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Cube man Stretched out cube 
moved up

Squishy cube 
moved to the right

Slanty cube 
moved down and 

to the left

The original cube
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Transformations in Rigging
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Overview

• We will briefly overview the basic linear algebra concepts that we 
will need in the class 

• You will not be able to follow the next lectures without a clear 
understanding of this material

In this box, you will find 
references to Eigen
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Vectors
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Vectors
• A vector describes a direction and a length 

• Do not confuse it with a location, which represent a position 

• When you encode them in your program, they will both require 2 (or 3) numbers to be 
represented, but they are not the same object!

These two are identical! Vectors represent displacements. If you represent 
the displacement wrt the origin, then they encode a location.

Origin

Eigen::VectorXd
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Sum
Operator +
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Difference
Operator -
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Coordinates of a Vector 

a and b form a 2D basis

Operator []

(c1, c2) is coordinate of c
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Cartesian Coordinates of a Vector 

• x and y form a canonical, Cartesian 
basis
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Length
• The length of a vector is denoted as ||a|| 

• If the vector is represented in cartesian coordinates, then it is the L2 
norm of the vector: 

• A vector can be normalized, to change its length to 1, without 
affecting the direction:

a.norm()

CAREFUL: 
b.normalize() <— in place 

b.normalized() <— returns the 
normalized vector



Computer Graphics – Junjie Cao

Dot Product a.dot(b) 
a.transpose()*b

• The dot product is related to the length of 
vector and of the angle between them 

• If both are normalized, it is directly the cosine 
of the angle between them
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Dot Product - Projection

• The length of the projection of 
b onto a can be computed 
using the dot product
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Cross Product

• Defined only for 3D vectors 

• The resulting vector is perpendicular 
to both a and b, the direction 
depends on the right hand rule

• The magnitude is equal to the area 
of the parallelogram formed by a and 
b 

Eigen::Vector3d v(1, 2, 3);

Eigen::Vector3d w(4, 5, 6);

v.cross(w);
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Coordinate Systems

• You will often need to manipulate coordinate systems (i.e. for finding 
the position of the pixels in Assignment 1) 

• You will always use orthonormal bases, which are formed by 
pairwise orthogonal unit vectors :

2D 3D

Right-handed if:
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Global vs local coordinate sys
• Canonical/global/world 

• xyzo 

• never explicitly stored  

• Frame of reference/local/object 

• uvwp 

• explicitly stored wrt global frame 
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Global vs local coordinate sys
• local frame stored in canonical frame


• A location implicitly includes an offset from canonical origin 


• store a vector a with respect to the u-v-w frame

• The result is already in canonical frame


• To get the u-v-w coordinates of a vector b stored in the canonical 
coordinate
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References

Fundamentals of Computer Graphics, Fourth Edition  
4th Edition by Steve Marschner, Peter Shirley 

Chapter 2

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2
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Matrices
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Overview

• Matrices will allow us to conveniently represent and ally 
transformations on vectors, such as translation, scaling and rotation 

• Similarly to what we did for vectors, we will briefly overview their 
basic operations
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Determinants
• Think of a determinant as an operation between vectors.

Area of the parallelogram Volume of the parallelepiped  
(positive since abc is a right-handed basis)

By Startswithj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=29922624
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Matrices

• A matrix is an array of numeric elements

Sum

Scalar Product

A.array() + B.array()

Eigen::MatrixXd A(2,2)

A.array() * y
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Transpose
• The transpose of a matrix is a new matrix whose entries are reflected 

over the diagonal

B = A.transpose();      
A.transposeInPlace();

• The transpose of a product is the product of the transposed, in 
reverse order
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Matrix Product
• The entry i,j is given by 

multiplying the entries 
on the i-th row of A with 
the entries of the j-th 
column of B and 
summing up the results 

• It is NOT commutative 
(in general):

Eigen::MatrixXd A(4,2);

Eigen::MatrixXd B(2,3);

A*B;
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Intuition

Dot product on each row Weighted sum of the columns
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Inverse Matrix
• The inverse of a matrix      is the matrix           such that 

where I is the identity matrix 

• The inverse of a product is the product of the inverse in opposite order:

Eigen::MatrixXd A(4,4);

A.inverse() <— do not use this 
to solve a linear system!
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Diagonal Matrices
• They are zero everywhere except the diagonal:

• Useful properties:

Eigen::Vector3d v(1,2,3);


A = v.asDiagonal()
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Orthogonal Matrices

• An orthogonal matrix is a matrix where 

• each column is a vector of length 1 

• each column is orthogonal to all the others 

• A useful property of orthogonal matrices that their inverse 
corresponds to their transpose:



Computer Graphics – Junjie Cao

Linear Systems
• We will often encounter in this class linear systems with n linear 

equations that depend on n variables. 

