
Computer Graphics
- Meshes and Manifolds

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/

Music is dynamic, while score is static;
Movement is dynamic, while law is static.

• Many types of geometry in nature
• Demand sophisticated representations
• Two major categories:

• IMPLICIT - “tests” if a point is in shape
• EXPLICIT - directly “lists” points

• Lots of representations for both

2

Review: overview of geometry

Bitmap Images, Revisited
• To encode images, we used a regular grid of pixels:

But images are not fundamentally
made of little squares:
So why did we choose a square grid?

…rather than dozens of alternatives?

Regular grids make life easy

• One reason: SIMPLICITY / EFFICIENCY
• E.g., always have four neighbors
• Easy to index, easy to filter…
• Storage is just a list of numbers

• Another reason: GENERALITY
• Can encode basically any image

• Are regular grids always the best choice for bitmap images?
• No! E.g., suffer from anisotropy, don’t capture edges, ...
• But more often than not are a pretty good choice

• Will see a similar story with geometry...

So, how should we encode surfaces?

Where Meshes Come From
• Model manually

• Write out all polygons
• Write some code to generate them
• Interactive editing: move vertices in space

• Acquisition from real objects
• 3D scanners, vision systems
• Generate set of points on the surface
• Need to convert to polygons

7

A large mesh
• 10 million triangles from a high-resolution

3D scan 

Polygon Mesh
• Polygon meshes are C 0 piecewise linear surface

representations.
• Analogous to piecewise functions:

Polygon Mesh
ü1D: This line piece approximates the given shape (circle) only locally.

ü 2D: This triangle piece approxs the given shape (sphere) only locally.

Polygon Mesh
• Approximation error decreases as # pieces increases.

Polygon Mesh
üApproximation error is quadratic.

üAs # pieces doubled, error decreases one forth.

Polygonal meshes are a good compromise
• Theorem Given a smooth surface S and a given error 𝜀 > 0, there

exists a piecewise linear surface (mesh) M, such that |M − S| < 𝜀 for
all points of M.

• Piecewise linear approximation → error is O(h^2) (Error inversely
proportional to #faces)

• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling
• Efficient GPU-based rendering/processing
• Finite element

What is a Mesh?

What is a Mesh?
• A Mesh is a pair (P,K), where P is a set of point positions

and K is an abstract simplicial complex which contains all topological information.

• Vertices
• Edges
• Faces

• A Graph is a pair G=(V,E)

}1|{ 3 niRpP i ££Î=

Viv Î= }{
Ejie Î= },{

Fiiif
fn
Î= },...,,{ 21

FEVK ÈÈ=

Polygonal Meshes
• The vertex positions capture the geometry of the surface
• The mesh connectivity captures the topology of the surface

Polygonal Meshes
• Geometry

• Embedding – Vertex coordinates
• Riemannian metrics – Edge lengths
• Conformal Structure – Corner angles (and other variant definitions)

• Topology
• connectivity of the vertices
• Simplicial Complex, Combinatorics

Triangle Meshes

19/ 47üAn undirected graph, with triangle faces.

Vertex degree or valence = # incident edges
deg(A) = 4 deg(B) = 3

k-regular mesh if all vertex degrees are
equal to k.

Triangle Meshes

20/ 47üAn undirected graph, with triangle faces.

connected if every pair of vertices are
connected by a path (of edges).

Topological validity - Consistent orientation
• Orientation of a face is defined by ordering of its vertices, which

determines its normal direction, it can be clockwise or counter-
clockwise => “front”

• A mesh is consistent oriented (orientable) if all faces can be oriented
consistently (all CCW or all CW) such that each edge has two opposite
orientations for its two adjacent faces

• Not every mesh can be well oriented.

non-orientable surfaces

Topological validity -- Manifold assumption

• strongest property: be a manifold
• edge: each edge must have exactly 2 triangles
• vertex: each vertex must have one loop of triangles

• slightly looser: manifold with boundary

22

Isn’t every shape manifold?
• Which of these shapes are manifold?

Center point never looks like the plane, no matter how close we get.

Polygon Mesh Types

24/ 47

A	collection	of	tetrahedrons

Ok, but why is the manifold
assumption useful?

Keep it Simple!
• Same motivation as for images:

• make some assumptions about our geometry to keep data
structures/algorithms simple and efficient

• in many common cases, doesn’t fundamentally limit what we can
do with geometry

Geometric validity
• generally want non-self-intersecting surface
• hard to guarantee in general

• because far-apart parts of mesh might intersect 

Global Topology: Genus
• Genus: Maximal number of closed simple cutting curves that do

not disconnect the graph into multiple components.

