Computer Graphics

-Transformation

Junjie Cao @ DLUT
Spring 2019
http://[jcao.qgithub.io/ComputerGraphics/

Computer Graphics — Junjie Cao Pleasure may come from illusion, but happiness can come only of reality.

http://jjcao.github.io/ComputerGraphics/

Cube

(-1,1,1) (1,1,1)

(-1,1, 1) (1,1, -1)

(1, -1, 1)

(-1, -1, -1) (1, -1, 1)

Computer Graphics — Junjie Cao

Cube man Stretched out cube

moved up
The original cube l'

A A —— Y

’I
l/ Sqmshy cube
—, moved to the right
Slanty cube
moved down and
to the left

Computer Graphics — Junjie Cao

Transformations in Rigging

are the articulation
points for the mode

Computer Graphics — Junjie Cao

—— e ————— e ————— e ——— e e

In this box, you will fina
references to Eigen

Overview

 We will brietly overview the basic linear algebra concepts that we
will need in the class

e You Will not be able to follow the next lectures without a clear
understanding of this material

Computer Graphics — Junjie Cao

Vectors

Computer Graphics — Junjie Cao

VeClOrs]

* A vector describes a direction and a length

* Do not confuse it with a location, which represent a position

* When you encode them in your program, they will both require 2 (or 3) numbers to be
represented, but they are not the same object!

d

These two are identical! Vectors repreéent displacements. If you represent

the displacement wrt the origin, then they encode a location.

Computer Graphics — Junjie Cao

Computer Graphics — Junjie Cao

Difference

I Operator - I

/r
/
b—a
b—-—a=—-a+Db

Computer Graphics — Junjie Cao

e e

Operator |[]
c =cia-+ cob c=a—+2b

(c1, c2) Is coordinate of ¢

2b

a and b form a 2D basis

Computer Graphics — Junjie Cao

Cartesian Coordinates of a Vector

C =C1X T+ Cy

-+ X and y form a canonical, Cartesian
basis

>

X

Computer Graphics — Junjie Cao

_engtn

» The length of a vector is denoted as ||a|| a.norm()

e |f the vector Is represented in cartesian coordinates, then it is the L2

norm of the vector:
— 2 2 x
+ A vector can be normalized, to change its length to 1, without =
affecting the direction: N _,
Y CAREFUL.: |
A . .
— b.normalize() <— in place
||a|| b.normalized() <— returns the

normalized vector

Computer Graphics — Junjie Cao

a-b =||a|| ||b||cosé

Computer Graphics — Junjie Cao

Dot Product

]

———

H

d

a.dot(b)
transpose

* The dot product is related to the length of
vector and of the angle between them

*

D

|)"0 |

e |f both are normalized, it is directly the cosine

of the angle between them

—

ot Product - Projection

* [he length of the projection of
b onto a can be computed
using the dot product

b-a

|al]

b —a=||b|/cosf =

Computer Graphics — Junjie Cao

Cross Product peesaaezs

Eigen::Vector3d w(4, 5, 6);

~——

V.Cross(w);
, a x b| = [[a]| [[b]|sinf

e Defined only for 3D vectors
* [he resulting vector Is perpendicular 4

to both a and b, the direction

depends on the right hand rule la x b|

b

» The magnitude is equal to the area N~

of the parallelogram formed by a and aN, .

b M »

Computer Graphics — Junjie Cao

Coordinate Systems

* You will often need to manipulate coordinate systems (i.e. for finding
the position of the pixels in Assignment 1)

* You will always use orthonormal bases, which are formed by
pairwise orthogonal unit vectors :

2D 3D
uf| = |jv]| =1, uf| = |[v]] = [[w]] = 1,
u-v =0 u-v=v-w=w-u=_>_0

Right-handed if: W = U1 X V

Computer Graphics — Junjie Cao

Global vs local coordinate sys

» Canonical/global/world

¢ XYyZO

* never explicitly storea

* Frame of reference/local/object

* UVWD

o explicitly stored wrt global frame

Figure 2.21. There is always a master or “canonical” coordinate system with origin o and orthonor-
mal basis x, v, and z. This coordinate system 1s usually defined to be aligned to the global model and
is thus often called the “global™ or “world™ coordinate system. This origin and basis vectors are never
stored exphicitly. All other vectors and locations are stored with coordinates that relate them to the
global frame. The coordinate system associated with the plane are explicitly stored in terms of global
coordinates.

