Computer Graphics
 - 3D Viewing

Junjie Cao @ DLUT
Spring 2019
http://jicao.github.io/ComputerGraphics/

Viewing, backward and forward

- So far have used the backward approach to viewing
- start from pixel
- ask what part of scene projects to pixel
- explicitly construct the ray corresponding to the pixel
- Next will look at the forward approach
- start from a point in 3D compute its projection into the image
- Central tool is matrix transformations
- combines seamlessly with coordinate transformations used to position camera and model
- ultimate goal: single matrix operation to map any 3D point to its correct screen location.

Forward viewing

- Would like to just invert the ray generation process
- Inverting the ray tracing process requires division for the perspective case

Viewing transformations

 Figure 3-1 The Camera Analogy

Coordinate Systems

object
coordinates

world coordinates

camera coordinates

screen
coordinates

Viewing Transformation

screen space

Windowing transforms

- take one axis-aligned rectangle or box to another

$$
\left[\begin{array}{ccc}
1 & 0 & x_{l}^{\prime} \\
0 & 1 & y_{l}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}} \\
0 \\
0
\end{array}\right.
$$

$$
\begin{gathered}
0 \\
\frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}} \\
0
\end{gathered}
$$

$$
\left.\begin{array}{c}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{l} \\
0 & 1 & -y_{l} \\
0 & 0 & 1
\end{array}\right]
$$

translate
$\left\lceil\frac{x_{h}^{\prime}-x_{l}^{\prime}}{x_{h}-x_{l}}\right.$
0
$\frac{y_{h}^{\prime}-y_{l}^{\prime}}{y_{h}-y_{l}}$
0

$$
\left.\begin{array}{c}
\frac{x_{l}^{\prime} x_{h}-x_{h}^{\prime} x_{l}}{x_{h}-x_{l}} \\
\frac{y_{l}^{\prime} y_{h}-y_{h}^{\prime} y_{l}}{y_{h}-y_{l}} \\
1
\end{array}\right]
$$

Viewport transformation

It is a simple windowing transform

$$
\left[\begin{array}{c}
x_{\text {screen }} \\
y_{\text {screen }} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
n x / 2 & 0 & \frac{n_{x}-1}{2} \\
0 & n y / 2 & \frac{n_{y}-1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{\text {canonical }} \\
y_{\text {canonical }} \\
1
\end{array}\right]
$$

How does it look in 3D?

Canonical view volume to screen space

- a restricted case: the canonical view volume

- coordinates in it are called "normalized device coordinates" (NDC)

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{\text {screen }} \\
y_{\text {screen }} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
n x / 2 & 0 & \frac{n_{x}-1}{2} \\
0 & n y / 2 & \frac{n_{y}-1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{\text {canonical }} \\
y_{\text {canonical }} \\
1
\end{array}\right]} \\
\mathbf{M}_{\mathrm{vp}}=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Orthographic Projection

camera space

projection

view volume

$$
\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Transformation

1. Construct the camera reference system given:
2. The eye position \mathbf{e}
3. The gaze direction \mathbf{g}
4. The view-up vector \mathbf{t}

$$
\begin{aligned}
\mathbf{w} & =-\frac{\mathbf{g}}{\|\mathbf{g}\|} \\
\mathbf{u} & =\frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \\
\mathbf{v} & =\mathbf{w} \times \mathbf{u}
\end{aligned}
$$

camera space

Change of frame

$$
\begin{aligned}
& \mathbf{p}=\left(p_{x}, p_{y}\right)=\mathbf{o}+p_{x} \mathbf{x}+p_{y} \mathbf{y} \\
& \mathbf{p}=\left(p_{u}, p_{v}\right)=\mathbf{e}+p_{u} \mathbf{u}+p_{v} \mathbf{v}
\end{aligned}
$$

(1)

$$
\mathbf{p}_{x y}=\left[\begin{array}{ccc}
\mathbf{u} & \mathbf{v} & \mathbf{e} \\
0 & 0 & 1
\end{array}\right] \mathbf{p}_{u v} \quad \mathbf{p}_{u v}=\left[\begin{array}{ccc}
\mathbf{u} & \mathbf{v} & \mathbf{e} \\
0 & 0 & 1
\end{array}\right]^{-1} \mathbf{p}_{x y}
$$

Can you write it directly without the inverse?