• Informally, the number of holes or handles

A disc (plane with boundary) / planar graph has genus zero

g=0 g=1 g=2

Euler-Poincaré Formula
Relates the number of cells in a mesh with the characteristics of the surface it
represents:
• Euler characteristic 𝝌= V-E+F=2(C-G)-B

• V : number of vertices
• E : number of edges
• F : number of faces
• C : number of connected components
• G : number of genus (holes, handles)
• B : number of boundaries

• Euler Formula: V-E+F = 2 when C=1, G=0

V = 16
E = 32
F = 16
C = 1
G = 1
B = 0
16 – 32 + 16 = 2 (1 - 1) - 0

Euler Formula V-E+F = 2
Euler formula for planar graphs help us derive cool mesh statistics.

Average Valence of Closed Triangle Mesh
• Theorem: For any closed manifold triangle mesh

üF ~ 2V
üE ~ 3V
üAverage vertex degree D is 6.

• Proof:
• Each face has 3 edges & each edge is counted twice: 3F = 2E
• by Euler’s formula: 2=V-E+F = V-3/2F+F=V-1/2F => F=2V-4 ~2V for large V
• Similar approach => E ~3V

• DV=2E => D=?
• by Euler’s formula: V+F-E = V+2E/3-E = 2-2g
• Thus E = 3(V-2+2g)

• => D = 2E/V = 6(V-2+2g)/V ~ 6 for large V

How many pentagons六边形?
• every vertex has valence 3

fullerene (carbon)

Euler Consequences

How do we actually encode all this data?

Face set (STL) - Polygon Soups / Separate
triangles

• array of triples of points
• float[nf][3][3]: about 72 bytes per vertex

• 4 bytes per coordinate (float)
• 3 coordinates per vertex
• 3 vertices per triangle => 36 byte per face
• 2 triangles per vertex (on average, Euler Consequences: |F|~2|V|)

• various problems
• wastes space (each vertex stored 6 times)
• cracks due to roundoff
• difficulty of finding neighbors at all 

Neighborhood relations [Weiler 1985]

37

Knowing some types of relation, we can discover other (but not necessary all) topological information
e.g. if in addition to VV, VE and VF, we know neighboring vertices of a face, we can discover all neighboring
edges of the face

Data Structures
• What should be stored?

• Geometry: 3D vertex coordinates
• Connectivity: Vertex adjacency
• Attributes:

• normals, color, texture coordinates, etc.
• Per Vertex, per face, per edge

38

How to think about vertex normals
• Piecewise planar approximation converges pretty quickly

to the smooth geometry as the number of triangles
increases

• For mathematicians: error is O(h2)

• But the surface normals don’t converge so well
• normal is constant over each triangle, with discontinuous jumps across

edges
• for mathematicians: error is only O(h)

• Better: store the “real” normal at each vertex, and
interpolate to get normals that vary gradually across
triangles

Interpolated normals—2D example
• Approximating circle with increasingly

many segments

• Max error in position error drops by
factor of 4 at each step

• Max error in normal only drops by
factor of 2

Mesh Data Structures
• How to store geometry & connectivity?

• Compact storage and file formats
• Efficient algorithms on meshes

• Rendering
• Queries

• What are the vertices of face #3?
• Is vertex #6 adjacent to vertex #12?
• Which faces are adjacent to face #7?

• Modifications
• Remove/add a vertex/face
• Vertex split, edge collapse

41

Mesh Data Structures
42 /

24

ü Applications of edge split:
ü Increase resolution to catch details in 3D reconstruction

ü Paper: Shape from silhouette using topology-adaptive mesh deformation

ü Split short edge
if midpoint is OUT:

Mesh Data Structures
43 /

24üApplications of edge split:
ü Increase resolution for smoother surfaces: Subdivision

Surfaces
ü Loop subdivision

ü 32 (original) to 1628
vertices in 3 iterations:

Mesh Data Structures
44 /

24

ü Applications of edge split:
ü Increase resolution for smoother surfaces: Subdivision Surfaces

ü Loop subdivision
ü Updating the topology (connectivity)

Mesh Data Structures
45 /

24
ü Applications of edge split:
ü Increase resolution for smoother surfaces: Subdivision Surfaces

