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This image is in the public domain.
Source: openclipart
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Two approaches to rendering

for each object in the scene { for each pixel in the image {
for each pixel in the image { for each object in the scene {
if (object affects pixel) { if (object affects pixel) {
do something do something
) )
) )
) )
object order image order
or or

rasterization ray tracing



Renderina — Pinhole Camera
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ach pixel corresponds to

one ray. We need to figure

out which scene point each
one hits.



Rendering
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Pixel Color

Determined by
Lighting/Shading



Durer’'s Ray Casting Machine
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Durer’'s Ray Casting Machine
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Ray tracing algorithm

V.
>,°\< light source

viewer (eye)

Y‘
Vle .
W
for each pixel { isibl .

compute viewing ray visible point
intersect ray with scene
compute illumination at visible point objects
put result into image in scene




Generating eye rays

N
I

Parallel projection Perspective projection
same direction, different origins same origin, different directions




Software interface for cameras

* Key operation: generate ray for image position
class Camera {

Ray generateRay(int col, int row);  args g0 from 0,0
} to width — |, height — |

Modularity problem: Camera shouldn’t have to worry about
image resolution

— better solution: normalized coordinates

class Camera {

Ray generateRay(float u, float v); «———— args go from 0,0 to |, |

}



Specifying views In

<camera type="PerspectiveCamera">
<viewPoint>10 4.2 6</viewPoint>
<viewDir>-5 -2.1 -3</viewDir>
<viewUp>0 1 0</viewUp>
<projDistance>6</projDistance>
<viewWidth>4</viewWidth>
<viewHeight>R.25</viewHeight>

</camera>

<camera type="PerspectiveCamera">
<viewPoint>10 4.2 6</viewPoint>
<viewDir>-5 -2.1 -3</viewDir>
<viewUp>0 1 0</viewUp>
<projDistance>3</projDistance>
<viewWidth>4</viewWidth>
<viewHeight>2.25</viewHeight>

</camera>

Ray |




Pixel-to-image mapping

* One last detail: exactly where are pixels located?

'Y _,
j=25

<>(0,2) O O O(3,2)
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Ray intersection




Ray: a half line

* Standard representation: point p and direction d
r(t) =p+td
— this is a parametric equation for the line
— lets us directly generate the points on the line
— If we restrict to t > O then we have a ray
— note replacing d with axd doesn't change ray (x > 0)

/& t=2

i d
P g =



Ray-sphere intersection: algebraic

* Condition |: point is on ray
r(t) =p+td
* Condition 2: point is on sphere
— assume unit sphere; see book or notes for general
Ixl| =1 |x[* =1
[(x)=x-x—1=0
* Substitute:
(p+td)-(p+td)—1=0
— this is a quadratic equation in t




Ray-sphere Iintersection: algebraic

* Solution for t by quadratic formula:
—d-p+/(d-p)??—(d-d)(p-p—1)
d-d

t=—-d-pt/(d-p)>—p-p+1

— simpler form holds when d is a unit vector
but we won't assume this In practice (reason later)

t —

— I'll use the unit-vector form to make the geometric interpretation



Ray-sphere intersection: geometric

tm = —p-d
2 =p-p—(p-d)?
At =+/1-12
=/ (p-d)2—p-p+1




Ray-triangle intersection

* Condition |: point is on ray
r(t) =p+td
* Condition 2: point is on plane
(x—a) - n=0
* Condition 3: point is on the inside of all three edges
* First solve |&2 (ray—plane intersection)
— substitute and solve for t:

(p+itd—a) - n=0

(a—p)-n

b —
d n




Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces




Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces




Deciding about Insideness

* Need to check whether hit point is inside 3 edges
— easlest to do In 2D coordinates on the plane

* Will also need to know where we are in the triangle
— for textures, shading, etc. ... next couple of lectures

* Efficient solution: transform to coordinates aligned to the
triangle



Barycentric coordinates

* A coordinate system for triangles
— algebraic viewpoint:
p =caa+ b+ ~c
a+pB+vy=1
— geometric viewpoint (areas):

* Triangle interior test:

a>0; >0 ~v>0




Barycentric coordinates

* A coordinate system for triangles

— geometric viewpoint: distances
C

b
— linear viewpoint: basis of edges
a=1-0F-7y
p=a+/f(b—a)+y(c—a)



Barycentric coordinates

* Linear viewpoint: basis for the plane
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— In this view, the triangle interior test is just

>0, v>0, fg+v<1




Barycentric ray-triangle intersection

* Every point on the plane can be written in the form:
a+ f[f(b—a)+y(c—a)

for some numbers f# and ).

If the point is also on the ray then it is
p +td

for some number ¢.