Computer Graphics — Junjie Cao

local frame stored in canonical frame

U= TyX 1+ Yuy T+ Zu2.
- A location implicitly includes an offset from canonical o\(j{gin
P =0+ TpX+ Ypy + 2pZ, NGy
store a vector a with respect to the u-v-w frame X T
- The result is already in canonical frame)

a = U0+ VaV + W, W.

* To get the u-v-w coordinates of a vector b stored in the canonical
COOI’dIﬂate up = U - b Vp = V - b Wy — W - b.

Computer Graphics — Junjie Cao

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 2

Computer Graphics — Junjie Cao

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

\Vatrices

Computer Graphics — Junjie Cao

Overview

o Matrices will allow us to conveniently represent and ally
transformations on vectors, such as translation, scaling and rotation

o Similarly to what we did for vectors, we will briefly overview their
pbasic operations

Computer Graphics — Junjie Cao

Determinants

 Think of a determinant as an operation between vectors.

abc]

L 4

Area of the parallelogram Volume of the parallelepiped
(positive since abc is a right-handed basis)

By Startswithj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/
Computer Graphics — Junjie Cao index.php?curid=29922624

M at r | C e S Eigen::MatrixXd A(2,2)

o | L11 L12
A matrix is an array of numeric elements
L2921 L29
sym | %11 12 n Y11 Yi2| |T11 T Y11 T12 T Y12
21 X22 Y21 Y22 T21 T+ Y21 T22 + Y22
aray)+ Baray)]
L11 L192 L1711 L19
Scalar Product Y * — J J
o1 T29 Yray1 YIao

haray)ry]

Computer Graphics — Junjie Cao

Iranspose

* The transpose of a matrix is a new matrix whose entries are reflectead
over the diagonal

g7 [1 2] 13 L2 1 3 5
|]_2 3 4 2 4 3 4 — |2 4 6

 [he transpose of a product is the product of the transposed, In
reverse order

(AB)" =BT AY

Computer Graphics — Junjie Cao

Matrix Product

» The entry i,j is given by A B3
multiplying the entries
on the I-th row of A with

B
the entries of the J-th . D, 2 | b, 5
column of B and 02 | bz fb,

summing up the results
III=@I i

Eigen::MatrixXd A(4,2);

——————————————

e |tis NOT commutative a“la“

(In general):

AB # BA ‘
2

L2
—>10
HEE

Computer Graphics — Junjie Cao

Dot product on each row

Computer Graphics — Junjie Cao

Nntultion

y = T1C1 + Z2C2 + I3Cg

Weighted sum of the columns

A.inverse() <— do not use this
to solve a linear system!

————

| NVEersSe M at I | X Eigen::Matride A(4,4);

ﬁ
!
|
|
|
!
]

————— T ——e——— ——

» The inverse of a matrix A is the matrix A ~!suchthat AA~! =T
1 0 O
where lis the identity matrix [= (O 1 (
0 0 1

* The inverse of a product is the product of the inverse in opposite order:

(AB)""=BA™"

Computer Graphics — Junjie Cao

Diagonal Matrices

Eigen::Vector3d v(1,2,3);

A = v.asDiagonall()

 [hey are zero everywhere except the diagonal;
a 0 0
D=0 b6 0
0 0 c

o Useful properties:

a1 0 0
D!'=|0 b1 0

Computer Graphics — Junjie Cao

Orthogonal Matrices

* An orthogonal matrix iIs a matrix where
e each column is a vector of length 1
 each column is orthogonal to all the others

o A useful property of orthogonal matrices that their inverse
corresponds to their transpose:

