Computer Graphics -Ray tracing

Junjie Cao @ DLUT Spring 2019

http://jjcao.github.io/ComputerGraphics/

Rendering = Scene to Image

Two approaches to rendering

```
for each object in the scene {
  for each pixel in the image {
    if (object affects pixel) {
       do something
    }
}
```

```
object order
or
rasterization
```

```
for each pixel in the image {
  for each object in the scene {
    if (object affects pixel) {
        do something
    }
}
```

```
image order
or
ray tracing
```


Rendering Image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. This image is in the public domain. Source: openclipart **Pixel Color** © Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons Pixels license. For more information, see Determined by http://ocw.mit.edu/help/fag-fair-use/. Lighting/Shading Scene

Dürer's Ray Casting Machine

haft das ist gut ond gerecht/ Wilt du aber für das spisig absehen ein lochte machen/dardurch du sibest ist eben so gut/solcher mennung hab seh hernach ein form aufgeriffen.

Dürer's Ray Casting Machine

Albrecht Dürer, 16th century

Dürer's Ray Casting Machine

Ray tracing algorithm

Generating eye rays

Parallel projection same direction, different origins

Perspective projection same origin, different directions

Software interface for cameras

Key operation: generate ray for image position

```
class Camera { ... Ray generateRay(int col, int row); } args go from 0, 0 to width - I, height - I
```

- Modularity problem: Camera shouldn't have to worry about image resolution
 - better solution: normalized coordinates

```
class Camera {
...
Ray generateRay(float u, float v); ← args go from 0, 0 to 1, 1
}
```

Specifying views in Ray I

```
<camera type="PerspectiveCamera">
  <viewPoint>10 4.2 6</viewPoint>
   <viewDir>-5 -2.1 -3</viewDir>
   <viewUp>0 1 0</viewUp>
   <projDistance>6</projDistance>
   <viewWidth>4</viewWidth>
   <viewHeight>2.25</viewHeight>
   </camera>
```

```
<camera type="PerspectiveCamera">
  <viewPoint>10 4.2 6</viewPoint>
  <viewDir>-5 -2.1 -3</viewDir>
  <viewUp>0 1 0</viewUp>
  <projDistance>3</projDistance>
  <viewWidth>4</viewWidth>
  <viewHeight>2.25</viewHeight>
  </camera>
```


Pixel-to-image mapping

One last detail: exactly where are pixels located?

Ray intersection

Ray: a half line

Standard representation: point p and direction d

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- this is a *parametric equation* for the line
- lets us directly generate the points on the line
- if we restrict to t > 0 then we have a ray
- note replacing **d** with $\alpha \mathbf{d}$ doesn't change ray ($\alpha > 0$)

Ray-sphere intersection: algebraic

Condition I: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- Condition 2: point is on sphere
 - assume unit sphere; see book or notes for general $\|\mathbf{x}\| = 1 \Leftrightarrow \|\mathbf{x}\|^2 = 1$ $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} 1 = 0$
- Substitute:

$$(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0$$

this is a quadratic equation in t

Ray-sphere intersection: algebraic

Solution for t by quadratic formula:

$$t = \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}}$$
$$t = -\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - \mathbf{p} \cdot \mathbf{p} + 1}$$

- simpler form holds when d is a unit vector but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

Ray-triangle intersection

Condition I: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

Condition 2: point is on plane

$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$$

- Condition 3: point is on the inside of all three edges
- First solve I&2 (ray-plane intersection)
 - substitute and solve for t:

$$(\mathbf{p} + t\mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0$$
$$t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

In plane, triangle is the intersection of 3 half spaces

Deciding about insideness

- Need to check whether hit point is inside 3 edges
 - easiest to do in 2D coordinates on the plane
- Will also need to know where we are in the triangle
 - for textures, shading, etc. . . . next couple of lectures
- Efficient solution: transform to coordinates aligned to the triangle

Barycentric coordinates

A coordinate system for triangles

algebraic viewpoint:

