Computer Graphics

-- Implicit \Leftrightarrow Explicit

Junjie Cao @ DLUT Spring 2019 http://jjcao.github.io/ComputerGraphics/

Conversion

- Explicit to Implicit
 - Compute signed distance at grid points
 - Compute distance point-mesh
 - Fast marching
- Implicit to Explicit
 - Extract zero-level iso-surface F(x, y, z) = 0
 - Other iso-surfaces F(x, y, z) = C
 - Medical imaging, simulations, measurements, ...

Signed Distance Computation

- Find closest mesh triangle
 - Use spatial hierarchies (octree, BSP tree)
- Distance point-triangle
 - Distance to plane, edge, or vertex
 - http://www.geometrictools.com
- Inside or outside?
 - Based on interpolated surface normals

Signed Distance Computation

- Closest point $\mathbf{p} = \alpha \mathbf{p}_i + (1 \alpha) \mathbf{p}_j$
- Interpolated normal $\mathbf{n} = \alpha \mathbf{n}_i + (1 \alpha) \mathbf{n}_j$
- Inside if $(\mathbf{q} \mathbf{p})^{\top} \mathbf{n} < 0$

Fast Marching Techniques

- Initialize with exact distance in mesh's vicinity
- Fast-march outwards
- Fast-march inwards

Schneider, Eberly, "Geometric Tools for Computer Graphics", Morgan Kaufmann, 2002 Sethian, "Level Set and Fast Marching Methods", Cambridge University Press, 1999

Conversion

- Explicit to Implicit
 - Compute signed distance at grid points
 - Compute distance point-mesh
 - Fast marching
- Implicit to Explicit (Polygonization of Implicit Surfaces)
 - Extract zero-level iso-surface F(x, y, z) = 0
 - Other iso-surfaces F(x, y, z) = C
 - Medical imaging, simulations, measurements, ...

Recall: Final step of Poisson reconstruction

Density Function

lsosurface

Medical Reconstruction

- Algorithm for isosurface extraction from
- medical scans (CT, MRI)

Density Function from MRI Scans

Level Set

- c-Level set: The set of points where a function takes a constant value c
 - Isocontour: Level set of a 2D function
 - Isosurface: Level set of a 3D function

Marching Squares

- Any red point is the midpoint of some edge!
- Resulting "circle" is bad

Marching Cubes

- Also known as
 - 3D Contouring / Tessellation of implicit surfaces
 - Polygonising a scalar field / Surface Reconstruction

Different level sets of CT scan

Bone surface

Soft tissue surface

Alignment with original volumetric data

Lorensen and Cline, "Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm", SIGGRAPH '87

Marching Square

Isocontours: Ambiguity

• Where is the contour?

Triangular cell: No ambiguities

"Split" green (inner) region

Square cell: 2 ambiguous cases

"Join" green (inner) region

Isocontours: Ambiguity

• Where is the contour?

Join

 $2^4 = 16$ different possibilities, reducible to just 6 distinct cases after factoring out symmetries

Marching Squares Algorithm

- Select a starting cell
- Calculate inside/outside state for each vertex
- Classify cell configuration
 - Determine which edges are intersected
- Find exact locations of edge intersections
- Link up intersections to produce contour segment(s)
- Move (or "march") into next cell and repeat
 - ... until all cells have been visited

Example : Contour Line Generation

- Find 5-contour of function represented by its values at vertices of a uniform grid
- Step 1: Classify vertices

Step 2 : classify cells

2

3

3

2

Opposite edges

Ambiguous

Step 3 : interpolate contour intersections

	No intersections	
ſ	Adjacent edges	
9 7 9	Opposite edges	2
Ţ,	Ambiguous	

Step 3 : interpolate contour intersections

Arbitrarily choose to split here, instead of join. We could also have gone the other way.

Step 3 : interpolate contour intersections

No intersections	
Adjacent edges	
Opposite edges	8 6
Ambiguous	3 4

2

2

3

3

2

Resolving ambiguities

Adjacent edges

Opposite edges

Ambiguous

Choosing to join instead (

In 3D: Marching Cubes

• Exactly the same algorithm, but cells are now cubes (15 distinct configurations) and output is triangles (or a polygon mix)

Montani et al., "A modified look-up table for implicit disambiguation of Marching Cubes", Visual Computer 1994

Marching Cubes: Estimating Normals

- We could estimate normals from the generated mesh, but the density function has more information
- Recall: The normal to the surface is the gradient of the density function

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

• We will estimate the gradient from the grid of values

Normals at Cube Vertices

Normals at Mesh Vertices

Grid Resolution

Marching Cubes

- Sample points restricted to edges of regular grid
- Alias artifacts at sharp features

Increasing Resolution

Does not remove alias problems!