ü Loop subdivision
ü Updating the geometry (coordinates)

Mesh Data Structures

46 / 24
ü Applications of edge collapse:
ü Decrease resolution for efficiency

ü Detail-preserving

Mesh Data Structures

47 / 24ü Applications of edge collapse:
ü Decrease resolution for efficiency

ü Detail-oblivious (level-of-detail)

Mesh Data Structures

48 / 24ü Applications of edge flip:
ü Better triangulations, e.g., w/ less skinny triangles
ü Finite element modeling, simulations, terrain construction

Different Data Structures
• Time to construct (preprocessing)
• Time to answer a query

• Random access to vertices/edges/faces
• Fast mesh traversal
• Fast Neighborhood query

• Time to perform an operation
• split/merge

• Space complexity
• Redundancy
• Most important ones are face and edge-based (since they

encode connectivity)

49

Mesh Representations
• Face-vertex meshes

• Problem: different topological structure for triangles and quadrangles
• Winged-edge meshes

• Problem: traveling the neighborhood requires one case distinction
• Half-edge meshes
• Quad-edge meshes, Corner-tables, Vertex-vertex meshes, …
• LR (Laced Ring): more compact than halfedge [siggraph2011:

compact connectivity representation for triangle meshes]
• Suited for processing meshes with fixed connectivity

50

Mesh Representations

• Choice
• Each of the representations

above have particular
advantages & drawbacks

• Choice is governed by
• Application,
• Performance required,
• Size of the data,
• and Operations to be performed.

51

• Example
• it is easier to deal with triangles than

general polygons, especially in
computational geometry.

• For certain operations it is necessary to
have a fast access to topological
information such as edges or neighboring
faces; this requires more complex
structures such as half-edge
representation.

• For hardware rendering, compact, simple
structures are needed; thus the corner-
table (triangle fan) is commonly
incorporated into low-level rendering APIs
such as DirectX and OpenGL.

Indexed Face set - Shared Vertex (OBJ,OFF)
• Store each vertex once
• Each triangle points to its three vertices

52

Face-Set data structure with various problems
• wastes space (each vertex stored 6 times)
• cracks due to roundoff
• difficulty of finding neighbors at all

12 B/v + 12 B/f = 36B/v

Transversal operations
• Most operations are slow for the connectivity info is not explicit.
• Need a more efficient representation

53

Example1: Iterate {fi}; find fi’s vertices for computing face
normal: linear operations

1. Iterate {fi}: O(|F|), |F|~|2V|, so O(V);
2. For each fi, find its vertices: O(1).

Example2: Iterate {vi}; find 1-ring vertex neighbors of each vi
to compute Laplacian or averaging some vertex property:
quadratic operations

1. Iterate {vi}: O(V);
2. For vi, search {fi} to find all faces {fj}’ containing vi:

O(|F|), |F|~|2V|, so O(V);
3. For each fj of vi’s 1-ring faces, find vi’s 1-ring
vertices: O(1).

Face-Based Connectivity
• Vertex:

• position
• 1 face

• Face:
• 3 vertices
• 3 face neighbors

12(v position4*3) + 12*2(f vertices4*3) + 4(v 1 face) + 12*2(f 3face neighbors)=64 B/v

Face-vertex meshes
1. locating neighboring faces and vertices is constant time
2. a search is still needed to find all the faces surrounding a given

face.
3. Other dynamic operations, such as splitting or merging a face,

are also difficult with face-vertex meshes.

55

Edges always have the same topological structure

Efficient handling of polygons with variable valence

56

(Winged) Edge-Based Connectivity
• Vertex:

• position
• 1 edge

• Edge:
• 2 vertices
• 2 faces
• 4 edges

• Face:
• 1 edge

57

Winged-edge meshes

• explicitly represent the vertices, faces, and edges of a mesh.
• greatest flexibility in dynamically changing the mesh
• large storage requirements and increased complexity due to

maintaining many indices

58

Winged-edge meshes

59

Render dynamic meshes
• combines winged-edge meshes and face-vertex meshes
• require slightly less storage space than standard winged-edge meshes,
• and can be directly rendered by graphics hardware since the face list

contains an index of vertices.

