Computer Graphics

-- Implicit \Leftrightarrow Explicit

Junjie Cao @ DLUT
Spring 2019
http://jicao.github.io/ComputerGraphics/

Conversion

- Explicit to Implicit
- Compute signed distance at grid points
- Compute distance point-mesh
- Fast marching
- Implicit to Explicit
- Extract zero-level iso-surface $F(x, y, z)=0$
- Other iso-surfaces $F(x, y, z)=C$
- Medical imaging, simulations, measurements, ...

Signed Distance Computation

- Find closest mesh triangle
- Use spatial hierarchies (octree, BSP tree)
- Distance point-triangle
- Distance to plane, edge, or vertex
- http://www.geometrictools.com
- Inside or outside?
- Based on interpolated surface normals

Signed Distance Computation

- Closest point $\mathbf{p}=\alpha \mathbf{p}_{i}+(1-\alpha) \mathbf{p}_{j}$
- Interpolated normal $\mathbf{n}=\alpha \mathbf{n}_{i}+(1-\alpha) \mathbf{n}_{j}$
- Inside if $(\mathbf{q}-\mathbf{p})^{\top} \mathbf{n}<0$

Fast Marching Techniques

- Initialize with exact distance in mesh's vicinity
- Fast-march outwards
- Fast-march inwards

Schneider, Eberly, "Geometric Tools for Computer Graphics" , Morgan Kaufmann, 2002
Sethian, "Level Set and Fast Marching Methods" , Cambridge University Press, 1999

Conversion

- Explicit to Implicit
- Compute signed distance at grid points
- Compute distance point-mesh
- Fast marching
- Implicit to Explicit (Polygonization of Implicit Surfaces)
- Extract zero-level iso-surface $F(x, y, z)=0$
- Other iso-surfaces $F(x, y, z)=C$
- Medical imaging, simulations, measurements, ...

Recall: Final step of Poisson reconstruction

Density Function
Isosurface

Medical Reconstruction

- Algorithm for isosurface extraction from
- medical scans (CT, MRI)

Density Function from MRI Scans

Level Set

- c-Level set: The set of points where a function takes a constant value c
- Isocontour: Level set of a 2D function
- Isosurface: Level set of a 3D function

Marching Squares

- Any red point is the midpoint of some edge!
- Resulting "circle" is bad

Marching Cubes

- Also known as
- 3D Contouring / Tessellation of implicit surfaces
- Polygonising a scalar field / Surface Reconstruction

Different level sets of CT scan

Bone surface

Soft tissue surface

Alignment with original volumetric data

Marching Square

- The 5-level set:
 Splits edge
asymetrically, since 5 is
closer to 6 than to 2 Splits edge
asymetrically, since 5 is
closer to 6 than to 2 Splits edge
asymetrically, since 5 is
closer to 6 than to 2

Bisects the edge, since 5 is equidistant from 3 and 7

Isocontours: Ambiguity

-Where is the contour?

Triangular cell: No ambiguities

Isocontours: Ambiguity

-Where is the contour?

Join

Split

Isocontours: Cell Configurations

2 vertices different

$2^{4}=16$ different possibilities, reducible to just 6
 distinct cases after factoring out symmetries

Marching Squares Algorithm

- Select a starting cell
- Calculate inside/outside state for each vertex
- Classify cell configuration
- Determine which edges are intersected
- Find exact locations of edge intersections
- Link up intersections to produce contour segment(s)
- Move (or "march") into next cell and repeat
- ... until all cells have been visited

Example : Contour Line Generation

- Find 5-contour of function represented by its values at vertices of a uniform grid
- Step 1: Classify vertices

Step 2 : classify cells

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3 : interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Step 3 : interpolate contour intersections

No intersections

Arbitrarily choose to split here, instead of join. We could also have gone the other way.

Step 3 : interpolate contour intersections

No intersections

Adjacent edges

Opposite edges

Ambiguous

Resolving ambiguities

No intersections

Adjacent edges

Opposite edges

In 3D: Marching Cubes

- Exactly the same algorithm, but cells are now cubes (15 distinct configurations) and output is triangles (or a polygon mix)

[^0]
Marching Cubes: Estimating Normals

- We could estimate normals from the generated mesh, but the density function has more information
- Recall: The normal to the surface is the gradient of the density function

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

- We will estimate the gradient from the grid of values

Normals at Cube Vertices

Discrete approximation to the gradient at the blue cube vertex

$$
\begin{aligned}
& n_{x}=\frac{f(i+1, j, k)-f(i-1, j, k)}{2 \Delta x} \\
& n_{x}=\frac{f(i, j+1, k)-f(i, j-1, k)}{2 \Delta y} \\
& n_{y}=\frac{f(i, j, k+1)-f(i, j, k-1)}{2 \Delta z}
\end{aligned}
$$

(Better approximations are possible)

Normals at Mesh Vertices

Grid Resolution

Marching Cubes

- Sample points restricted to edges of regular grid
- Alias artifacts at sharp features

Increasing Resolution

Does not remove alias problems!

Extended Marching Cubes

- Locally extrapolate distance gradient - Place samples on estimated features

Extended Marching Cubes

- Feature detection
- Based on angle between normals
- Classify into edges / corners

Extended Marching Cubes

- Feature sampling
- Intersect tangent planes (s_i, n_i)

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{n}_{i} \\
\vdots
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{n}_{i}^{T} \mathbf{s}_{i} \\
\vdots
\end{array}\right)
$$

- Over- or under-determined system
- Solve by SVD pseudo-inverse

Extended Marching Cubes

- Feature sampling
- Intersect tangent planes (s_i, n_i)
- Triangle fans centered at feature point

Extended Marching Cubes

Feature
Detection

Feature Sampling

Edge Flipping

Marching Cubes: Pros and Cons

- Pros:
- Local computations only, so needs very little working memory \& easy to parallelize
- Simple to implement
- Cons:
- produces lots of triangles (-> mesh decimation)
- Degenerate triangles (\rightarrow remeshing)
- No principled approach to resolve ambiguities
- MC does not preserve features
- EMC preserves features, but...
- about 10\% more triangles
- 20-40\% computational overhead

Cons \& Pros

- Even more intelligent forms of marching cubes, which adapt their cube resolution to match local surface complexity, produces pretty low quality meshes.