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
$$\alpha + \beta + \gamma = 1$$

- geometric viewpoint (areas):
- Triangle interior test:

$$\alpha > 0; \quad \beta > 0; \quad \gamma > 0$$

Barycentric coordinates

A coordinate system for triangles

- geometric viewpoint: distances

linear viewpoint: basis of edges

$$\alpha = 1 - \beta - \gamma$$
$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

Barycentric coordinates

• Linear viewpoint: basis for the plane

- in this view, the triangle interior test is just

$$\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1$$

Barycentric ray-triangle intersection

• Every point on the plane can be written in the form:

$$\mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

for some numbers β and γ .

· If the point is also on the ray then it is

$$\mathbf{p} + t\mathbf{d}$$

for some number t.

Set them equal: 3 linear equations in 3 variables

$$\mathbf{p} + t\mathbf{d} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

...solve them to get t, β , and γ all at once!

Barycentric ray-triangle intersection

$$\mathbf{p} + t\mathbf{d} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

$$\beta(\mathbf{a} - \mathbf{b}) + \gamma(\mathbf{a} - \mathbf{c}) + t\mathbf{d} = \mathbf{a} - \mathbf{p}$$

$$\begin{bmatrix} \mathbf{a} - \mathbf{b} & \mathbf{a} - \mathbf{c} & \mathbf{d} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} \mathbf{a} - \mathbf{p} \end{bmatrix}$$

$$\begin{bmatrix} x_a - x_b & x_a - x_c & x_d \\ y_a - y_b & y_a - y_c & y_d \\ z_a - z_b & z_a - z_c & z_d \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_a - x_p \\ y_a - y_p \\ z_a - z_p \end{bmatrix}$$

Cramer's rule is a good fast way to solve this system (see text Ch. 2 and Ch. 4 for details)

Ray intersection in software

All surfaces need to be able to intersect rays with themselves.

```
ray to be
                                                             intersected
class Surface {
 abstract boolean intersect(IntersectionRecord result, Ray r);
  was there an
                                                  class IntersectionRecord {
  intersection?
                        information about
                                                    float t;
                         first intersection
                                                    Vector3 hitLocation;
                                                    Vector3 normal;
                                                    •••
```

Image so far

With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
  for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    hitSurface, t = s.intersect(ray, 0, +inf)
    if hitSurface is not null
        image.set(ix, iy, white);
}</pre>
```


Ray intersection in software

- Scenes usually have many objects
- Need to find the first intersection along the ray
 - that is, the one with the smallest positive t value

Loop over objects

Intersection against many shapes

The basic idea is:

```
intersect (ray, tMin, tMax) {
   tBest = +inf; firstSurface = null;
   for surface in surfaceList {
      hitSurface, t = surface.intersect(ray, tMin, tBest);
      if hitSurface is not null {
          tBest = t;
          firstSurface = hitSurface;
      }
   }
   return hitSurface, tBest;
}
```

- this is linear in the number of shapes
- real applications use sublinear methods (acceleration structures)
 which we will see later

Image so far

· With eye ray generation and scene intersection

