Computer Graphics -Ray tracing

Junjie Cao @ DLUT
Spring 2019
http://jicao.github.io/ComputerGraphics/

Rendering = Scene to Image

(C) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

This image is in the public domain. Source: openclipart

Camera

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Image
Scene plane

Two approaches to rendering

object order
or
rasterization

```
for each pixel in the image {
    for each object in the scene {
        if (object affects pixel) {
            do something
        }
    }
}
```

image order or
ray tracing

Renderina - Pinhole Camera

(ㄴ) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see hitp://ocw.mit.edu/help/faq-fair-use/.

(c) Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw,mit.edu/help/faq-fair-use/
 one ray. We need to figure out which scene point each one hits.

Rendering

(c) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(C) Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
http://ocw,mit.edu/help/faq-fair-use/.

Scene

Dürer's Ray Casting Machine

Dürer's Ray Casting Machine

- Albrecht Dürer, 16th century

Dürer's Ray Casting Machine

Ray tracing algorithm

Generating eye rays

Parallel projection same direction, different origins

Perspective projection same origin, different directions

Software interface for cameras

- Key operation: generate ray for image position

```
class Camera {
    Ray generateRay(int col, int row); «_ args go from 0,0
}
to width - I, height - I
```

- Modularity problem: Camera shouldn't have to worry about image resolution
- better solution: normalized coordinates

```
class Camera {
    Ray generateRay(float u, float v);
                \longleftarrow args go from 0,0 to I, I
}
```


Specifying views in Ray I

<camera type="PerspectiveCamera"> <viewPoint>10 4.26 </viewPoint> <viewDir>-5 -2.1-3</viewDir> <viewUp>0 l 0</viewUp> <projDistance>6</projDistance> <viewWidth>4</viewWidth> <viewHeight>2.25</viewHeight> </camera>
<camera type="PerspectiveCamera"> <viewPoint>10 4.26 </viewPoint> <viewDir>-5-2.1-3</viewDir> <viewUp>0 l 0</viewUp> <projDistance>3</projDistance> <viewWidth>4</viewWidth> <viewHeight>2.25</viewHeight> </camera>

Pixel-to-image mapping

- One last detail: exactly where are pixels located?

Ray intersection

Ray: a half line

- Standard representation: point \mathbf{p} and direction \mathbf{d}

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- this is a parametric equation for the line
- lets us directly generate the points on the line
- if we restrict to $t>0$ then we have a ray
- note replacing \mathbf{d} with $\alpha \mathbf{d}$ doesn't change ray ($\alpha>0$)

Ray-sphere intersection: algebraic

- Condition I: point is on ray

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- Condition 2: point is on sphere
- assume unit sphere; see book or notes for general

$$
\begin{aligned}
& \|\mathbf{x}\|=1 \Leftrightarrow\|\mathbf{x}\|^{2}=1 \\
& f(\mathbf{x})=\mathbf{x} \cdot \mathbf{x}-1=0
\end{aligned}
$$

- Substitute:

$$
(\mathbf{p}+t \mathbf{d}) \cdot(\mathbf{p}+t \mathbf{d})-1=0
$$

- this is a quadratic equation in t

Ray-sphere intersection: algebraic

- Solution for t by quadratic formula:

$$
\begin{aligned}
& t=\frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^{2}-(\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p}-1)}}{\mathbf{d} \cdot \mathbf{d}} \\
& t=-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^{2}-\mathbf{p} \cdot \mathbf{p}+1}
\end{aligned}
$$

- simpler form holds when \mathbf{d} is a unit vector
but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

$$
\begin{aligned}
t_{m} & =-\mathbf{p} \cdot \mathbf{d} \\
l_{m}^{2} & =\mathbf{p} \cdot \mathbf{p}-(\mathbf{p} \cdot \mathbf{d})^{2} \\
\Delta t & =\sqrt{1-l_{m}^{2}} \\
& =\sqrt{(\mathbf{p} \cdot \mathbf{d})^{2}-\mathbf{p} \cdot \mathbf{p}+1} \\
t_{0,1} & =t_{m} \pm \Delta t=-\mathbf{p} \cdot \mathbf{d} \pm \sqrt{(\mathbf{p} \cdot \mathbf{d})^{2}-\mathbf{p} \cdot \mathbf{p}+1}
\end{aligned}
$$

