Computer Graphics - 3D Viewing

Junjie Cao @ DLUT Spring 2019 http://jjcao.github.io/ComputerGraphics/

Viewing, backward and forward

- So far have used the backward approach to viewing
 - start from pixel
 - ask what part of scene projects to pixel
 - explicitly construct the ray corresponding to the pixel
- Next will look at the forward approach
 - start from a point in 3D
 compute its projection into the image
- Central tool is matrix transformations
 - combines seamlessly with coordinate transformations used to position camera and model
 - ultimate goal: single matrix operation to map any 3D point to its correct screen location.

Forward viewing

- Would like to just invert the ray generation process
- Inverting the ray tracing process requires division for the perspective case

Viewing transformations

World
Coordinates

Modeling

Camera

Projection

Viewport

Screen
Space
(pixels)

Coordinate Systems

object coordinates

world coordinates

camera coordinates

screen coordinates

Viewing Transformation

Windowing transforms

· take one axis-aligned rectangle or box to another

$$\begin{bmatrix} 1 & 0 & x_l' \\ 0 & 1 & y_l' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{x_h' - x_l'}{x_h - x_l} & 0 & 0 \\ 0 & \frac{y_h' - y_l'}{y_h - y_l} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_l \\ 0 & 1 & -y_l \\ 0 & 0 & 1 \end{bmatrix}$$

Viewport transformation

It is a simple windowing transform

$$egin{bmatrix} x_{screen} \ y_{screen} \ 1 \end{bmatrix} = egin{bmatrix} nx/2 & 0 & rac{n_x-1}{2} \ 0 & ny/2 & rac{n_y-1}{2} \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x_{canonical} \ y_{canonical} \ 1 \end{bmatrix}$$

How does it look in 3D?

Canonical view volume to screen space

· a restricted case: the canonical view volume

gluPerspective(fovy, aspect, near, far)

 coordinates in it are called "normalized device coordinates" (NDC)

$$\begin{bmatrix} x_{screen} \\ y_{screen} \\ 1 \end{bmatrix} = \begin{bmatrix} nx/2 & 0 & \frac{n_x - 1}{2} \\ 0 & ny/2 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{canonical} \\ y_{canonical} \\ 1 \end{bmatrix}$$

$$\mathbf{M}_{vp} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic Projection

camera space

view volume

It is also a windowing transform

$$\mathbf{M}_{orth} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Transformation

camera space

- 1. Construct the camera reference system given:
 - 1. The eye position **e**
 - 2. The gaze direction **g**
 - 3. The view-up vector **t**

$$egin{align} \mathbf{w} &= -rac{\mathbf{g}}{||\mathbf{g}||} \ \mathbf{u} &= rac{\mathbf{t} imes \mathbf{w}}{||\mathbf{t} imes \mathbf{w}||} \ \mathbf{v} &= \mathbf{w} imes \mathbf{u} \end{aligned}$$

Change of frame

$$\mathbf{p} = (p_x, p_y) = \mathbf{o} + p_x \mathbf{x} + p_y \mathbf{y}$$

$$\mathbf{p} = (p_u, p_v) = \mathbf{e} + p_u \mathbf{u} + p_v \mathbf{v}$$

$$[p_x] \quad [1 \quad 0 \quad e_x] \quad [p_x \quad v_x \quad 0] \quad [p_y] \quad [p_y \quad v_y \quad e_y]$$

$$\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & e_x \\ 0 & 1 & e_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & 0 \\ u_y & v_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ 1 \end{bmatrix} = \begin{bmatrix} u_x & v_x & e_x \\ u_y & v_y & e_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ 1 \end{bmatrix}$$

$$\mathbf{p}_{xy} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_{uv} \qquad \qquad \mathbf{p}_{uv} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{p}_{xy}$$

Can you write it directly without the inverse?

Camera Transformation

camera space

- 1. Construct the camera reference system given:
 - 1. The eye position **e**
 - 2. The gaze direction **g**
 - 3. The view-up vector **t**

$$egin{aligned} \mathbf{w} &= -rac{\mathbf{g}}{||\mathbf{g}||} \ \mathbf{u} &= rac{\mathbf{t} imes \mathbf{w}}{||\mathbf{t} imes \mathbf{w}||} \ \mathbf{v} &= \mathbf{w} imes \mathbf{u} \end{aligned}$$