* Set them equal: 3 linear equations in 3 variables
pt+td=a+p(b—a)+y(c—a)

...solve them to get ¢, 3, and 7 all at once!



Barycentric ray-triangle intersection

p+td=a+ [(b—a)+ y(c—a)
Bla—b)+~vy(a—c)+td=a—p

[a—b a—c d] v =[a—p]
t
Lg —Lp Lq — Le Td ,B Lag — Tp
Ya — Yb Ya — Ye Yd Y1 = | Ya — Yp
Za — 2b 2gq — Re 2d t Za — Zp

Cramer’s rule is a good fast way to solve this system
(see text Ch. 2 and Ch. 4 for details)



Ray intersection in software

* All surfaces need to be able to intersect rays with themselves.

ray to be
class Surface { intersected

abstract boolean intersect(IntersectionRecord result, Ray r);

-/

was there an

: : . . class IntersectionRecord
intersection? information about T {
first intersection Vector3 hitLocation;

Vector3d normal;



Image so far

« With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
forO<=ix <nx {
ray = camera.getRay(ix, iy);
hitSurface, t = s.intersect(ray, 0, +inf)
if hitSurface is not null
image.set(ix, iy, white);




Ray intersection in software

* Scenes usually have many objects

* Need to find the first intersection along the ray
— that is, the one with the smallest positive # value

* Loop over objects
— ignore those that don't intersect
— keep track of the closest seen so far

— Convenient to give rays an ending

t value for this purpose (then
they are really segments)




Intersection against many shapes

 The basic idea is:

intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
hitSurface, t = surface.intersect(ray, tMin, tBest);
if hitSurface is not null {
tBest = t;
firstSurface = hitSurface;
}

return hitSurface, tBest;

}

— this is linear in the number of shapes

— real applications use sublinear methods (acceleration structures)
which we will see later



Image so far

* With eye ray generation and scene intersection

for 0 <=iy <ny
for 0 <=ix < nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, 0, +inf);
image.set(ix, iy, ¢);
}

Scene.trace(ray, tMin, tMax) {
surface, t = surfs.intersect(ray, tMin, tMax);
if (surface != null) return surface.color();
else return black;

}




Shading

 Compute light reflected toward camera

* Inputs:
— eye direction SV
— light direction /\\
(for each of many lights) | n

— surface normal

— surface parameters
(color, roughness, ...)




Shading philosophy

* Goals of shading depend on purpose of image
— visualization, CAD: maximize visual clarity
— visual effects, advertising: maximize resemblance to reality
— animation, games: somewhere in between
* Basic starting point: physics of light reflection
— a set of useful approximations to real surfaces
— can remove things for simplicity/clarity
— can add things for increased accuracy/realism



Light

* Think of light as a flow of particles through space
— disregarding wave nature: polarization, interference, diffraction
— for now disregarding color: only how much light

* Sources of light
— point sources (a flashlight) « we will stick to this for now.
— directional sources (the sun)
— area sources (a fluorescent tube)
— environment sources (the sky)



Light fallo
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Irradiance from isotropic point source

* A sphere surrounding the source receives all the power

* A small, flat surface of area A facing the source receives a
fraction (area of surface) / (area of sphere) of that power:

A
Py =P )
4dmr
* Irradiance is power per unit area: | _ Ly
const + lin* d + quad * d?
P P 1
E = Py/A = - —

drtre 4 r?

]

intensity geometry factor



L ambert’s cosine law

Top face of cube
receives a certain
amount of light

Yvy

Top face of
60° rotated cube
intercepts half the light

D
/,'\\

In general, light per unit
area is proportional to
cosO=1+*n



Irradiance from isotropic point source

* A surface of area A facing at an angle to the source receives a
factor of cos 6 less light:

A cosb

A7

Py=P
* lrradiance is power per unit area:

P cost
2

EF =Pjy/A =
A/ 4T r

| ]

intensity  geometry factor



Diffuse reflection

* Simplest reflection model
* Reflected light is independent of view direction
* Reflected light is proportional to irradiance
— constant of proportionality is the diffuse reflection coefficient

Lqg=kqFE

* More useful to think in terms of reflectance
— reflectance is the fraction reflected (between O and |)

T

o
— will have to explain the factor of pi later



Lambertian shading

* Shading independent of view direction

irradiance

: from source

diffuse sourc
reflectance [

N\

|
- R max(0,n-1)

L, y I
v T \
4 L
I \ intensity
of source
diffuse distance
coefficient to source
diffusely
reflected

radiance



Lambertian shading

* Produces matte appearance




Image so far — diffuse shading

Scene.trace(Ray ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax);
if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,
normal, light);

else return backgroundColor;

)

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading

}




Shadows

* Surface is only illuminated if nothing blocks the light
— l.e.If the surface can “see” the light

* With ray tracing it’s easy to check
Image

/

Camera / = 8 Light Source
[:f:lti L+ )

|_View Ray // Shadow Ray

— Just intersect a ray with the scene!