Ray-triangle intersection

- Condition I: point is on ray

$$
\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}
$$

- Condition 2: point is on plane

$$
(\mathbf{x}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- Condition 3: point is on the inside of all three edges
- First solve I\&2 (ray-plane intersection)
- substitute and solve for t :

$$
\begin{array}{r}
(\mathbf{p}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0 \\
t=\frac{(\mathbf{a}-\mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
\end{array}
$$

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces

Deciding about insideness

- Need to check whether hit point is inside 3 edges
- easiest to do in 2D coordinates on the plane
- Will also need to know where we are in the triangle
- for textures, shading, etc. ... next couple of lectures
- Efficient solution: transform to coordinates aligned to the triangle

Barycentric coordinates

- A coordinate system for triangles
- algebraic viewpoint:

$$
\begin{aligned}
& \mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
& \alpha+\beta+\gamma=1
\end{aligned}
$$

- geometric viewpoint (areas):
- Triangle interior test:

$$
\alpha>0 ; \quad \beta>0 ; \quad \gamma>0
$$

Barycentric coordinates

- A coordinate system for triangles
- geometric viewpoint: distances

- linear viewpoint: basis of edges

$$
\begin{aligned}
& \alpha=1-\beta-\gamma \\
& \mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
\end{aligned}
$$

Barycentric coordinates

- Linear viewpoint: basis for the plane

- in this view, the triangle interior test is just

$$
\beta>0 ; \quad \gamma>0 ; \quad \beta+\gamma<1
$$

Barycentric ray-triangle intersection

- Every point on the plane can be written in the form:

$$
\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

for some numbers $\boldsymbol{\beta}$ and γ.

- If the point is also on the ray then it is

$$
\mathbf{p}+t \mathbf{d}
$$

for some number t.

- Set them equal: 3 linear equations in 3 variables

$$
\mathbf{p}+t \mathbf{d}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

\ldots solve them to get $\boldsymbol{t}, \boldsymbol{\beta}$, and γ all at once!

Barycentric ray-triangle intersection

$$
\begin{aligned}
\mathbf{p}+t \mathbf{d} & =\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \\
\beta(\mathbf{a}-\mathbf{b})+\gamma(\mathbf{a}-\mathbf{c})+t \mathbf{d} & =\mathbf{a}-\mathbf{p} \\
{\left[\begin{array}{lll}
\mathbf{a}-\mathbf{b} & \mathbf{a}-\mathbf{c} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =[\mathbf{a}-\mathbf{p}] \\
{\left[\begin{array}{lll}
x_{a}-x_{b} & x_{a}-x_{c} & x_{d} \\
y_{a}-y_{b} & y_{a}-y_{c} & y_{d} \\
z_{a}-z_{b} & z_{a}-z_{c} & z_{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =\left[\begin{array}{l}
x_{a}-x_{p} \\
y_{a}-y_{p} \\
z_{a}-z_{p}
\end{array}\right]
\end{aligned}
$$

Cramer's rule is a good fast way to solve this system (see text Ch. 2 and Ch. 4 for details)

Ray intersection in software

- All surfaces need to be able to intersect rays with themselves.

Image so far

- With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0<= iy < ny
    for 0<= ix< nx {
        ray = camera.getRay(ix, iy);
        hitSurface, t = s.intersect(ray, 0, +inf)
        if hitSurface is not null
        image.set(ix, iy, white);
    }
```


Ray intersection in software

- Scenes usually have many objects
- Need to find the first intersection along the ray
- that is, the one with the smallest positive t value
- Loop over objects
- ignore those that don't intersect
- keep track of the closest seen so far
- Convenient to give rays an ending t value for this purpose (then they are really segments)

Intersection against many shapes

- The basic idea is:

```
intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
    return hitSurface, tBest;
}
```

- this is linear in the number of shapes
- real applications use sublinear methods (acceleration structures) which we will see later

Image so far

- With eye ray generation and scene intersection

