
Computer Graphics – Junjie Cao

Computer Graphics 
-Transformation

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/

Pleasure may come from illusion, but happiness can come only of reality.

http://jjcao.github.io/ComputerGraphics/

Computer Graphics – Junjie Cao

Cube

(-1, -1, -1) (1, -1, -1)

(1, -1, 1)(-1, -1, 1)

(1, 1, -1)

(1, 1, 1)

(-1, 1, -1)

(-1, 1, 1)

Computer Graphics – Junjie Cao

Cube man Stretched out cube
moved up

Squishy cube
moved to the right

Slanty cube
moved down and

to the left

The original cube

Computer Graphics – Junjie Cao

Transformations in Rigging

Computer Graphics – Junjie Cao

Overview

• We will briefly overview the basic linear algebra concepts that we
will need in the class

• You will not be able to follow the next lectures without a clear
understanding of this material

In this box, you will find
references to Eigen

Computer Graphics – Junjie Cao

Vectors

Computer Graphics – Junjie Cao

Vectors
• A vector describes a direction and a length

• Do not confuse it with a location, which represent a position

• When you encode them in your program, they will both require 2 (or 3) numbers to be
represented, but they are not the same object!

These two are identical! Vectors represent displacements. If you represent
the displacement wrt the origin, then they encode a location.

Origin

Eigen::VectorXd

Computer Graphics – Junjie Cao

Sum
Operator +

Computer Graphics – Junjie Cao

Difference
Operator -

Computer Graphics – Junjie Cao

Coordinates of a Vector

a and b form a 2D basis

Operator []

(c1, c2) is coordinate of c

Computer Graphics – Junjie Cao

Cartesian Coordinates of a Vector

• x and y form a canonical, Cartesian
basis

Computer Graphics – Junjie Cao

Length
• The length of a vector is denoted as ||a||

• If the vector is represented in cartesian coordinates, then it is the L2
norm of the vector:

• A vector can be normalized, to change its length to 1, without
affecting the direction:

a.norm()

CAREFUL:
b.normalize() <— in place

b.normalized() <— returns the
normalized vector

Computer Graphics – Junjie Cao

Dot Product a.dot(b)
a.transpose()*b

• The dot product is related to the length of
vector and of the angle between them

• If both are normalized, it is directly the cosine
of the angle between them

Computer Graphics – Junjie Cao

Dot Product - Projection

• The length of the projection of
b onto a can be computed
using the dot product

Computer Graphics – Junjie Cao

Cross Product

• Defined only for 3D vectors

• The resulting vector is perpendicular
to both a and b, the direction
depends on the right hand rule

• The magnitude is equal to the area
of the parallelogram formed by a and
b

Eigen::Vector3d v(1, 2, 3);

Eigen::Vector3d w(4, 5, 6);

v.cross(w);

Computer Graphics – Junjie Cao

Coordinate Systems

• You will often need to manipulate coordinate systems (i.e. for finding
the position of the pixels in Assignment 1)

• You will always use orthonormal bases, which are formed by
pairwise orthogonal unit vectors :

2D 3D

Right-handed if:

Computer Graphics – Junjie Cao

Global vs local coordinate sys
• Canonical/global/world

• xyzo

• never explicitly stored

• Frame of reference/local/object

• uvwp

• explicitly stored wrt global frame

Computer Graphics – Junjie Cao

Global vs local coordinate sys
• local frame stored in canonical frame

• A location implicitly includes an offset from canonical origin

• store a vector a with respect to the u-v-w frame

• The result is already in canonical frame

• To get the u-v-w coordinates of a vector b stored in the canonical
coordinate

Computer Graphics – Junjie Cao

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 2

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

Computer Graphics – Junjie Cao

Matrices

Computer Graphics – Junjie Cao

Overview

• Matrices will allow us to conveniently represent and ally
transformations on vectors, such as translation, scaling and rotation

• Similarly to what we did for vectors, we will briefly overview their
basic operations

Computer Graphics – Junjie Cao

Determinants
• Think of a determinant as an operation between vectors.