- The right mesh was made with adaptive marching cubes while the left mesh was made with a much more advanced algorithm (see Voronoi-based Variational Reconstruction of Unoriented Point Sets).
- Nevertheless marching cubes is useful for its simplicity. Implicit functions occur a lot in computer graphics and other fields, and rendering them is often the most intuitive way to work with them

Hex \Leftrightarrow Binary

- Hex in c/c++: begin with 0x
- Hex \Leftrightarrow Binary
- $0 x 000 \Leftrightarrow 000000000000$ (12 zeros)
- 0xfff $\Leftrightarrow 111111111111$
- Bitwise Inclusive OR Operator: |
unsigned short a = 0x5555; // pattern 0101
unsigned short b = 0xAAAA; // pattern 1010 cout << hex << (a | b) << endl; // prints "ffff" pattern 1111 ...
- Bitwise Exclusive OR Operator: ^
unsigned short a = 0x5555; // pattern 0101
unsigned short $b=0 x F F F F ; / /$ pattern 1111 cout << hex << (a ^ b) << endl; // prints "aaaa" pattern 1010

Vertex States

- For each of the 8 vertices: either inside or outside of the surface. So $2^{\wedge} 8=256$ possible vertex states
- 2 of these are trivial, where all points are inside or outside
- account for symmetries, there are really only 14 unique configurations in the remaining 254 possibilities.
- A 8 bit index is formed where each bit corresponds to a vertex state
- only vertex 3 was below the isosurface, cubeindex would equal 0000 1000 or 8.

```
cubeindex = 0;
if (grid.val[0] < isolevel) cubeindex |= 1;
if (grid.val[1] < isolevel) cubeindex |= 2;
if (grid.val[2] < isolevel) cubeindex |= 4;
if (grid.val[3] < isolevel) cubeindex |= 8;
if (grid.val[4] < isolevel) cubeindex |= 16;
if (grid.val[5] < isolevel) cubeindex |= 32;
if (grid.val[6] < isolevel) cubeindex |= 64;
if (grid.val[7] < isolevel) cubeindex |= 128;
```


Edge Intersection State Table

- Vertex states is index of Edge intersection state table
- For any edge, if one vertex is inside of the surface and the other is outside of the surface then the edge intersects the surface
- There are 12 edges. For each entry in the table, if edge \#n is intersected, then bit \#n is set to 1
$/ / 0 \times 000 \Leftrightarrow 000000000000$ (12 zeros)
//Oxfff $\Leftrightarrow 111111111111$
int edgeTable[256]=\{ 0x000, 0x109, 0x203, 0x30a, 0x406, $0 \times 50 f$, ..., 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, ..., 0x203, $0 \times 109,0 \times 000\} ;$
- only vertex 3 was below the isosurface, cubeindex would equal $00001000 \Leftrightarrow 8$.
- edgeTable[8] $=0 x 80 c \Leftrightarrow 10000000$ 1100. It means that edge 2,3 , and 11 are intersected by the isosurface.

Triangle Connection Table

- For each of the possible vertex states listed in edgeTable there is a specific triangulation of the edge intersection points.
- triTable lists all of them in the form of $0-5$ edge triples with the list terminated by the invalid value -1 .
- $\{1,8,3,9,8,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\}$: means 2 triangles (2) phae trinles)

> Edge index

Yertex index

Triangle Connection Table

// For example:
It means edge 1, 3, 10 \&
// edgeTable [3] = 0x30a $\Leftrightarrow 1100001010 \Leftrightarrow 778$
// triTable[3] list the 2 triangles formed when corner[0] \& corner[1] are inside of the surface, but the rest of the cube is not.

```
int triTable[256][16] =
{
```

 \(\{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\)
 \(-1,-1\}\),
 \(\{0,8,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1\),
 \(0 x 0\) ca \(\Leftrightarrow 0011001010 \longleftrightarrow \neg\}\),

Triangle Connection Table

// For example:
// vertex state: $\mathbf{3} \Leftrightarrow 00000011$
It means edge 1, 3, 8 \& 9
// edgeTable [3] = 0x30a $\Leftrightarrow 00110000$ 1010;
// triTable[3] list the 2 triangles formed when corner[0] \& corner[1] are inside of the surface, but the rest of the cube is not.
$\{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1$,
$-1,-1\}$,
$\{0,8,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1$,
-1\},
$\{0,1,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1$,
$\{0,1,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1$,

intersection points

- by linear interpolation

$$
P=P_{1}+\left(\text { isovalue }-V_{1}\right)\left(P_{2}-P_{1}\right) /\left(V_{2}-V_{1}\right)
$$

Source code

References

- http://paulbourke.net/geometry/polygonise/
- vtkMarchingCubes
- CGAL: Poisson_reconstruction_function
- Matlab: Marching Cubes by Peter Hammer
- http://graphics.stanford.edu/~mdfisher/MarchingCubes.html
- Andrew Nealen: CS 523: Computer Graphics : Shape Modeling

[^0]: Montani et al., "A modified look-up table for implicit disambiguation of Marching Cubes" , Visual Computer 1994