```
for 0<= iy < ny
    for 0<= ix < nx {
        ray = camera.getRay(ix, iy);
        c = scene.trace(ray, 0, +inf);
        image.set(ix, iy, c);
    }
Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface!= null) return surface.color();
    else return black;
}
```


Shading

- Compute light reflected toward camera
- Inputs:
- eye direction
- light direction
(for each of many lights)
- surface normal
- surface parameters (color, roughness, ...)

Shading philosophy

- Goals of shading depend on purpose of image
- visualization, CAD: maximize visual clarity
- visual effects, advertising: maximize resemblance to reality
- animation, games: somewhere in between
- Basic starting point: physics of light reflection
- a set of useful approximations to real surfaces
- can remove things for simplicity/clarity
- can add things for increased accuracy/realism

Light

- Think of light as a flow of particles through space
- disregarding wave nature: polarization, interference, diffraction
- for now disregarding color: only how much light
- Sources of light
- point sources (a flashlight) \leftarrow we will stick to this for now.
- directional sources (the sun)
- area sources (a fluorescent tube)
- environment sources (the sky)

Light falloff

Irradiance from isotropic point source

- A sphere surrounding the source receives all the power
- A small, flat surface of area A facing the source receives a fraction (area of surface) / (area of sphere) of that power:

$$
P_{A}=P \frac{A}{4 \pi r^{2}}
$$

- Irradiance is power per unit area:

$$
E=P_{A} / A=\frac{P}{4 \pi r^{2}}=\frac{P}{4 \pi} \frac{1}{r^{2}}
$$

intensity geometry factor

Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

In general, light per unit area is proportional to $\cos \theta=\mathbf{I} \cdot \mathbf{n}$

Irradiance from isotropic point source

- A surface of area A facing at an angle to the source receives a factor of $\cos \theta$ less light:

$$
P_{A}=P \frac{A \cos \theta}{4 \pi r^{2}}
$$

- Irradiance is power per unit area:

$$
E=P_{A} / A=\frac{P}{4 \pi} \frac{\cos \theta}{r^{2}}
$$

Diffuse reflection

- Simplest reflection model
- Reflected light is independent of view direction
- Reflected light is proportional to irradiance
- constant of proportionality is the diffuse reflection coefficient

$$
L_{d}=k_{d} E
$$

- More useful to think in terms of reflectance
- reflectance is the fraction reflected (between 0 and I)

$$
L_{d}=\frac{R_{d}}{\pi} E
$$

- will have to explain the factor of pi later

Lambertian shading

- Shading independent of view direction

Lambertian shading

- Produces matte appearance

$$
k_{d} \longrightarrow
$$

Image so far - diffuse shading

```
Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point,
            normal, light);
    }
    else return backgroundColor;
}
Surface.shade(ray, point, normal, light) {
    v = -normalize(ray.direction);
    l = normalize(light.pos - point);
    // compute shading
}
```


Shadows

- Surface is only illuminated if nothing blocks the light - i.e. if the surface can "see" the light
- With ray tracing it's easy to check
- just intersect a ray with the scene!

Image so far

```
Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v = -normalize(ray.direction);
        l = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```


Shadow rounding errors

- Don't fall victim to one of the classic blunders:

-What's going one?
- Hint: at what t does the shadow ray intersect the surface your are shading?

Shadow rounding errors

- Solution: shadow rays start a tiny distance from the surface

- Do this by moving the start point, or by limiting the t range

Multiple lights

- Important to fill in black shadows
- Just loop over lights, add contributions
- Ambient shading
- black shadows are not really right
- one solution: dim light at camera
- alternative: add a constant "ambient" color to the shading...

Image so far

```
shade(ray, point, normal, lights) {
    result = ambient;
    for light in lights {
        if (shadow ray not blocked) {
        result += shading contribution;
        }
    }
    return result;
}
```


Specular reflection

- Intensity depends on view direction
- bright near mirror configuration

Caution: in notes and assignment, \mathbf{v} is called ω_{r} and \mathbf{l} is called ω_{i}. No meaningful difference, just notational.

Specular shading (Blinn-Phong)

- Intensity depends on view direction
- bright near mirror configuration

Specular shading (Blinn-Phong)

- Close to mirror \Leftrightarrow half vector near normal
- Measure "near" by dot product of unit vectors

$$
\begin{aligned}
\mathbf{h} & =\operatorname{bisector}(\mathbf{v}, \mathbf{l}) \\
& =\frac{\mathbf{v}+\mathbf{l}}{\|\mathbf{v}+\mathbf{l}\|}
\end{aligned}
$$

let's work with the expression:

$$
\begin{aligned}
& (\cos \alpha)^{p} \\
= & (\mathbf{n} \cdot \mathbf{h})^{p}
\end{aligned}
$$

Phong model-plots

- Increasing p narrows the peak
- corresponds to increasing "shininess"

Specular shading (Blinn-Phong)

note: this model is officially called "modified Blinn-Phong."