Scene Object



Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos — point);
if (shadRay not blocked) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading
}

return black;

}




Shadow rounding errors

 Don’t fall victim to one of the classic blunders:

* What's going one? [
 Hint: at what t does the shadow ray intersect the surface your are
shading?



Shadow rounding errors

* Solution: shadow rays start a tiny distance from the surface

R ——

* Do this by moving the start point, or by limiting the t range



Multiple lights

* Important to fill in black shadows
* Just loop over lights, add contributions
* Ambient shading
— black shadows are not really right
— one solution: dim light at camera
— alternative: add a constant “ambient” color to the shading...



Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;

}
}

return result;

}




Specular reflection

* Intensity depends on view direction
— bright near mirror configuration

N
//'\\

Ny w

Caution: in notes and
assignment, v is called w, and 1
s called wi. No meaningful
difference, just notational.




Specular shading (Blinn-Phong)

* Intensity depends on view direction
— bright near mirror configuration

N\
//'\\

ANEy4

\4




Specular shading (Blinn-Phong)

* Close to mirror < half vector near normal
— Measure “near’” by dot product of unit vectors

S h = bisector(v,1)

\
\ v B v +1
| nyh / ST

\4

let's work with the expression:




Phong model—plots

* Increasing p narrows the peak
— corresponds to increasing “shininess”

COoS « cos? o cos® a cos® «

1 1 1 1
O\ 0\ o\ 0\
0 90° 0 90° 0 90° 0 90




Specular shading (Blinn-Phong)
K[U2 note: this model is officially

AN . called "modified Blinn-Phong.”
7
. 4

\\.\\' l n ll /,/,,.// R Ina'ux (0 | n . l)
\V v Fa = 2 :
’g\\ T r2
R max (0, n - 1)

Lr — ( k.s(l’l . h)p> >
n r
diffuse specular
coefficient term

I

specular
coefficient



Specular shading

* Blinn-Phong




Diffuse + Phong shading




Amblent shading

* Shading that does not depend on anything

— add constant color to account for disregarded illumination and fill
In black shadows

/"?
/
/
/'/
: . /// .La — ll;(L Ia
R A 1
L
ambient
coefficient
reflected
ambient

light



Mirror reflection

* Consider perfectly shiny surface
— there isn't a highlight
— Instead there’s a reflection of other objects

* Can render this using recursive ray tracing

— to find out mirror reflection color; ask what color is seen from
surface point in reflection direction

— already computing reflection direction for Phong...
e “Glazed” material has mirror reflection and diffuse

L:La+Lr+L7n

— where L, is evaluated by tracing a new ray



Mirror reflection

* Intensity depends on view direction
— reflects incident light from mirror direction




Dr

fuse + mirror reflection (glazed)

(glazed material on floor)



Specular shading

specular



Light reflection: full picture

* when writing a shader, think like a bug standing on the surface
— bug sees an incident distribution of light arriving at the surface
— physics question: what is the outgoing distribution of light?

1
incident distribution reflected distribution
(function of direction) (function of direction)




General shading by bidirectional reflectance
distribution function (BRDF)

N\
0 . .
AN <7 irradiance
/ from source
h /
.] N S/ 1

e | !

iy \ . l
L= fr(n,1v) ma‘X(O.z'n )]
N T

specularly

reflected  specular
radiance BRDF value



Smooth surfaces



|deal specular reflection

* Smooth surfaces of pure materials have ideal specular
reflection

— Metals (conductors) and dielectrics (insulators) behave differently

* Reflectance (fraction of light reflected) depends on angle

l@

metal dielectric



Reflection and transmission
a4 Y r Index of refraction is speed of light,

Ny relative to speed of light in vacuum
‘ = clv, c is speed in vacuum

1

T Q

6, Vacuum: 1.0
Air: 1.000277
Water: 1.33

m Law of reflection: Glass: 1.49
6.= 6.
® Snell's law of refraction:
1. sinf, = n,sin 6,
m where 7, , 1, are indices of refraction.