Area of the parallelogram Volume of the parallelepiped
(positive since abc is a right-handed basis)

By Startswithj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=29922624

Computer Graphics – Junjie Cao

Matrices

• A matrix is an array of numeric elements

Sum

Scalar Product

A.array() + B.array()

Eigen::MatrixXd A(2,2)

A.array() * y

Computer Graphics – Junjie Cao

Transpose
• The transpose of a matrix is a new matrix whose entries are reflected

over the diagonal

B = A.transpose();
A.transposeInPlace();

• The transpose of a product is the product of the transposed, in
reverse order

Computer Graphics – Junjie Cao

Matrix Product
• The entry i,j is given by

multiplying the entries
on the i-th row of A with
the entries of the j-th
column of B and
summing up the results

• It is NOT commutative
(in general):

Eigen::MatrixXd A(4,2);

Eigen::MatrixXd B(2,3);

A*B;

Computer Graphics – Junjie Cao

Intuition

Dot product on each row Weighted sum of the columns

Computer Graphics – Junjie Cao

Inverse Matrix
• The inverse of a matrix is the matrix such that

where I is the identity matrix

• The inverse of a product is the product of the inverse in opposite order:

Eigen::MatrixXd A(4,4);

A.inverse() <— do not use this
to solve a linear system!

Computer Graphics – Junjie Cao

Diagonal Matrices
• They are zero everywhere except the diagonal:

• Useful properties:

Eigen::Vector3d v(1,2,3);

A = v.asDiagonal()

Computer Graphics – Junjie Cao

Orthogonal Matrices

• An orthogonal matrix is a matrix where

• each column is a vector of length 1

• each column is orthogonal to all the others

• A useful property of orthogonal matrices that their inverse
corresponds to their transpose:

Computer Graphics – Junjie Cao

Linear Systems
• We will often encounter in this class linear systems with n linear

equations that depend on n variables.

• For example:

• To find x,y,z you have to “solve” the linear system. Do not use an
inverse, but rely on a direct solver:

 Matrix3f A;
 Vector3f b;
 A << 5,3,-7, -3,5,12, 9,-2,-2;
 b << 4, 9, -3;
 cout << "Here is the matrix A:\n" << A << endl;
 cout << "Here is the vector b:\n" << b << endl;
 Vector3f x = A.colPivHouseholderQr().solve(b);
 cout << "The solution is:\n" << x << endl;

https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html#a05afed751d3a7277951d1918468e0872

Computer Graphics – Junjie Cao

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 5

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

Computer Graphics – Junjie Cao

Linear Transformations

Computer Graphics – Junjie Cao

Basic idea: f transforms x to f(x)

x

f(x)

Computer Graphics – Junjie Cao

And what is our favorite type of
transformation?

Computer Graphics – Junjie Cao

What can we do with linear transformations?
• What did linear mean?

• f(u + v) = f(u) + f(v)

• f(au) = af(u)

• Cheap to compute

• Composition of linear transformations is linear

• Leads to uniform representation of transformations

• E.g., in graphics card (GPU) or graphics APIs

 35

Computer Graphics – Junjie Cao

Linear transforms

 e1

▪ Do you know…
▪ what u1 and 𝑢2 are?
▪ what a1 and a2 are?

e2

Computer Graphics – Junjie Cao

Linear transforms

e1

- 𝒖 is a linear combination of e1 and e2

- f(𝒖) is that same linear combination of a1 and a2

- a1 and a2 are f(e1) and 𝐟(e2)
- by knowing what e1 and e2 map to, you know how to map

the entire space!

e2

Computer Graphics – Junjie Cao

2D Linear Transformations
• Each 2D linear map can be represented by a unique 2×2 matrix

• Concatenation of mappings corresponds to multiplication of matrices

• Linear transformations are very common in computer graphics!

L2 * L1 * x;

Computer Graphics – Junjie Cao

Linear transforms

If a map can be expressed as

f(u) =σ 𝑖=1 𝑢𝑖a𝑖

with fixed vectors a𝑖, then it is linear

𝑚

Computer Graphics – Junjie Cao

Let’s look at some transforms
that are important in graphics…

How do you formally tell a computer that this
cube should be squished and slanty?