(R'R) =1I=(RR")

Computer Graphics — Junjie Cao

| Inear Systems

o \We will often encounter in this class linear systems with n linear
equations that depend on n variables.

he + 3y — 7z =4 5 3 =7 x
* FOr example: —3z + by + 122 =9 -3 5 12 | |y| =
Or — 2y — 2z — =3 _9 —2 2 1 L®

e Jo find x,y,z you have to “solve” the linear system. Do not use an
inverse, but rely on a direct solver:

Matrix3f A;

Vector3f b;

A < 5,3,-7, -=-3,5,12, 9,-2,-2;

b << 4, 9, -3;

cout << "Here is the matrix A:\n" << A << endl;
cout << "Here is the vector b:\n" << b << endl;
Vector3f x = A.colPivHouseholderQr().solve(b);

cout << "The solution is:\n" << x << endl;

Computer Graphics — Junjie Cao

https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html#a05afed751d3a7277951d1918468e0872

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 5

Computer Graphics — Junjie Cao

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

| Inear Transtformations

Computer Graphics — Junjie Cao

Basic idea: f transforms xto f(x)

Computer Graphics — Junjie Cao

And what is our favorite type of
transformation?

Computer Graphics — Junjie Cao

What can we do with linear transtormations”

 What did linear mean”
e f(U+V)="FUu)+ (V)
* f(au) = af(u)
 Cheap to compute
 Composition of linear transformations is linear
e [eads to uniform representation of transformations
* E.g., In graphics card (GPU) or graphics APIs

Computer Graphics — Junjie Cao 35

Linear transforms

CH |
u-—(u,u _
(11 2) a, . 4f(— Uia1 + Uran
N P a1
R U
C1
. Do you know...
. whatu, andu, are?
- what a;, and a, are?

Computer Graphics — Junjie Cao

Linear transforms

A ' an ' 4f (W) = uja; + uzay

d1

o
’
' i.
r '
|

C1
- u is a linear combination of ¢; and ¢,
- f(u) is that same linear combination of a; and a,
- a; and a, are f(e;) and f(e,)
- by knowing what ¢; and ¢, map to, you know how to map
the entire space!

Computer Graphics — Junjie Cao

2D Linear Transformations

 Each 2D linear map can be represented by a unigue 2x2 matrix

() = (¢ 5-()

o Concatenation of mappings corresponds to multiplication of matrices

LQ(Ll(X)) — LQ L1X [:LZ*U X 1]

o [inear transformations are very common in computer graphics!

Computer Graphics — Junjie Cao

Linear transforms

If a map can be expressed as

m

f(U) =Oi=1 U;a;

with fixed vectors a,, then itis linear

Computer Graphics — Junjie Cao

Let’s look at some transforms
that are important in graphics...

/

How do you formally tell a computer that this
cube should be squished and slanty? -

Computer Graphics — Junjie Cao

|_inear transformation gallery

* Nonuniform scale lsx O] lfB] _ [Swml
0 syl |y Sy Y

.o 0
0 0.8

A

|_inear transformation gallery
« Rotation [COSO — sin 9:| lx] _ lx cosf — ysin

sinff cosf | |y xrsinf + ycos6
[0.866 —0.5]

0.0 0.366

|

|_inear transformation gallery

e Reflection
—1 0
0 1

— can consider It a special case
of nonuniform scale

|_inear transformation gallery

e b L1
— can also bgi\d these 0 1] |y Y

8 rotat
nonuniform scales 1 0.5
0 1

Translation

* Simplest transformation: T(V) —v+u
* Inverse: T_l(v) =V —u

 Example of transforming circle

Computer Graphics — Junjie Cao 45

Is translation linear?

T (x)+T,(y)
Ty(x) o
b ol .o Tp{x+y)
X x+y."
b
b

No. Translation is affine.