• For example: 

• To find x,y,z you have to “solve” the linear system. Do not use an 
inverse, but rely on a direct solver: 

  Matrix3f A;
  Vector3f b;
  A << 5,3,-7,  -3,5,12,  9,-2,-2;
  b << 4, 9, -3;
  cout << "Here is the matrix A:\n" << A << endl;
  cout << "Here is the vector b:\n" << b << endl;
  Vector3f x = A.colPivHouseholderQr().solve(b);
  cout << "The solution is:\n" << x << endl;

https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html#a05afed751d3a7277951d1918468e0872
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References

Fundamentals of Computer Graphics, Fourth Edition  
4th Edition by Steve Marschner, Peter Shirley 

Chapter 5

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2
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Linear Transformations
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Basic idea: f transforms x to f(x)

x

f(x)
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And what is our favorite type of 
transformation?
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What can we do with linear transformations?
• What did linear mean? 

• f(u + v) = f(u) + f(v) 

• f(au) = af(u) 

• Cheap to compute 

• Composition of linear transformations is linear 

• Leads to uniform representation of transformations 

• E.g., in graphics card (GPU) or graphics APIs

 35
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Linear transforms

                         e1

▪ Do you know… 
▪ what u1 and 𝑢2 are? 
▪ what a1 and a2 are?

e2
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Linear transforms

e1

- 𝒖 is a linear combination of e1 and e2

- f(𝒖) is that same linear combination of a1 and a2

- a1 and a2 are f(e1) and 𝐟(e2)
- by knowing what e1 and e2 map to, you know how to map 

the entire space!

e2
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2D Linear Transformations
• Each 2D linear map can be represented by a unique 2×2 matrix 

• Concatenation of mappings corresponds to multiplication of matrices 

• Linear transformations are very common in computer graphics!

L2 * L1 * x;
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Linear transforms

If a map can be expressed as

f(u) =σ 𝑖=1 𝑢𝑖a𝑖

with fixed vectors a𝑖, then it is linear

𝑚
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Let’s look at some transforms 
that are important in graphics…

How do you formally tell a computer that this 
cube should be squished and slanty?
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Linear transformation gallery 

 41
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Linear transformation gallery 

 42
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Linear transformation gallery 

 43
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Linear transformation gallery 

 44
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Translation

 45
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Is translation linear?

No. Translation is affine.
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Composing transformations 

 47
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Composing transformations 

 48
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Combining linear with translation 

 49
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Homogeneous coordinates 

 50
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Homogeneous coordinates 

 51



Computer Graphics – Junjie Cao

Homogeneous coordinates 

 52
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Affine transformations 

 53
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3D Affine transformation gallery 

Reflection 
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General Rotation Matrices 

 55
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Euler angles 

 56
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Euler angles in applications 

 57
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Representing Rotations in 3D: Euler Angles
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General affine transformations 

• The previous slides showed “canonical” examples of the types of 
affine transformations  

• Generally, transformations contain elements of multiple types  

• often define them as products of canonical transforms 

• sometimes work with their properties more directly  

 59
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Composite affine transformations 

 60
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Commutativity of Rotations—2D
• In 2D, order of rotations doesn’t matter:

rotate by 40° rotate by 20°

rotate by 20° rotate by 40°

Same result! 2D rotations commute
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X
Z

Y

Commutativity of Rotations—3D
• What about in 3D? 
• IN-CLASS ACTIVITY: 

• Rotate 90°around Y, then 90°around Z, then 
90°around X 

• Rotate 90° around Z, then 90° around Y, then 90° 
around X 

• (Was there any difference?)

CONCLUSION: bad things can happen if we’re not
careful about the order in which we apply rotations!
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Composite affine transformations 

• In general not commutative: order matters!  

 63
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Composite affine transformations 

• In general not commutative: order matters!  

 64
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Rigid motions 

 65
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Composing to change axes 
• Want to rotate about a particular point  

• could work out formulas directly...  

• Know how to rotate about the origin  

• so translate that point to the origin  

 66
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Transforming points and vectors 

 67
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Transforming points and vectors 

 68
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Transforming normal vectors 

 69
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Transforming normal vectors 

 70



Computer Graphics – Junjie Cao

Summary of basic transforms
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2D Geometric Transformations
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Transform Object or Camera?

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o) T(-1,-1)

Image Copyright: Mark Pauly
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Affine change of coordinates 
• Coordinate frame: point plus basis  

• Interpretation: transformation  
 changes representation of 
 point from one basis to another  

• “Frame to canonical” matrix has  
 frame in columns  

• takes points represented in frame 

• expresents them in canonical basis 

• e.g.[0 0],[1 0],[0 1]  

• Seems backward but bears thinking about  

 74
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frame-to-canonical

 75
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Canonical-to-frame

 76
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Affine change of coordinates 

 77



Computer Graphics – Junjie Cao

Building general rotations 

 78
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Coordinate frame summary 

 79
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4th Edition by Steve Marschner, Peter Shirley 
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