specular coefficient

Specular shading

- Blinn-Phong

$$
p \longrightarrow
$$

Diffuse + Phong shading

Ambient shading

- Shading that does not depend on anything
- add constant color to account for disregarded illumination and fill in black shadows

Mirror reflection

- Consider perfectly shiny surface
- there isn't a highlight
- instead there's a reflection of other objects
- Can render this using recursive ray tracing
- to find out mirror reflection color, ask what color is seen from surface point in reflection direction
- already computing reflection direction for Phong...
- "Glazed" material has mirror reflection and diffuse

$$
L=L_{a}+L_{r}+L_{m}
$$

- where L_{m} is evaluated by tracing a new ray

Mirror reflection

- Intensity depends on view direction
- reflects incident light from mirror direction

$$
\begin{aligned}
\mathbf{r} & =\mathbf{v}+2((\mathbf{n} \cdot \mathbf{v}) \mathbf{n}-\mathbf{v}) \\
& =2(\mathbf{n} \cdot \mathbf{v}) \mathbf{n}-\mathbf{v}
\end{aligned}
$$

Diffuse + mirror reflection (glazed)

(glazed material on floor)

Specular shading

diffuse

specular

Light reflection: full picture

- when writing a shader, think like a bug standing on the surface
- bug sees an incident distribution of light arriving at the surface
- physics question: what is the outgoing distribution of light?

incident distribution (function of direction)

reflected distribution (function of direction)

General shading by bidirectional reflectance distribution function (BRDF)

Smooth surfaces

metal
dielectric

Ideal specular reflection

- Smooth surfaces of pure materials have ideal specular reflection
- Metals (conductors) and dielectrics (insulators) behave differently
- Reflectance (fraction of light reflected) depends on angle

metal

dielectric

Reflection and transmission

- Law of reflection:

$$
\theta_{i}=\theta_{r}
$$

Index of refraction is speed of light, relative to speed of light in vacuum $=c / v, c$ is speed in vacuum

Vacuum: 1.0
Air: 1.000277
Water: 1.33
Glass: 1.49

■ Snell's law of refraction:

$$
\eta_{\mathrm{i}} \sin \theta_{\mathrm{I}}=\eta_{\mathrm{t}} \sin \theta_{\mathrm{t}}
$$

\square where $\eta_{\mathrm{i}}, \eta_{\mathrm{t}}$ are indices of refraction.

Translucency

- Most real objects are not transparent, but blur the background image
- Scatter light on other side of surface

- Use stochastic sampling (called distributed ray tracing)

Transmission + Translucency Example

Total Internal Reflection

- The equation for the angle of refraction can be computed from Snell's law:
- What happens when $\eta_{\mathrm{i}}>\eta_{\mathrm{t}}$?
- When θ_{t} is exactly 90°, we say that θ_{I} has achieved the "critical angle" θ_{c}.
- For $\theta_{I}>\theta_{c}$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

Reflected and transmitted rays

- For incoming ray $P(t)=P+t d$
- Compute input cosine and sine vectors \boldsymbol{C}_{i} and \boldsymbol{S}_{i}
- Reflected ray vector $\boldsymbol{R}=\boldsymbol{C}_{i}+\boldsymbol{S}_{i}$
- Compute output cosine and sine vectors \boldsymbol{C}_{i} and \boldsymbol{S}_{i}
- Transmitted ray vector $\boldsymbol{T}=\boldsymbol{C}_{t}+\boldsymbol{S}_{t}$
$\mathbf{C}_{\mathbf{i}}=\mathbf{N}(-\mathbf{d} \cdot \mathbf{N})$

Recursive Shading Model

$$
L_{r}=\left(\frac{R}{\pi}+k_{s}(\mathbf{n} \cdot \mathbf{h})^{p}\right) \frac{\max (0, \mathbf{n} \cdot \mathbf{l})}{r^{2}} I
$$

- Global ambient term, emission from material
- For each light, diffuse specular terms
- Highlighted terms are recursive specularities [mirror reflections] and transmission (latter is extra)
- Trace secondary rays for mirror reflections and refractions, include contribution in lighting model

Texture coordinates on meshes

- Texture coordinates are per-vertex data like vertex positions
- can think of them as a second position: each vertex has a position in 3D space and in 2D texture space
- How to come up with (u, v)s for points inside triangles?