Camera Transformation

world space | camera

camera space

1. Construct the camera reference system given:
2. The eye position \mathbf{e}
3. The gaze direction \mathbf{g}
4. The view-up vector \mathbf{t}

$$
\begin{aligned}
\mathbf{w} & =-\frac{\mathbf{g}}{\|\mathbf{g}\|} \\
\mathbf{u} & =\frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \\
\mathbf{v} & =\mathbf{w} \times \mathbf{u}
\end{aligned}
$$

2. Construct the unique transformations that converts world coordinates into camera coordinates

$$
\mathbf{M}_{c a m}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}
$$

Example: ModeIView Matrix

- http://www.songho.ca/ opengl/ gl transform.htm|\#exam ple1

Viewing Transformation

screen space

Algorithm

- Construct Viewport Matrix $\mathbf{M}_{v p}$
- Construct Projection Matrix $\mathbf{M}_{\text {orth }}$
- Construct Camera Matrix $\mathbf{M}_{\text {cam }}$
- $\mathbf{M}=\mathbf{M}_{v p} \mathbf{M}_{\text {orth }} \mathbf{M}_{c a m}$
- For each model

- For every point \mathbf{p} in each primitive of the model
- $\quad \mathbf{p}_{\text {final }}=\mathbf{M}_{\text {final }} \mathbf{p}$
- Rasterize the model

- $\mathbf{M}_{\text {final }}=\mathbf{M} \mathbf{M}_{\text {model }}$
- Rastize the model

Orthographic transformation chain

- Start with coordinates in object's local coordinates
- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{\text {cam }}=F_{c}{ }^{-1}$)
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, M_{vp}

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{o r t h} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

Rudimentarv nersnective in cave drawings

Painting in middle ages: incorrect perspective

- Art in the service of religion
- Perspective abandoned or forgotter

Ottonian manuscript, ca. 1000

Renaissance

Filippo Brunelleschi Florence, 1415

Brunelleschi, elevation of SantoMasaccio - The Tribute Money c.
Spirito,1434-83, Florence
 1426-27
Fresco, The Brancacci Chapel, Florence

1-, 2-, and 3-point Perspective

3-point perspective
1-point perspective 2-point perspective

r Graphic

Perspective projection projection

plane

similar triangles:

$$
\begin{aligned}
& \frac{y^{\prime}}{d}=\frac{y}{-z} \\
& y^{\prime}=-d y / z
\end{aligned}
$$

Homogeneous coordinates revisited

- Perspective requires division
- that is not part of affine transformations
- in affine, parallel lines stay parallel
- therefore not vanishing point
- therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

- Introduced w = I coordinate as a placeholder

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- used as a convenience for unifying translation with linear
- Can also allow arbitrary w

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

Implications of w

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w
$\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right] \sim\left[\begin{array}{c}w x \\ w y \\ w z \\ w\end{array}\right]$
- therefore these points represent "normal" affine points
- When w is zero, it's a point at infinity, a.k.a. a direction
- this is the point where parallel lines intersect
- can also think of it as the vanishing point

Perspective projection projection

plane

to implement perspective, just move z to w :

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

View volume: perspective (clipped)

Carrying depth through perspective

- Perspective can't preserve depth!
- Compromise: preserve depth on near and far planes

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right] \sim\left[\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z} \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$$
z^{\prime}(z)=\frac{\tilde{z}}{-z}=\frac{a z+b}{-z}
$$

$$
\text { want } z^{\prime}(n)=n \text { and } z^{\prime}(f)=f
$$

$$
\text { result: } a=-(n+f) \text { and } b=n f \text { (try it) }
$$

Official perspective matrix

- Use near plane distance as the projection distance
- i.e., d = -n
- Scale by -I to have fewer minus signs
- scaling the matrix does not change the projective transformation

$$
\mathbf{P}=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective projection matrix

- Product of perspective matrix with orth. projection matrix

$$
\mathbf{M}_{\text {per }}=\mathbf{M}_{\text {orth }} \mathbf{P}
$$

$$
=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\
0 & \frac{2 n}{t-b} & \frac{b+t}{b-t} & 0 \\
0 & 0 & \frac{f+n}{n-f} & \frac{2 f n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

caution: differences from traditional OpenGL standard! Here, n and f are negative; near is +1 in the canonical view volume; and both eye space and clip space have right handed coordinates.

Perspective projection matrix

$$
\begin{aligned}
\mathbf{M}_{\text {per }} & =\mathbf{M}_{\mathrm{orth}} \mathbf{P} \\
& =\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Perspective transformation chain

- Transform into world coords (modeling transform, M_{m})
- Transform into eye coords (camera xf., $M_{\text {cam }}=F_{c}{ }^{-1}$)
- Perspective matrix, P
- Orthographic projection, $M_{\text {orth }}$
- Viewport transform, M_{vp}

$$
\mathbf{p}_{s}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_{o}
$$

Example: Projection Matrix

OI OpenGL Projection Matrix

Projection Type (o) Perspective

Orthographic

Projection Parameters
Left $\quad-0.5$ 会

Rendering Mode

(O) Fill
() Wireframe

- Points

Reset

Projection Matrix
$\begin{array}{llll}2.00 & 0.00 & 0.00 & 0.00\end{array}$
$\begin{array}{llll}0.00 & 2.00 & 0.00 & 0.00\end{array}$
$\begin{array}{llll}0.00 & 0.00 & -1.22 & -2.22\end{array}$
$\begin{array}{llll}0.00 & 0.00 & -1.00 & 0.00\end{array}$

- http://www.songho.ca/opengl/ gl transform.html\#projection

Viewing Transformation

screen space

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley
Chapter 7