Translucency

* Most real objects are not transparent, but blur the background
Image
|

» Scatter light on other side of surface

» Use stochastic sampling (called distributed ray tracing)



Transmission + Translucency Example

WWW.POovrdy.org



Total Internal Reflection

m The equation for the angle of refraction can be computed
from Snell's law:

m What happens when 1, > n,?

m When 6, 1s exactly 90°, we say that 6, has achieved the
“critical angle” 6

&
m For 6,> 0., no rays are transmitted, and only reflection
13 . . ”
occurs, a phenomenon known as total internal reflection

or TIR. ,k
S,

1L
N\, Glass




Reflected and transmitted rays
® For incoming ray P(t1)=P+td
® Compute input cosine and sine vectors C; and §,
m Reflected ray vectorR = C. + §.
= Compute output cosine and sine vectors C, and .S,
® Transmitted ray vector T = C, + §,




Recursive Shading Model

T r2

R | ax(0.n -1
L, = <_1 -+-A's(n'h)1’> llll\(() n ) T
» Global ambient term, emission from material
* For each light, diffuse specular terms

* Highlighted terms are recursive specularities [mirror reflections] and
transmission (latter is extra)

 Trace secondary rays for mirror reflections and refractions, include
contribution in lighting model

| = unit vector to light; v = | reflected about n; n = surface normal; v = vector to viewer



Texture coordinates on meshes

* Texture coordinates are per-vertex data like vertex positions

can think of them as a second position: cach vertex has a position
in 3D space and in 2D texture space

* How to come up with (u,v)s for points inside triangles?

09|19|29 39/49(59/69 7989|199
08|18|28 38/48|58/68|78/88/98
07/17 87
06|16 86
05|15 85
0414 84

03|13

02 12@92‘

01/11|21 31/41|51|61/71 |81 |91
00|10/20 30/40/50/60/70/80/90




Linear interpolation, | D domain

* Given values of a function f(x) for two values of x, you can
define in-between values by drawing a line

f(b) //0//
- ( \

fa) _— See textbook

’ //‘./ | Sec. 2.6

— N /

a b

— there is a unique line through the two points
— can write down using slopes, intercepts
— ...o0r as a value added to f(a) flx) = f(a) + - a’(f(bj. — f(a))

b—a
= (1= 03)f(a)+ 3f(b)
=af(a) | Bf(b)

— ...0r as a convex combination
of f(a) and f(b)



Linear interpolation in 1D

* Alternate story
|. write x as convex combination of a and b

r=oaa+ b where a+ =1

2. use the same weights to compute f(x) as a convex combination of

f(a) and f(b)
flx) = af(a) + Bf(D)



Linear interpolation in 1D

fb) %
p _—




Linear interpolation in 2D

Use the alternate story:

|. Write X, the point where you want a value, as a convex linear
combination of the vertices

x=«aa+ Bb+~vc wherea+p+~v=1

2. Use the same weights to compute the interpolated value f(x)
from the values at the vertices, f(a), f(b), and f(€)

f(x)=af(a)+ Bf(b)+~f(c) f a\

See textbook
Sec. 2.7

- j




Interpolation In ray tracing

* When values are stored at vertices, use linear (barycentric)
interpolation to define values across the whole surface that:

|. ...match the values at the vertices
2. ...are continuous across edges
3. ...are piecewise linear (linear over each triangle)

as a function of 3D position, not screen position—more later

* How to compute interpolated values
4. during triangle intersection compute barycentric coords
J. use barycentric coords to average attributes given at vertices



VVhat to interpolate?

* Texture coordinates
without interpolating there can't really be textures
* Surface normals
— for smooth surfaces approximated with meshes
— use interpolated normal for shading in place of actual normal

— "shading normal” vs.“'geometric normal”

geometric normals interpolated normals



Acceleration

* Testing each object for each ray is slow

* Fewer Rays
» Adaptive sampling, depth control

* Generalized Rays
« Beam tracing, cone tracing, pencil tracing etc.

« Faster Intersections (more on this later)
« Optimized Ray-Object Intersections
* Fewer Intersections



Acceleration Structures

* Bounding boxes (possibly hierarchical)
* |f no intersection bounding box, needn’t check objects

A\ ™\, | Bounding Box

« Spatial Hierarchies (Oct-trees, kd trees, BSP trees)



Acceleration and Regular Grids

« Simplest acceleration, for example 5x5x5 grid
* For each grid cell, store overlapping triangles

* March ray along grid (need to be careful with this), test against
each triangle in grid cell

* More sophisticated: kd-tree, oct-tree bsp-tree
* Or use (hierarchical) bounding boxes



Motivation: Effects needed for Realis

#

Caustics

Reflections .
1 Transparency, Refractions
(Mirrors and Glossy) (Water, Glass)

» )
»

(Soﬂ)Shado‘ i Depth of Field
ustics




Motivation: Effects needed for Realism

« Complex lllumination (Natural, Area Light)
» Realistic Materials (Velvet, Paints, Glass)
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