> | 09 | 19 | 29 | 39 | 49 | 59 | 69 | 79 | 89 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 08 | 18 | 28 | 38 | 48 | 58 | 68 | 78 | 88 | 98 |
| 07 | 17 | 27 | 3 | 4 | 4 | 57 | 67 | 77 | 87 |
| 06 | 16 | 26 | 30 | 46 | 5 | 66 | 76 | 86 | 96 |
| 05 | 15 | 25 | 85 | 45 | 55 | 6 | 75 | 85 | 95 |
| 04 | 14 | 2 | 34 | 44 | 54 | 64 | 7 | 84 | 94 |
| 03 | 13 | 2 | 3 | 33 | 43 | 53 | 65 | 73 | 83 |
| 02 | 12 | 22 | 32 | 42 | 52 | 62 | 72 | 82 | 92 |
| 01 | 11 | 21 | 31 | 41 | 51 | 61 | 71 | 81 | 91 |
| 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |

Linear interpolation, ID domain

- Given values of a function $f(x)$ for two values of x, you can define in-between values by drawing a line

See textbook Sec. 2.6

- there is a unique line through the two points
- can write down using slopes, intercepts
- ...or as a value added to f(a)
- ...or as a convex combination of $f(a)$ and $f(b)$

$$
\begin{aligned}
f(x) & =f(a)+\frac{x-a}{b-a}(f(b)-f(a)) \\
& =(1-\beta) f(a)+\beta f(b) \\
& =\alpha f(a)+\beta f(b)
\end{aligned}
$$

Linear interpolation in ID

- Alternate story
I. write x as convex combination of a and b

$$
x=\alpha a+\beta b \quad \text { where } \alpha+\beta=1
$$

2. use the same weights to compute $f(x)$ as a convex combination of $f(a)$ and $f(b)$

$$
f(x)=\alpha f(a)+\beta f(b)
$$

Linear interpolation in ID

Linear interpolation in 2D

- Use the alternate story:
I. Write \mathbf{x}, the point where you want a value, as a convex linear combination of the vertices

$$
\mathbf{x}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \quad \text { where } \alpha+\beta+\gamma=1
$$

2. Use the same weights to compute the interpolated value $f(\mathbf{x})$ from the values at the vertices, $f(\mathbf{a}), f(\mathbf{b})$, and $f(\mathbf{c})$

$$
f(\mathbf{x})=\alpha f(\mathbf{a})+\beta f(\mathbf{b})+\gamma f(\mathbf{c})
$$

Interpolation in ray tracing

- When values are stored at vertices, use linear (barycentric) interpolation to define values across the whole surface that:
I. ...match the values at the vertices

2. ...are continuous across edges
3. ... are piecewise linear (linear over each triangle)
as a function of 3D position, not screen position-more later

- How to compute interpolated values

4. during triangle intersection compute barycentric coords
5. use barycentric coords to average attributes given at vertices

What to interpolate?

- Texture coordinates
- without interpolating there can't really be textures
- Surface normals
- for smooth surfaces approximated with meshes
- use interpolated normal for shading in place of actual normal
- "shading normal" vs. "geometric normal"

geometric normals

interpolated normals

Acceleration

- Testing each object for each ray is slow
- Fewer Rays
- Adaptive sampling, depth control
- Generalized Rays
- Beam tracing, cone tracing, pencil tracing etc.
- Faster Intersections (more on this later)
- Optimized Ray-Object Intersections
- Fewer Intersections

Acceleration Structures

- Bounding boxes (possibly hierarchical)
- If no intersection bounding box, needn't check objects

- Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration and Regular Grids

- Simplest acceleration, for example $5 \times 5 \times 5$ grid
- For each grid cell, store overlapping triangles
- March ray along grid (need to be careful with this), test against each triangle in grid cell

- More sophisticated: kd-tree, oct-tree bsp-tree
- Or use (hierarchical) bounding boxes

Motivation: Effects needed for Realism

Reflections
(Mirrors and Glossy)
(Soft)Shadows

Transparency, Refractions
(Water, Glass)

Inter reflections (Color Bleeding)

Motivation: Effects needed for Realism

- (Soft) Shadows
- Reflections (Mirrors and Glossy)
- Transparency (Water, Glass)
- Inter reflections (Color Bleeding)
- Complex Illumination (Natural, Area Light)
- Realistic Materials (Velvet, Paints, Glass)
- ...

References

© 2018 Steve Marschner

- Daniele Panozzo