Computer Graphics — Junjie Cao

Composing transformations

* Want to move an object, then move it some more
- p—T(p) = S(T'(p)) =(SoT)(p)
* We need to represent S o T (“S compose T”)

— and would like to use the same representation as for S and T

* Translation easy
- T'(p) =p+tur;S(p) =p+us

(SoT)(p)=p+ (ur + us)
* Translation by uT then by uS is translation by uT + uS

— commutative!

Computer Graphics — Junjie Cao 17

Composing transformations

* Linear transformations also straightforward

- T(p) = Mrp; S(p) = Msp
(SoT)(p) = MsMrp

* Transforming first by Mt then by M is the same as
transforming by MM~
— only sometimes commutative

— e.g. rotations & uniform scales

— e.g. non-uniform scales w/o rotation
— Note MiMy,or So T,is T first, then §

Computer Graphics — Junjie Cao 48

Combining linear with translation

* Need to use both in single framework

* Can represent arbitrary seq. as 1'(p) = Mp + u
- T(p) = Mrp+ur
- S(p) = Msp + us
- (SoT)(p)=Ms(Mrp+ ur) + us

— (MsM7)p + (Msug + us)
-eg S(7T'0))= S(ur)

* Transforming by M7 and ut, then by M¢ and ug, is the same as
transforming by McM+ and ug + Mcur

— This will work but Is a little awkward

Computer Graphics — Junjie Cao 49

HOMOQgeneous coorainates

* A trick for representing the foregoing more elegantly

* Extra component w for vectors, extra row/column for
matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra row and
column

a b 0| |x ax + by
c d 0| |yl = |cx+ dy
0 0 1] (1 1

Computer Graphics — Junjie Cao 50

HOMOQgeneous coorainates

* Represent translation using the extra column

1 0 ¢t |x x4+t
0 1 s| |yl = |y+s
0 0 1] |1 1

Computer Graphics — Junjie Cao

HOMOQgeneous coorainates

* Composition just works, by 3x3 matrix multiplication

Kl
- [(AfSM’T)p + (Msur + us)]
1

* This is exactly the same as carrying around M and u

— but cleaner
— and generalizes in useful ways as we'll see later

Computer Graphics — Junjie Cao 50

Affine transtformations

* The set of transformations we have been looking at is known
as the “affine” transformations

— straight lines preserved; parallel lines preservead
— ratios of lengths along lines preserved (midpoints preserved)

Computer Graphics — Junjie Cao 53

3D Affine transtormation gallery

Represent 3D transforms as 3x3 matrices and 3D-H transforms as 4x4 matrices

Scale:
3D 3D-H
- . S, 0 0 0
| 5 00 0 S, 0 ©
Se=0 8, 01 S=17 ¢ g g
L0 05, 0 0 0 1
Shear (in x, based on y,z position):
U od d 1 d, d. O Reflection
y " 0 1 0 0 ")
Hra= |0 1 0] Haa=|, , 1 0 01 (1) 8
0o 0 1 0 0 0 1 0 0 1
Translate:
3D-H
1 0 0 b,
|01 0 b,
To=10 0 1 b.
000 1]

Computer Graphics — Junjie Cao

A rotation in 2D is around a point

General Rotation Matrices

A rotation in 3D is around an axis

— so 3D rotation 1s wirt a line, not just a point
D

—a 3D space around a given point, not just |

— there are many more 3D rotations than 2

(f

\—

convention: positive

ﬁ

rotation 1s CCW
.

