
Computer Graphics
-- Implicit ó Explicit

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/

Conversion

• Explicit to Implicit
• Compute signed distance at grid points

• Compute distance point-mesh

• Fast marching

• Implicit to Explicit
• Extract zero-level iso-surface F(x, y, z) = 0

• Other iso-surfaces F(x, y, z) = C

• Medical imaging, simulations, measurements, …

Signed Distance Computation

• Find closest mesh triangle

• Use spatial hierarchies (octree, BSP tree)

• Distance point-triangle

• Distance to plane, edge, or vertex

• http://www.geometrictools.com

• Inside or outside?

• Based on interpolated surface normals

Signed Distance Computation

Fast Marching Techniques
• Initialize with exact distance in mesh’s vicinity
• Fast-march outwards
• Fast-march inwards

Schneider, Eberly, “Geometric Tools for Computer Graphics”, Morgan Kaufmann, 2002
Sethian, “Level Set and Fast Marching Methods”, Cambridge University Press, 1999

Conversion

• Explicit to Implicit
• Compute signed distance at grid points

• Compute distance point-mesh

• Fast marching

• Implicit to Explicit (Polygonization of Implicit Surfaces)
• Extract zero-level iso-surface F(x, y, z) = 0

• Other iso-surfaces F(x, y, z) = C

• Medical imaging, simulations, measurements, …

Recall: Final step of Poisson reconstruction

Medical Reconstruction
• Algorithm for isosurface extraction from
• medical scans (CT, MRI)

Density Function from MRI Scans

Level Set
• c-Level set: The set of points where a function takes a constant

value c
• Isocontour: Level set of a 2D function
• Isosurface: Level set of a 3D function

Marching Squares

• Any red point is the midpoint of some edge!
• Resulting “circle” is bad

Marching Cubes
• Also known as

• 3D Contouring / Tessellation of implicit surfaces
• Polygonising a scalar field / Surface Reconstruction

Different level sets of CT scan

Lorensen and Cline, “Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm”, SIGGRAPH '87

Marching Square
• The 5-level set:

Isocontours: Ambiguity
• Where is the contour?

Isocontours: Ambiguity
• Where is the contour?

Isocontours: Cell Configurations

Marching Squares Algorithm
• Select a starting cell

• Calculate inside/outside state for each vertex

• Classify cell configuration
• Determine which edges are intersected

• Find exact locations of edge intersections

• Link up intersections to produce contour segment(s)

• Move (or “march”) into next cell and repeat
• … until all cells have been visited

Example : Contour Line Generation
• Find 5-contour of function

represented by its values at
vertices of a uniform grid

• Step 1: Classify vertices

Step 2 : classify cells

Step 3 : interpolate contour intersections

Step 3 : interpolate contour intersections

Step 3 : interpolate contour intersections

Resolving ambiguities

In 3D: Marching Cubes
• Exactly the same algorithm, but cells are now cubes (15 distinct

configurations) and output is triangles (or a polygon mix)

Montani et al., “A modified look-up table for implicit disambiguation of Marching Cubes”, Visual Computer 1994

Marching Cubes: Estimating Normals
• We could estimate normals from the generated mesh, but the

density function has more information
• Recall: The normal to the surface is the gradient of the density

function

• We will estimate the gradient from the grid of values

Normals at Cube Vertices

Normals at Mesh Vertices

Grid Resolution

Marching Cubes
• Sample points restricted to edges of regular grid
• Alias artifacts at sharp features

Increasing Resolution

Extended Marching Cubes
• Locally extrapolate distance gradient
• Place samples on estimated features

Kobbelt et al., “Feature Sensitive Surface Extraction from Volume Data”, SIGGRAPH 2001

Extended Marching Cubes
• Feature detection

• Based on angle between normals
• Classify into edges / corners

Extended Marching Cubes
• Feature sampling
• Intersect tangent planes (s_i, n_i)

• Over- or under-determined system
• Solve by SVD pseudo-inverse

Extended Marching Cubes
• Feature sampling
• Intersect tangent planes (s_i, n_i)
• Triangle fans centered at feature point

Extended Marching Cubes

Marching Cubes: Pros and Cons
• Pros:

• Local computations only, so needs very little working memory &
easy to parallelize

• Simple to implement
• Cons:

• produces lots of triangles (-> mesh decimation)
• Degenerate triangles (→ remeshing)
• No principled approach to resolve ambiguities
• MC does not preserve features

• EMC preserves features, but…
• about 10% more triangles
• 20-40% computational overhead

• Even more intelligent forms of marching cubes, which adapt their cube resolution to match local
surface complexity, produces pretty low quality meshes.