2. Construct the unique transformations that converts world coordinates into camera coordinates

$$\mathbf{M}_{cam} = egin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

Example: ModelView Matrix

http://www.songho.ca/
 opengl/
 gl_transform.html#exam
 ple1

Viewing Transformation

Algorithm

- Construct Viewport Matrix \mathbf{M}_{vp}
- Construct Projection Matrix \mathbf{M}_{orth}
- Construct Camera Matrix \mathbf{M}_{cam}
- $\mathbf{M} = \mathbf{M}_{vp} \mathbf{M}_{orth} \mathbf{M}_{cam}$
- For each model
 - Construct Model Matrix \mathbf{M}_{model}
 - $\mathbf{M}_{final} = \mathbf{M}\mathbf{M}_{model}$
 - For every point **p** in each primitive of the model
 - $\mathbf{p}_{final} = \mathbf{M}_{final} \mathbf{p}$
 - Rasterize the model

Orthographic transformation chain

- Start with coordinates in object's local coordinates
- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{\text{cam}} = F_c^{-1}$)
- Orthographic projection, Morth
- Viewport transform, M_{vp}

$$\mathbf{p}_s = \mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x-1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix} \overset{-1}{\uparrow} \mathbf{M}_{\mathbf{m}} \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$
screen
NDC
eye
object
space
space

Rudimentary perspective in cave drawings

Lascaux, France source: Wikipedia

Painting in middle ages: incorrect perspective

- Art in the service of religion
- Perspective abandoned or forgotter

8-9th century painting

Renaissance

Filippo Brunelleschi Florence, 1415

Brunelleschi, elevation of SantoMasaccio – The Tribute Money c. Spirito,1434-83, Florence 1426-27

Fresco, The Brancacci Chapel, Florence

1-, 2-, and 3-point Perspective

Perspective projection projection

similar triangles:

$$\frac{y'}{d} = \frac{y}{-z}$$

$$y' = -\frac{dy}{z}$$

Homogeneous coordinates revisited

- Perspective requires division
 - that is not part of affine transformations
 - in affine, parallel lines stay parallel
 - therefore not vanishing point
 - therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

• Introduced w = 1 coordinate as a placeholder

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- used as a convenience for unifying translation with linear
- Can also allow arbitrary w

$$egin{bmatrix} x \ y \ z \ 1 \end{bmatrix} \sim egin{bmatrix} wx \ wy \ wz \ w \end{bmatrix}$$

Implications of w

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w

- $egin{bmatrix} x \ y \ z \ 1 \end{bmatrix} \sim egin{bmatrix} wx \ wy \ wz \ w \end{bmatrix}$
- therefore these points represent "normal" affine points
- When w is zero, it's a point at infinity, a.k.a. a direction
 - this is the point where parallel lines intersect
 - can also think of it as the vanishing point

Perspective projection

to implement perspective, just move z to w:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -dx/z \\ -dy/z \\ 1 \end{bmatrix} \sim \begin{bmatrix} dx \\ dy \\ -z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

View volume: perspective (clipped)

Carrying depth through perspective

- Perspective can't preserve depth!
- Compromise: preserve depth on near and far planes

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} \sim \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ -z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\tilde{z}(z) = az + b$$

$$z'(z) = \frac{\tilde{z}}{-z} = \frac{az + b}{-z}$$

want
$$z'(n) = n$$
 and $z'(f) = f$

result:
$$a = -(n + f)$$
 and $b = nf$ (try it)

Official perspective matrix

Use near plane distance as the projection distance

$$-$$
 i.e., $d = -n$

- Scale by —I to have fewer minus signs
 - scaling the matrix does not change the projective transformation

$$\mathbf{P} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Perspective projection matrix

Product of perspective matrix with orth. projection matrix

$$\mathbf{M}_{\mathrm{per}} = \mathbf{M}_{\mathrm{orth}} \mathbf{P}$$

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

caution: differences from traditional OpenGL standard! Here, *n* and *f* are negative; near is +1 in the canonical view volume; and both eye space and clip space have right handed coordinates.

Perspective projection matrix

$$\mathbf{M}_{\mathrm{per}} = \mathbf{M}_{\mathrm{orth}} \mathbf{P}$$

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Perspective transformation chain

- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{\text{cam}} = F_c^{-1}$)
- Perspective matrix, P
- Orthographic projection, Morth
- Viewport transform, M_{vp}

$$\mathbf{p}_s = \mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x-1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{M}_{cam} \mathbf{M}_{m} \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$
screen
$$\mathbf{NDC}$$
space
$$\mathbf{NDC}$$
space
$$\mathbf{NDC}$$
space
$$\mathbf{NDC}$$
space
$$\mathbf{Space}$$

Example: Projection Matrix

 http://www.songho.ca/opengl/ gl_transform.html#projection

Viewing Transformation

References

Fundamentals of Computer Graphics, Fourth Edition 4th Edition by <u>Steve Marschner</u>, <u>Peter Shirley</u>

Chapter 7