Computer Graphics – Junjie Cao

Linear transformation gallery

 41

Computer Graphics – Junjie Cao

Linear transformation gallery

 42

Computer Graphics – Junjie Cao

Linear transformation gallery

 43

Computer Graphics – Junjie Cao

Linear transformation gallery

 44

Computer Graphics – Junjie Cao

Translation

 45

Computer Graphics – Junjie Cao

Is translation linear?

No. Translation is affine.

Computer Graphics – Junjie Cao

Composing transformations

 47

Computer Graphics – Junjie Cao

Composing transformations

 48

Computer Graphics – Junjie Cao

Combining linear with translation

 49

Computer Graphics – Junjie Cao

Homogeneous coordinates

 50

Computer Graphics – Junjie Cao

Homogeneous coordinates

 51

Computer Graphics – Junjie Cao

Homogeneous coordinates

 52

Computer Graphics – Junjie Cao

Affine transformations

 53

Computer Graphics – Junjie Cao

3D Affine transformation gallery

Reflection

Computer Graphics – Junjie Cao

General Rotation Matrices

 55

Computer Graphics – Junjie Cao

Euler angles

 56

Computer Graphics – Junjie Cao

Euler angles in applications

 57

Computer Graphics – Junjie Cao

Representing Rotations in 3D: Euler Angles

Computer Graphics – Junjie Cao

General affine transformations

• The previous slides showed “canonical” examples of the types of
affine transformations

• Generally, transformations contain elements of multiple types

• often define them as products of canonical transforms

• sometimes work with their properties more directly

 59

Computer Graphics – Junjie Cao

Composite affine transformations

 60

Computer Graphics – Junjie Cao

Commutativity of Rotations—2D
• In 2D, order of rotations doesn’t matter:

rotate by 40° rotate by 20°

rotate by 20° rotate by 40°

Same result! 2D rotations commute

Computer Graphics – Junjie Cao

X
Z

Y

Commutativity of Rotations—3D
• What about in 3D?
• IN-CLASS ACTIVITY:

• Rotate 90°around Y, then 90°around Z, then
90°around X

• Rotate 90° around Z, then 90° around Y, then 90°
around X

• (Was there any difference?)

CONCLUSION: bad things can happen if we’re not
careful about the order in which we apply rotations!

Computer Graphics – Junjie Cao

Composite affine transformations

• In general not commutative: order matters!

 63

Computer Graphics – Junjie Cao

Composite affine transformations

• In general not commutative: order matters!

 64

Computer Graphics – Junjie Cao

Rigid motions

 65

Computer Graphics – Junjie Cao

Composing to change axes
• Want to rotate about a particular point

• could work out formulas directly...

• Know how to rotate about the origin

• so translate that point to the origin

 66

Computer Graphics – Junjie Cao

Transforming points and vectors

 67

Computer Graphics – Junjie Cao

Transforming points and vectors

 68

Computer Graphics – Junjie Cao

Transforming normal vectors

 69

Computer Graphics – Junjie Cao

Transforming normal vectors

 70

Computer Graphics – Junjie Cao

Summary of basic transforms

Computer Graphics – Junjie Cao

2D Geometric Transformations

Computer Graphics – Junjie Cao

Transform Object or Camera?

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o) T(-1,-1)

Image Copyright: Mark Pauly

Computer Graphics – Junjie Cao

Affine change of coordinates
• Coordinate frame: point plus basis

• Interpretation: transformation  
 changes representation of 
 point from one basis to another

• “Frame to canonical” matrix has  
 frame in columns

• takes points represented in frame

• expresents them in canonical basis

• e.g.[0 0],[1 0],[0 1]

• Seems backward but bears thinking about

 74

Computer Graphics – Junjie Cao

frame-to-canonical

 75

Computer Graphics – Junjie Cao

Canonical-to-frame

 76

Computer Graphics – Junjie Cao

Affine change of coordinates

 77

Computer Graphics – Junjie Cao

Building general rotations

 78

Computer Graphics – Junjie Cao

Coordinate frame summary

 79

Computer Graphics – Junjie Cao

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 6

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