```
for 0 \le iy \le ny
   for 0 \le ix \le nx {
     ray = camera.getRay(ix, iy);
     c = scene.trace(ray, 0, +inf);
     image.set(ix, iy, c);
...
Scene.trace(ray, tMin, tMax) {
   surface, t = surfs.intersect(ray, tMin, tMax);
   if (surface != null) return surface.color();
   else return black;
```


Shading

- Compute light reflected toward camera
- Inputs:
 - eye direction
 - light direction
 (for each of many lights)
 - surface normal
 - surface parameters(color, roughness, ...)

Shading philosophy

Goals of shading depend on purpose of image

- visualization, CAD: maximize visual clarity
- visual effects, advertising: maximize resemblance to reality
- animation, games: somewhere in between

Basic starting point: physics of light reflection

- a set of useful approximations to real surfaces
- can remove things for simplicity/clarity
- can add things for increased accuracy/realism

Light

Think of light as a flow of particles through space

- disregarding wave nature: polarization, interference, diffraction
- for now disregarding color: only how much light

Sources of light

- point sources (a flashlight) ← we will stick to this for now.
- directional sources (the sun)
- area sources (a fluorescent tube)
- environment sources (the sky)

Irradiance from isotropic point source

- A sphere surrounding the source receives all the power
- A small, flat surface of area A facing the source receives a fraction (area of surface) / (area of sphere) of that power:

$$P_A = P \frac{A}{4\pi r^2}$$

Irradiance is power per unit area:

$$E = P_A/A = \frac{P}{4\pi r^2} = \frac{P}{4\pi} \frac{1}{r^2}$$

$$L = \frac{L_0}{const + lin * d + quad * d^2}$$

intensity geometry factor

Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

In general, light per unit area is proportional to $\cos \theta = \mathbf{I} \cdot \mathbf{n}$

Irradiance from isotropic point source

• A surface of area A facing at an angle to the source receives a factor of $\cos\theta$ less light:

$$P_A = P \frac{A\cos\theta}{4\pi r^2}$$

• Irradiance is power per unit area:

$$E = P_A/A = \frac{P}{4\pi} \frac{\cos\theta}{r^2}$$

$$\uparrow \qquad \uparrow$$
 intensity geometry factor

Diffuse reflection

- Simplest reflection model
- Reflected light is independent of view direction
- Reflected light is proportional to irradiance
 - constant of proportionality is the diffuse reflection coefficient

$$L_d = k_d E$$

- More useful to think in terms of reflectance
 - reflectance is the fraction reflected (between 0 and 1)

$$L_d = \frac{R_d}{\pi} E$$

will have to explain the factor of pi later

Lambertian shading

Shading independent of view direction

Lambertian shading

Produces matte appearance

 $k_d \longrightarrow$

Image so far – diffuse shading

```
Scene.trace(Ray ray, tMin, tMax) {
  surface, t = hit(ray, tMin, tMax);
  if surface is not null {
     point = ray.evaluate(t);
     normal = surface.getNormal(point);
     return surface.shade(ray, point,
       normal, light);
  else return backgroundColor;
Surface.shade(ray, point, normal, light) {
  v = -normalize(ray.direction);
  l = normalize(light.pos - point);
  // compute shading
```


Shadows

- Surface is only illuminated if nothing blocks the light
 - i.e. if the surface can "see" the light
- With ray tracing it's easy to check
 - just intersect a ray with the scene!

Image so far

```
Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v = -normalize(ray.direction);
        l = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```


Shadow rounding errors

Don't fall victim to one of the classic blunders:

 Hint: at what t does the shadow ray intersect the surface your are shading?

Shadow rounding errors

Solution: shadow rays start a tiny distance from the surface

Do this by moving the start point, or by limiting the t range

Multiple lights

- Important to fill in black shadows
- Just loop over lights, add contributions
- Ambient shading
 - black shadows are not really right
 - one solution: dim light at camera
 - alternative: add a constant "ambient" color to the shading...

Image so far

```
shade(ray, point, normal, lights) {
   result = ambient;
   for light in lights {
      if (shadow ray not blocked) {
        result += shading contribution;
      }
   }
   return result;
}
```


Specular reflection

- Intensity depends on view direction
 - bright near mirror configuration

Caution: in notes and assignment, \mathbf{v} is called ω_r and \mathbf{l} is called ω_i . No meaningful difference, just notational.

