Computer Graphics

-- Implicit <& Explicit
Junjie Cao @ DLUT
Spring 2019
http://jjcao.github.io/ComputerGraphics/

Conversion

 Explicit to Implicit
« Compute signed distance at grid points
« Compute distance point-mesh

« Fast marching

 Implicit to Explicit
» Extract zero-level iso-surface F(x,y,z) =0

» Other iso-surfaces F(x,y,z)=C

* Medical imaging, simulations, measurements, ...

Signed Distance Computation

* Find closest mesh triangle

» Use spatial hierarchies (octree, BSP tree)
 Distance point-triangle
 Distance to plane, edge, or vertex

* http://www.geometrictools.com

* Inside or outside?

« Based on interpolated surface normals

Signed Distance Computation
e Closest point p=ap; + (1 —a)p;

e |nterpolated normal N = an; + (1 — CY)nj

e Insideif (q—p) ' n<0

Fast Marching Techniques

* |nitialize with exact distance in mesh'’s vicinity

 Fast-march outwards 000000000060
» Fast-march inwards $44447 1 1 7 1 déd
444/ ¢bbbd4 &
...’/,...... { .
..00......\.

Schneider, Eberly, “Geometric Tools for Computer Graphics” , Morgan Kaufmann, 2002
Sethian, “Level Set and Fast Marching Methods” , Cambridge University Press, 1999

Conversion

» Explicit to Implicit
« Compute signed distance at grid points
« Compute distance point-mesh

« Fast marching

 Implicit to Explicit (Polygonization of Implicit Surfaces)
« Extract zero-level iso-surface F(x,y,z) =0
« Other iso-surfaces F(x,y, z) =C

* Medical imaging, simulations, measurements, ...

Recall: Final step of Poisson reconstruction

Density Function Isosurface

Medical Reconstruction

* Algorithm for isosurface extraction from
* medical scans (CT, MRI)

¢
f .

.
3
i
B
:
Y e

Density Function from MRI Scans

Level Set

 c-Level set: The set of points where a function takes a constant
value c

 Isocontour: Level set of a 2D function

* Isosurface: Level set of a 3D function

o B - of g 1018
A y | . : .‘ --v' - N T ‘

Marching Squares

> 9 9 9 9 9 9 - e 2

e L 4 ® ® ® 9 ® 9

* Any red point is the midpoint of some edge!
* Resulting “circle” is bad

Marching Cubes

* Also known as
« 3D Contouring / Tessellation of implicit surfaces
 Polygonising a scalar field / Surface Reconstruction

Different level sets of CT scan

Bone surface Soft tissue surface Alignment with original volumetric data

Lorensen and Cline, “Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm”, SIGGRAPH '87

Marching Square

 The 5-level set:

Splits edge
asymetrically, since 5 is
closer to 6 than to 2

Bisects the edge,

since 5 is equidistant
from 3 and 7

|Isocontours: Ambiguity
 Where is the contour?

“Split” green (inner) region
\ or quare cell:
2 ambiguous cases
Triangular cell: O ®

No ambiguities
“Join” green (inner) region

Isocontours: Ambiguity

 Where is the contour?

—

Join

<1 >

e

Split

Isocontours: Cell Configurations

No intersections

o—o
—

1 vertex different

O \0

(o \0

2* =16 different possibilities, reducible to just 6
distinct cases after factoring out symmetries

2 vertices different

&Ambiguous case/

Marching Squares Algorithm

* Select a starting cell

e Calculate inside/outside state for each vertex

* Classify cell configuration

» Determine which edges are intersected
* Find exact locations of edge intersections
* Link up intersections to produce contour segment(s)

* Move (or “march”) into next cell and repeat

e ... until all cells have been visited

Example : Contour Line Generation

* Find 5-contour of function
represented by its values at
vertices of a uniform grid

« Step 1: Classify vertices

Step 2 : classify cells

No Intersections

Iﬁ Adjacent edges

Opposite edges

Q Ambi
mbiguous
N\

Step 3 : interpolate contour intersections

No Iintersections

S Adjacent edges

Opposite edges

.
.

Step 3 : interpolate contour intersections

No Intersections

B Adjacent edges

Opposite edges

T o
mbiguous
N,

Arbitrarily choose to split here, instead of join. We could
also have gone the other way.