- Locally extrapolate distance gradient
- Place samples on estimated features

Kobbelt et al., "Feature Sensitive Surface Extraction from Volume Data", SIGGRAPH 2001

- Feature detection
 - Based on angle between normals
 - Classify into edges / corners

- Feature sampling
- Intersect tangent planes (s_i, n_i)

$$\left(\begin{array}{c} \vdots \\ \mathbf{n}_i \\ \vdots \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} \vdots \\ \mathbf{n}_i^T \mathbf{s}_i \\ \vdots \end{array}\right)$$

- Over- or under-determined system
- Solve by SVD pseudo-inverse

- Feature sampling
- Intersect tangent planes (s_i, n_i)
- Triangle fans centered at feature point

Marching Cubes: Pros and Cons

- Pros:
 - Local computations only, so needs very little working memory & easy to parallelize
 - Simple to implement
- Cons:
 - produces lots of triangles (-> mesh decimation)
 - Degenerate triangles (→ remeshing)
 - No principled approach to resolve ambiguities
 - MC does not preserve features
- EMC preserves features, but...
 - about 10% more triangles
 - 20-40% computational overhead

Cons & Pros

 Even more intelligent forms of marching cubes, which adapt their cube resolution to match local surface complexity, produces pretty low quality meshes.

- The right mesh was made with adaptive marching cubes while the left mesh was made with a much more advanced algorithm (see <u>Voronoi-based Variational Reconstruction of Unoriented Point Sets</u>).
- Nevertheless marching cubes is useful for its **simplicity**. Implicit functions occur a lot in computer graphics and other fields, and rendering them is often the most intuitive way to work with them

Hex ⇔ Binary

- Hex in c/c++: begin with 0x
- Hex ⇔ Binary
 - 0x000 ⇔ 0000 0000 0000 (12 zeros)
 - 0xfff ⇔ 1111 1111 1111
 - Bitwise Inclusive OR Operator: | unsigned short a = 0x5555; // pattern 0101 ... unsigned short b = 0xAAAA; // pattern 1010 ... cout << hex << (a | b) << endl; // prints "ffff" pattern 1111 ...
 - Bitwise Exclusive OR Operator: ^ unsigned short a = 0x5555; // pattern 0101 ... unsigned short b = 0xFFFF; // pattern 1111 ... cout << hex << (a ^ b) << endl; // prints "aaaa" pattern 1010 ...

Vertex States

- For each of the 8 vertices: either inside or outside of the surface. So 2^8=256 possible vertex states
- 2 of these are trivial, where all points are inside or outside
- account for symmetries, there are really only 14 unique configurations in the remaining 254 possibilities.
- A 8 bit index is formed where each bit corresponds to a vertex state
 - only vertex 3 was below the isosurface, cubeindex would equal 0000 1000 or 8.

```
cubeindex = 0;
if (grid.val[0] < isolevel) cubeindex |= 1;
if (grid.val[1] < isolevel) cubeindex |= 2;
if (grid.val[2] < isolevel) cubeindex |= 4;
if (grid.val[3] < isolevel) cubeindex |= 8;
if (grid.val[4] < isolevel) cubeindex |= 16;
if (grid.val[5] < isolevel) cubeindex |= 32;
if (grid.val[6] < isolevel) cubeindex |= 64;
if (grid.val[7] < isolevel) cubeindex |= 128;</pre>
```

Edge Intersection State Table

Vertex states is index of Edge intersection state table

- For any edge, if one vertex is inside of the surface and the other is outside of the surface then the edge **intersects** the surface
- There are 12 edges. For each entry in the table, if edge #n is intersected, then bit #n is set to 1

//0x000 ⇔ 00000000000 (12 zeros)

//0xfff ⇔ 11111111111

int edgeTable[256]={ 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, ..., 0x2fc, 0xdfc, 0xcf5, **0xfff**, 0xef6, 0x9fa, ..., 0x203, 0x109, 0x000};

- only vertex 3 was below the isosurface, cubeindex would equal 0000 1000 ⇔ 8.
- edgeTable[8] = 0x80c ⇔ 1000 0000 1100. It means that edge 2,3, and 11 are intersected by the isosurface.

Triangle Connection Table

- For each of the possible vertex states listed in *edgeTable* there is a specific triangulation of the edge intersection points.
- triTable lists all of them in the form of 0-5 edge triples with the list terminated by the invalid value -1.

Triangle Connection Table It means edge 1, 3, 10 & // For example: // edgeTable [3] = 0x30a ⇔ 1100001010 ⇔ 778 // triTable[3] list the 2 triangles formed when **corner[0] & corner[1] are** inside of the surface, but the rest of the cube is not. int triTable[256][16] = -1, -1, 0x0ca ⇔ 0011001010 ← 1}, $\{0, 1, 9, -1\}$ -1}, {1, 8, 3, 9 ., -1, -6 Vertex index 10 10 11 11 0 2 3

Triangle Connection Table

// vertex state: 3 \(\Rightarrow 0000 0011 \) It means edge 1, 3, 8 & 9

// edgeTable [**3**] = 0x30a ⇔ 0011 0000 1010;

// triTable[3] list the 2 triangles formed when corner[0] & corner[1] are inside of the surface, but the rest of the cube is not.

intersection points

• by linear interpolation

 $P = P_1 + (isovalue - V_1) (P_2 - P_1) / (V_2 - V_1)$

Source code

References

- <u>http://paulbourke.net/geometry/polygonise/</u>
- vtkMarchingCubes
- CGAL: Poisson_reconstruction_function
- Matlab: Marching Cubes by Peter Hammer
- <u>http://graphics.stanford.edu/~mdfisher/MarchingCubes.html</u>
- Andrew Nealen: CS 523: Computer Graphics : Shape Modeling