Specular shading (Blinn-Phong)

- Intensity depends on view direction
 - bright near mirror configuration

Specular shading (Blinn-Phong)

- - Measure "near" by dot product of unit vectors

$$\mathbf{h} = \operatorname{bisector}(\mathbf{v}, \mathbf{l})$$
$$= \frac{\mathbf{v} + \mathbf{l}}{\|\mathbf{v} + \mathbf{l}\|}$$

let's work with the expression:

$$(\cos \alpha)^p$$
$$= (\mathbf{n} \cdot \mathbf{h})^p$$

Phong model—plots

- Increasing p narrows the peak
 - corresponds to increasing "shininess"

Specular shading (Blinn-Phong)

note: this model is officially called "modified Blinn-Phong."

$$L_d = rac{R}{\pi} rac{\max(0, \mathbf{n} \cdot \mathbf{l})}{r^2} I$$

$$L_r = \begin{pmatrix} \frac{R}{\pi} + k_s (\mathbf{n} \cdot \mathbf{h})^p \end{pmatrix} \frac{\max(0, \mathbf{n} \cdot \mathbf{l})}{r^2} I$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
diffuse coefficient specular term

specular coefficient

Specular shading

Blinn-Phong

Diffuse + Phong shading

Ambient shading

- Shading that does not depend on anything
 - add constant color to account for disregarded illumination and fill in black shadows

Mirror reflection

Consider perfectly shiny surface

- there isn't a highlight
- instead there's a reflection of other objects

Can render this using recursive ray tracing

- to find out mirror reflection color, ask what color is seen from surface point in reflection direction
- already computing reflection direction for Phong...

"Glazed" material has mirror reflection and diffuse

$$L = L_a + L_r + L_m$$

- where L_m is evaluated by tracing a new ray

Mirror reflection

- Intensity depends on view direction
 - reflects incident light from mirror direction

$$\mathbf{r} = \mathbf{v} + 2((\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v})$$
$$= 2(\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$$

Diffuse + mirror reflection (glazed)

(glazed material on floor)

Specular shading

specular

Light reflection: full picture

- when writing a shader, think like a bug standing on the surface
 - bug sees an incident distribution of light arriving at the surface
 - physics question: what is the outgoing distribution of light?

incident distribution (function of direction)

reflected distribution (function of direction)

General shading by bidirectional reflectance distribution function (BRDF)

Smooth surfaces

metal

dielectric

Ideal specular reflection

- Smooth surfaces of pure materials have ideal specular reflection
 - Metals (conductors) and dielectrics (insulators) behave differently
- · Reflectance (fraction of light reflected) depends on angle

Reflection and transmission

Index of refraction is speed of light, relative to speed of light in vacuum = c/v, c is speed in vacuum

Vacuum: 1.0

Air: 1.000277

Water: 1.33

Glass: 1.49

■ Law of reflection:

$$\theta_i = \theta_r$$

■ Snell's law of refraction:

$$\eta_{\rm i} \sin \theta_{\rm I} = \eta_{\rm t} \sin \theta_{\rm t}$$

where η_i , η_t are indices of refraction.

Translucency

Most real objects are not transparent, but blur the background image

Scatter light on other side of surface

•

Use stochastic sampling (called distributed ray tracing)

Transmission + Translucency Example

Total Internal Reflection

■ The equation for the angle of refraction can be computed from Snell's law:

- What happens when $\eta_i > \eta_t$?
- When θ_t is exactly 90°, we say that θ_I has achieved the "critical angle" θ_c .
- For $\theta_I > \theta_c$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

Air

Glass

Reflected and transmitted rays

- For incoming ray P(t)=P+td
 - \blacksquare Compute input cosine and sine vectors C_i and S_i
 - Reflected ray vector $\mathbf{R} = \mathbf{C}_i + \mathbf{S}_i$
 - Compute output cosine and sine vectors C_i and S_i
 - Transmitted ray vector $T = C_t + S_t$

Recursive Shading Model

$$L_r = \left(\frac{R}{\pi} + k_s(\mathbf{n} \cdot \mathbf{h})^p\right) \frac{\max(0, \mathbf{n} \cdot \mathbf{l})}{r^2} I$$

- Global ambient term, emission from material
- For each light, diffuse specular terms
- Highlighted terms are recursive specularities [mirror reflections] and transmission (latter is extra)
- Trace secondary rays for mirror reflections and refractions, include contribution in lighting model

Texture coordinates on meshes

- Texture coordinates are per-vertex data like vertex positions
 - can think of them as a second position: each vertex has a position in 3D space and in 2D texture space
- How to come up with (u,v)s for points inside triangles?

