
 Gonstant ~ Gomtant | PN oy Ve
@ Linear - Cwaimt
 COF Waights COF Weights I & vy
© Ivsess COF Welgpts Inveess COF Welghts | Rl o
Scala tactar| 10 Scalatieto{10 | | Fotamacy—> o
By |1
I~ Tangeetial Pane Cons¥aints I~ Tangeetial Plane Conskaints
13 Truncine MK Outiees 7 Truncishe MACHN Qutiers 1 Jangieta i Cpe e
™ Trange Graaley Modusaton ™ Trange Qualby Moduston £ Dowtm MOM Cubeey
I~ Use invarse Laplacian Waights I~ Use invarse Laplacian Weights T Wowmgn Gty Vs st
Sttt waigh[00 Sht-wusipt[00 17 Chp e L g
I Stow Matogran T Stow Matogean L
myuaizo £OI | myuanizo £O) | T S g
- I £ oy o+ it 0.
Honderng nodes + Hondenng nodes * 3
ugm_ +] ugn Seatetng s o]
Windown_+| Windows_+| [N
—— |
Resatvaw Resstvaw
5066 o | N = | 3 =
Cut ot | W
Blue Light Gelden Light Whie Litt Fed Light —o | Blue Light Gelden Light White Ligt Red Light —I | Mo B Sod L - |

86

Final Project

* Implementation/extension of a space or surface
based editing tool
* makes use of assignments 1 + 2
* Your own suggestion, with instructor approval
 Includes written project report & presentation
« Latex style files will be provided?
« Power Point examples will be provided?

» o ar ar
5599 -

87