Computer Graphics — Junjie Cao

o @

2D

55

(

_ _

\

convention: positive
rotation is CCW
when axis vector Is
pointing at you

Culer angles

* An object can be oriented arbitrarily

* Euler angles: simply compose three coord. axis rotations

—egxthenythenz R(6,,0,,0.) = R.(0,)R,(0,)R:(0)
— "heading, attritude, bank”
(common for airplanes)

— "roll, prtch, yaw"
(common for vehicles)

— "pan, tilt, roll”
(common for cameras)

Computer Graphics — Junjie Cao 56

Culer angles N applications

an TIlt Roll &

gle

Center of
Gravity

Ishikawa Watanabe Labora

Pitch Axis

+ Pitch

Roll Axis .
+Yaw i_%
Yaw AXis §

+ Roll

Computer Graphics — Junjie Cao 57

Representing Rotations ip 3D: Euler Angles

View looking down - axis:

Rotation about x axis:

pu— -

l () 0
R,p= |0 cosf# —sin#
0 sin# cosé |

—

X coordinate Is unchanged by
rotation about x

)

Rotation about y axis:

" cosfl 0 sinf
R,s= 0 1 0
—sinfl 0 cos H-

—

Rotation about z axis:

cosf) —sinf 0
R.g= |sinf cosf 0O
() () |

X

Z coordinate Is unchanged by
rotation about z

Computer Graphics — Junjie Cao

'R)

(General affine transformations

* [he previous slides showed “canonical” examples of the types of
affine transtormations

o (Generally, transformations contain elements of multiple types
e Often define them as products of canonical transtorms

 sometimes work with their properties more directly

Computer Graphics — Junjie Cao 59

Composite affine transformations

Computer Graphics — Junjie Cao 80

Commutativity of Rotations—2D

e |n 2D, order of rotations doesn’'t matter:

g d
e
A‘ —

s

Same result! 2D rotations commute

rotate by 20°
—

rotate by 40°

Computer Graphics — Junjie Cao

Commutativity of Rotations—3D

e \What about in 3D? !

e IN-CLASS ACTIVITY: "

» Rotate 90°around Y, then 90°around Z, then .

90°around X &

» Rotate 90° around Z, then 90° around Y, then 90° E
around X

e (Was there any difference?)

- "}
=
-
A

CONCLUSION: bad things can happen if we’re not
careful about the order in which we apply rotations!

Computer Graphics — Junjie Cao

Composite affine transformations

* |n general not commutative: order matters!

rotate, then translate translate, then rotate

Computer Graphics — Junjie Cao 63

Composite affine transformations

* |n general not commutative: order matters!

\

rotate, then translate translate, then rotate

Computer Graphics — Junjie Cao 84

RIgIAd Motions

* A transform made up of only translation and rotation is a rigid
motion or a rigid body transformation

* The linear part is an orthonormal matrix

_|@ u
=10 1

* Inverse of orthonormal matrix is transpose

— 50 Inverse of rigid motion Is easy:

1 1
L [@T —QTu] [Q wu
it = 0 1 0 1

Computer Graphics — Junjie Cao 65

Composing to change axes

o \Want to rotate about a particular point
» could work out formulas directly...

 Know how to rotate about the origin

—1
* SO translate that point to the origin M — ¥4 RT

Computer Graphics — Junjie Cao

Transforming points and vectors

* Recall distinction points vs. vectors

— vectors are just offsets (differences between points)
— points have a location
— represented by vector offset from a fixed origin

* Points and vectors transform differently
— points respond to translation; vectors do not
v=p—qg
T'(x)=Mx+t
T'p—q)=Mp+t—(Mq-+t)
=M(p—q)+(t—t)=Mv

Computer Graphics — Junjie Cao 687

Transforming points and vectors

* Homogeneous coords. let us exclude translation
tw

= —just put O rather than | In the last place

! A M t][p] [Mp+t] [M t][v] [Mv
o' 1] |1 1 o' 1| |0 0

—_ —_ —_ —_—

— — — —_—

— and note that subtracting two points cancels the extra coordinate,
resulting In a vector!

* Preview: projective transformations

— what'’s really going on with this last coordinate!?