• The right mesh was made with adaptive marching cubes while the left mesh was made with a much
more advanced algorithm (see Voronoi-based Variational Reconstruction of Unoriented Point Sets).

• Nevertheless marching cubes is useful for its simplicity. Implicit functions occur a lot in computer
graphics and other fields, and rendering them is often the most intuitive way to work with them

Cons & Pros

Hex ó Binary

• Hex in c/c++: begin with 0x
• Hex ó Binary

• 0x000 ó 0000 0000 0000 (12 zeros)
• 0xfff ó 1111 1111 1111

• Bitwise Inclusive OR Operator: |
unsigned short a = 0x5555; // pattern 0101 ...
unsigned short b = 0xAAAA; // pattern 1010 ...
cout << hex << (a | b) << endl; // prints "ffff" pattern 1111 ...

• Bitwise Exclusive OR Operator: ^
unsigned short a = 0x5555; // pattern 0101 ...
unsigned short b = 0xFFFF; // pattern 1111 ...
cout << hex << (a ^ b) << endl; // prints "aaaa" pattern 1010 ...

Vertex States
• For each of the 8 vertices: either inside or outside of the

surface. So 2^8=256 possible vertex states
• 2 of these are trivial, where all points are inside or outside
• account for symmetries, there are really only 14 unique

configurations in the remaining 254 possibilities.
• A 8 bit index is formed where each bit corresponds to a

vertex state
• only vertex 3 was below the isosurface, cubeindex would equal 0000

1000 or 8.
cubeindex = 0;
if (grid.val[0] < isolevel) cubeindex |= 1;
if (grid.val[1] < isolevel) cubeindex |= 2;
if (grid.val[2] < isolevel) cubeindex |= 4;
if (grid.val[3] < isolevel) cubeindex |= 8;
if (grid.val[4] < isolevel) cubeindex |= 16;
if (grid.val[5] < isolevel) cubeindex |= 32;
if (grid.val[6] < isolevel) cubeindex |= 64;
if (grid.val[7] < isolevel) cubeindex |= 128;

Edge Intersection State Table
• Vertex states is index of Edge intersection state table

• For any edge, if one vertex is inside of the surface and the other is
outside of the surface then the edge intersects the surface

• There are 12 edges. For each entry in the table, if edge #n is
intersected, then bit #n is set to 1

//0x000 ó 000000000000 (12 zeros)
//0xfff ó 111111111111

int edgeTable[256]={ 0x000, 0x109, 0x203, 0x30a, 0x406,
0x50f, …, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, …, 0x203,
0x109, 0x000};

• only vertex 3 was below the isosurface, cubeindex would
equal 0000 1000 ó 8.

• edgeTable[8] = 0x80c ó 1000 0000 1100. It means that edge
2,3, and 11 are intersected by the isosurface.

Triangle Connection Table
• For each of the possible vertex states listed in edgeTable

there is a specific triangulation of the edge intersection
points.

• triTable lists all of them in the form of 0-5 edge triples with
the list terminated by the invalid value -1.

• {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}: means 2 triangles
(2 edge triples)

Triangle Connection Table
// For example:
// edgeTable [3] = 0x30a ó 1100001010 ó 778
// triTable[3] list the 2 triangles formed when corner[0] & corner[1] are
inside of the surface, but the rest of the cube is not.

int triTable[256][16] =
{

{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1},

{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1},

{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1},

{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -
1},…
}

It means edge 1, 3, 10 &
11

0x0ca ó 0011001010

Triangle Connection Table
// For example:
// vertex state: 3 ó 0000 0011
// edgeTable [3] = 0x30a ó 0011 0000 1010;
// triTable[3] list the 2 triangles formed when corner[0] & corner[1] are
inside of the surface, but the rest of the cube is not.

int triTable[256][16] = {
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1},
{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -

1},…
}

It means edge 1, 3, 8 & 9

intersection points
• by linear interpolation

Source code

References
• http://paulbourke.net/geometry/polygonise/
• vtkMarchingCubes
• CGAL: Poisson_reconstruction_function
• Matlab: Marching Cubes by Peter Hammer

• http://graphics.stanford.edu/~mdfisher/MarchingCubes.html
• Andrew Nealen: CS 523: Computer Graphics : Shape Modeling