60

Half-Edge Data Structure
• Half-edge: each edge is duplicated by also considering

its orientation
• An edge corresponds to a pair of sibling half-edges with

opposite orientations
• Each half-edge stores half topological information

concerning the edge

Half-Edge Data Structure
• Vertex:

• position
• 1 halfedge

• Edge:
• 1 vertex
• 1 face
• 1, 2, or 3 halfedges

• Face:
• 1 halfedge 96 to 144 B/v

Half-Edge Data Structure

• 64-144 bytes/vertex depending on number of references to
adjacent edges

• reference to sibling half-edge can be avoided by storing siblings at
consecutive entries of a vector

• for triangle meshes, just one reference to either next or previous half-
edge is sufficient

• Efficient traversal and update operations
• Attributes for edges must be stored separately

Half-Edge Data Structure

• One-ring traversal (V* relations):

1. start at vertex

Half-Edge Data Structure

• One-ring traversal (V* relations):
1.start at vertex
2.outgoing half-edge

Half-Edge Data Structure

• One-ring traversal (V* relations):
1.start at vertex
2.outgoing half-edge
3.opposite half-edge

Half-Edge Data Structure

• One-ring traversal (V* relations):
1.start at vertex
2.outgoing half-edge
3.opposite half-edge
4.next half-edge

Half-Edge Data Structure

• One-ring traversal (V* relations):
1.start at vertex
2.outgoing half-edge
3.opposite half-edge
4.next half-edge
5.opposite

Half-Edge Data Structure

• One-ring traversal (V* relations):
1.start at vertex
2.outgoing half-edge
3.opposite half-edge
4.next half-edge
5.opposite
6.next.....

How HDS can -- OpenMesh

All basic queries take constant O(1) time!

70

Halfedge meshes are easy to edit
• Remember key feature of linked list: insert/delete elements
• Same story with halfedge mesh (“linked list on steroids”)
• E.g., for triangle meshes, several atomic operations:

• How? Allocate/delete elements; reassigning pointers.
• Must be careful to preserve manifoldness!

Comparison of Polygon Mesh Data Structures

Conclusion: pick the right data structure for the job!
*number of integer values and/or pointers required to encode connectivity
(all data structures require same amount of storage for vertex positions)

Ok, but what can we actually do with
our fancy new data structure?

Subdivision Modeling
• Common modeling paradigm in modern 3D tools:

• Coarse “control cage”
• Perform local operations to control/edit shape
• Global subdivision process determines final surface

Subdivision Modeling—Local Operations
• For general polygon meshes, we can dream up lots of local

mesh operations that might be useful for modeling:

…and many, many more!

TOOLS
• Meshlab (meshlab.sourceforge.net) - free:

• triangle mesh processing with many features
• based on the VCGlib

• OpenFlipper (www.openflipper.org) - free:
• polygon mesh modeling and processing
• based on OpenMesh

• Graphite (alice.loria.fr) - free:
• polygon mesh modeling, processing and rendering
• based on CGAL

Environment – c++
• Visual studio 2015 community
• CMAKE
• Eigen

• Libigl (Indexed based)
• VCGlib (Adjacency based)

• CGAL (Half-edge based)
• OpenMesh (Half-edge based)

77

Environment - Matlab
• Matlab 2015b
• jjcao_code: https://github.com/jjcao/jjcao_code.git

78

Lab
• Lab1

• Chapter 1 of libigl tutorial or
jjcao_code\toolbox\jjcao_plot\eg_trisurf.m

• Lab2 [optional]
• See User manual of Halfedge Data Structures of CGAL
• run the examples or

jjcao_code\toolbox\jjcao_mesh\datastructure\test_to_halfedge.m

79

81

Design, Implementation, and Evaluation of theSurface_mesh Data Structure

Design, Implementation and Evaluation of the Surface_mesh Data Structure, IMR 2011. has code

Resources
• https://github.com/jjcao/jjcao_code.git
• SourceTree

• Gabriel Peyre’s numerical tour!

• Wiki
• OFF file format specification

• Xianfeng Gu, lecture_8_halfedge_data_structure

82

Thanks!
83

Old assignment

84

Assignment 1: Mesh processing “Hello World”
• Goals: learn basic mesh data structure

programming + rendering (flat/gouraud shaded,
wireframe) + basic GUI programming

• by MATLAB or VC

85

Assignment 2: selection + operation
tools

• Goals: implement image-space selection tools and
perform local operations (smoothing, etc.) on
selected region

• VC

86

Final Project
• Implementation/extension of a space or surface

based editing tool
• makes use of assignments 1 + 2
• Your own suggestion, with instructor approval

• Includes written project report & presentation
• Latex style files will be provided?
• Power Point examples will be provided?

87