Step 3 : interpolate contour intersections

No intersections

S Adjacent edges

Opposite edges

.

Resolving ambiguities

No intersections
Adjacent edges

Opposite edges

..

[T4

Choosing to join instead

In 3D: Marching Cubes

« Exactly the same algorithm, but cells are now cubes (15 distinct
configurations) and output is triangles (or a polygon mix)

=l (I

= 5 @

o NI \
— ’$> />/ ‘ \‘\ﬂ/ ‘

Montani et al., “A modified look-up table for implicit disambiguation of Marching Cubes” , Visual Computer 1994

\

AL\

‘\

Marching Cubes: Estimating Normals

* We could estimate normals from the generated mesh, but the
density function has more information

« Recall: The normal to the surface is the gradient of the density

function
_(of of of
Vi= 0x' 0y’ 0z

* We will estimate the gradient from the grid of values

Normals at Cube Vertices

Discrete approximation to the
gradient at the blue cube vertex

i+, k)= f(i=1,j,k)
* 2A X

n :f<i’j+1’k)_f(i’j_1’k)
§ 2Ay

n :f<i,j’k+1)_f(i,j;k_1)
Y 2Az

(Better approximations are possible)

Normals at Mesh Vertices

Cube vertex normal
(from gradient)

" Mesh vertex normal
T - —p (interpolated from edge
1 endpoints in ratio a:b)

Cube vertex normal
(from gradient)

Grid Resolution

X' ¢

Grid size=10 Grid size=5 Grid size=2 Grid size=1 Gnd size=0.5
70 Facets 220 Facets 1700 Facets 6800 Facets 27000 Facets

Marching Cubes

« Sample points restricted to edges of regular grid
* Alias artifacts at sharp features

@ Q

65x65x65

Increasing Resolution

Does not remove alias problems!

Extended Marching Cubes ¢ ?

* Locally extrapolate distance gradient
* Place samples on estimated features

Q

N

65x65x65

65x65%x65

Kobbelt et al., “Feature Sensitive Surface Extraction from Volume Data” , SIGGRAPH 2001

Extended Marching Cubes

» Feature detection
« Based on angle between normals
 Classify into edges / corners

o

/ I

Extended Marching Cubes

» Feature sampling
* Intersect tangent planes (s I, n_i)

* Over- or under-determined system
» Solve by SVD pseudo-inverse

Extended Marching Cubes

» Feature sampling
* Intersect tangent planes (s I, n_i)
* Triangle fans centered at feature point

Extended Marching Cubes

Feature Feature Edge
Detection Sampling Flipping

Marching Cubes: Pros and Cons

* Pros:

 Local computations only, so needs very little working memory &
easy to parallelize

« Simple to implement

» Cons:
 produces lots of triangles (-> mesh decimation)
» Degenerate triangles (— remeshing)
* No principled approach to resolve ambiguities
 MC does not preserve features

 EMC preserves features, but...
« about 10% more triangles
« 20-40% computational overhead

Cons & Pros

« Even more intelligent forms of marching cubes, which adapt their cube resolution to match local
surface complexity, produces pretty low quality meshes.

« The right mesh was made with adaptive marching cubes while the left mesh was made with a much
more advanced algorithm (see Voronoi-based Variational Reconstruction of Unoriented Point Sets).

* Nevertheless marching cubes is useful for its simplicity. Implicit functions occur a lot in computer
graphics and other fields, and rendering them is often the most intuitive way to work with them

Hex <& Binary

* Hex in c/c++: begin with 0x

* Hex & Binary
+ 0x000 <> 0000 0000 0000 (12 zeros)
. Oxfff & 1111 1111 1111

* Bitwise Inclusive OR Operator: |
unsigned short a = 0x5555; // pattern 0101 ...
unsigned short b = OXAAAA; // pattern 1010 ...
cout << hex << (a|b)<<endl// prints "ffff" pattern 1111 ...

 Bitwise Exclusive OR Operator: #
unsigned short a = 0x5535; // pattern 0101 ...
unsigned short b = OxFFFF; // pattern 1111 ...

cout << hex << (a”b)<<endl/ prints "aaaa" pattern 1010 ...

Vertex States

 For each of the 8 vertices: either inside or outside of the
surface. So 2"8=256 possible vertex states

« 2 of these are trivial, where all points are inside or outside

« account for symmetries, there are really only 14 unique
configurations in the remaining 254 possibilities.