09	19	29	39	49	59	69	79	89	99
80	18	28	38	48	58	68	78	88	98
07	17	27	37	4₹	57	67	77	87	97
06	16	26	3/6	46	36	66	76	86	96
05	15	25	\$ 5	45	55	96	75	85	95
04	14	24	34	44	54	64	¥	84	94
03	13	2/3	33	43	53	63	73	83	93
02	12	<u>k</u> 2	32	42	52	62	72	82	92
01	11	21	31	41	51	61	71	81	91
00	10	20	30	40	50	60	70	80	90

Linear interpolation, ID domain

 Given values of a function f(x) for two values of x, you can define in-between values by drawing a line

See textbook Sec. 2.6

- there is a unique line through the two points
- can write down using slopes, intercepts
- ...or as a value added to f(a)
- ...or as a convex combination of f(a) and f(b)

$$f(x) = f(a) + \frac{x - a}{b - a}(f(b) - f(a))$$
$$= (1 - \beta)f(a) + \beta f(b)$$
$$= \alpha f(a) + \beta f(b)$$

Linear interpolation in ID

Alternate story

I. write x as convex combination of a and b

$$x = \alpha a + \beta b$$
 where $\alpha + \beta = 1$

2. use the same weights to compute f(x) as a convex combination of f(a) and f(b)

$$f(x) = \alpha f(a) + \beta f(b)$$

Linear interpolation in ID

Linear interpolation in 2D

Use the alternate story:

 Write x, the point where you want a value, as a convex linear combination of the vertices

$$\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
 where $\alpha + \beta + \gamma = 1$

2. Use the same weights to compute the interpolated value $f(\mathbf{x})$ from the values at the vertices, $f(\mathbf{a})$, $f(\mathbf{b})$, and $f(\mathbf{c})$

$$f(\mathbf{x}) = \alpha f(\mathbf{a}) + \beta f(\mathbf{b}) + \gamma f(\mathbf{c})$$

See textbook Sec. 2.7

Interpolation in ray tracing

- When values are stored at vertices, use linear (barycentric) interpolation to define values across the whole surface that:
 - I. ...match the values at the vertices
 - 2. ... are continuous across edges
 - 3. ...are piecewise linear (linear over each triangle) as a function of 3D position, not screen position—more later
- How to compute interpolated values
 - 4. during triangle intersection compute barycentric coords
 - 5. use barycentric coords to average attributes given at vertices

What to interpolate?

Texture coordinates

without interpolating there can't really be textures

Surface normals

- for smooth surfaces approximated with meshes
- use interpolated normal for shading in place of actual normal
- "shading normal" vs. "geometric normal"

geometric normals

interpolated normals

Acceleration

- Testing each object for each ray is slow
 - Fewer Rays
 - Adaptive sampling, depth control
 - Generalized Rays
 - Beam tracing, cone tracing, pencil tracing etc.
 - Faster Intersections (more on this later)
 - Optimized Ray-Object Intersections
 - Fewer Intersections

Acceleration Structures

- Bounding boxes (possibly hierarchical)
 - If no intersection bounding box, needn't check objects

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration and Regular Grids

- Simplest acceleration, for example 5x5x5 grid
- For each grid cell, store overlapping triangles

March ray along grid (need to be careful with this), test against

each triangle in grid cell

- More sophisticated: kd-tree, oct-tree bsp-tree
- Or use (hierarchical) bounding boxes

Motivation: Effects needed for Realism

Inter reflections (Color Bleeding)

Motivation: Effects needed for Realism

- (Soft) Shadows
- Reflections (Mirrors and Glossy)
- Transparency (Water, Glass)
- Inter reflections (Color Bleeding)
- Complex Illumination (Natural, Area Light)
- Realistic Materials (Velvet, Paints, Glass)

•

References

- © 2018 Steve Marschner
- Daniele Panozzo