— think of RZ embedded in R3: all affine xfs. preserve z=1 plane

— could have other transforms; project back to z=|

Computer Graphics — Junjie Cao 68

Transforming normal vectors

* Transforming surface normals

— differences of points (and therefore tangents) transform OK
— normals do not; therefore use inverse transpose matrix

have: t n=t'n=0

want: Mt- Xn=t'M' ' Xn=0

soset X = (M?*)~!

then: Mt- Xn=t'MT(M")"ln=tTn=0

Computer Graphics — Junjie Cao 69

Transforming normal vectors

* Transforming surface normals

— differences of points (and therefore tangents) transtorm OK
— normals do not; therefore use inverse transpose matrix

\ [

C

have: t n=t'n=0

want: Mt- Xn=tIM'Xn=0

so set X = (M*1)~1

then: Mt- Xn=t'M' (M) n=tIn=0

Computer Graphics — Junjie Cao 70

Summary of basic transforms

Linear:
f(x+y)=f(x)+ f(y)
flax) = af(x)

Scale
Rotation
Reflection
Shear

Not linear:
Translation

Computer Graphics — Junjie Cao

Affine:

Composition of linear transform + translation
(all examples on previous two slides)
f(x)=g(x)+Db

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)
Preserve distance between points (preserves length)
fIx)—fly)l=|x—y

Translation
Rotation
Reflection

“Rigid body” transforms are Euclidean transforms that
also preserve “winding” (does not include reflection)

2D Geometric Transformations

/_m projective
translation O g
. Euclidcan

affine

Transform Object or Camera”

—T(-1,-1) —5(0.5,0.5) — R(45°) — 1(1,1)

~T(-1,-1) —

— T(1,1) — S(2,2) — R(-450°)

Computer Graphics — Junjie Cao Image Copyright: Mark Pauly

Affine change of coordinates

* Coordinate frame: point plus basis

* [nterpretation: transformation
changes representation of
point from one basis to another

* "Frame to canonical™ matrix has

frame In columns a1 a9 as -
u Vv
. . a a a or
e takes points represented in frame 5N 9 0 0
0 0 1 -
e expresents them in canonical basis
A
* €.0.[00[,[10],[0 1]
€2
* Seems backward but bears thinking about)| - | v
0 e

Computer Graphics — Junjie Cao 74

frame-to-canonical
T_, _ ,l”y (up,vp) e + u,u+ v,V.

© X 0 2.5x P =
m = 0+ IpX + .
The point p can be represented 1n terms of either coordinate system. p P yp P yp y
Lp 1 0 Ze| |y Ty Ty Te| |Up
Yp | — 0 1 we Yu — | Yu Yv Ye Up
1 0 0 1 0 1 1

Computer Graphics — Junjie Cao 75

Canonical-to-frame

Ty 1 0 Ze| 2w 2 O] [uy Tu Ty Tel| |Up
Yp | — 0 1 Ye Yu Yo 0 Up| = |Yu Yov Ye Up
1 0 0 1 0O 0 1 1 0 0 1 1

o |ja v
Puv =10 0

Computer Graphics — Junjie Cao 76

Affine change of coordinates

* When we move an object to the canonical frame to apply a
transformation, we are changing coordinates

— the transformation Is easy to express in object’'s frame
— so define It there and transform it

T, = FTpF !

— T, 1s the transformation expressed wrt. {e|, e)}

— TF s the transformation expressed in natural frame

— F 1s the frame-to-canonical matrix [u v p]

* This is a similarity transformation

Computer Graphics — Junjie Cao 77

Bullding general rotations

* Using elementary transforms you need three

— translate axis to pass through origin

— rotate about y to get into x-y plane

— rotate about z to align with x axis

* Alternative: construct frame and change coordinates

— choose p, u, v, w to be orthonormal frame with p and u matching
the rotation axis

— apply similarity transform T = F R (0) F-/

Computer Graphics — Junjie Cao 78

Coordinate frame summary

* Frame = point plus basis

* Frame matrix (frame-to-canonical) is

ju v p
r=l5 5 %

* Move points to and from frame by multiplying with F

_ _ 1
Pe = PP PFP =1 "Pe
* Move transformations using similarity transforms

T, =FTrF ' Tp=F 'T.F

Computer Graphics — Junjie Cao 79

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 6

Computer Graphics — Junjie Cao

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