« A 8 bit index is formed where each bit corresponds to a
vertex state

 only vertex 3 was below the isosurface, cubeindex would equal 0000
1000 or 8.

cubeindex = O;

If (grid.val[0] < isolevel) cubeindex |= 1;

if (grid.val[1] < isolevel) cubeindex |= 2;

if (grid.val[2] < isolevel) cubeindex |= 4;

if (grid.val[3] < isolevel) cubeindex |= 8;

If (grid.val[4] < isolevel) cubeindex |= 16;
If (grid.val[5] < isolevel) cubeindex |= 32;
If (grid.val[6] < isolevel) cubeindex |= 64;
if (grid.val[7] < isolevel) cubeindex |= 128;

Edge Intersection State Table

* Vertex states is index of Edge intersection state table

« For any edge, if one vertex is inside of the surface and the other is
outside of the surface then the edge intersects the surface

* There are 12 edges. For each entry in the table, if edge #n is
intersected, then bit #n is set to 1

//0x000 <> 000000000000 (12 zeros)
[10xfff < 111111111111

int edgeTable[256]={ 0x000, 0x109, 0x203, 0x30a, 0x406,

Ox50f, ..., Ox2fc, Oxdfc, Oxcf5, Oxfff, Oxef6, Ox9fa, ..., 0x203,
0x109, 0x000};

* only vertex 3 was below the Isosurtace, cubeindex would
equal 0000 1000 <~ 8.

* edgeTable[8] = 0x80c <~ 1000 0000 1100. It means that edge
2,3, and 11 are intersected by the isosurface.

Triangle Connection Table

» For each of the possible vertex states listed in edge Table
there is a specific triangulation of the edge intersection
points.

« triTable lists all of them in the form of 0-5 edge triples with
the list terminated by the invalid value -1.

- {1,8,3,9,8,1,-1,-1,-1,-1,-1, -1, -1, -1, -1, -1}: means 2 triangles
(7 edne trinles)
4 4 S
ﬁ Ei
? 9 Edge index
Yertex index
q) 10
t 0 U 1

v8 v7 vb v5 v4 v3 ve vi

INDEX

Triangle Connection Table

It means edge 1, 3, 10 & @
/I For example: 11 ¢

// edgeTable [3] = 0x30a <~ 1100001010 < 778

// triTable[3] list the 2 triangles formed when corner[0] & corner[1] are
inside of the surface, but the rest of the cube is not.

Int triTable[256][16] =

{
{-1,-1,-1,-1,-1,-1,-1,-1, -1, -1, -1, -1, -1, -1,
-1, -1},
{0,873, -1,-1,-1,-1,-1, -1, -1, -1, -1, -1, -1, -1,
OxOca ¢ 0011001010 <mmm},

1 1 1 1 1 1 1 1 1 1
{O, 1, 9, - 4 4 5 _1, _1
4 4 5
]}, . i
.
s {1,8,3,¢ ; 4 -1, -
B N W ——— (L —
i 2 B 9 1%'dge index 8fs . ?
Yertex index / ~
10 11 / h w~ |10
11 0 0 1 0 a 1

Triangle Connection Table

// For example:

/] vertex state: 3 < 0000 0011

/I edgeTable [3] = 0x30a <> 0011 0000 1010;

/] triTable[3] list the 2 triangles formed when corner[0] & corner[1] are
inside of the surface, but the rest of the cube is not.
int triTable[256][16] = {

{(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1, -1,

11 0

-1, -1},

It means edge 1, 3,8 &9

{,83-1-1,-1,-1,-1,-1,-1,-1,-1, -1, -1, -1,

-1},

-1},

{1,8,3,¢

1}’

Edge index
Yertex index

2

11

2

S

{0,1,9,-1,-1,-1,-1,-1,-1,-1,-1, -1, -1, -1, -1,
4 4 5

5 =1, -

Intersection points

* by linear interpolation

P =P; + (isovalue = Vi) (Po = Py) / (Vo — Vy)

Source code

References

http://paulbourke.net/geometry/polygonise/

vtkMarchingCubes
CGAL: Poisson_reconstruction_function
Matlab: Marching Cubes by Peter Hammer

http://graphics.stanford.edu/~mdfisher/MarchingCubes.html
Andrew Nealen: CS 523: Computer Graphics : Shape Modeling

