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Transformations in Rigging

are the articulation
points for the mode
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In this box, you will fina
references to Eigen

Overview

 We will brietly overview the basic linear algebra concepts that we
will need in the class

e You Will not be able to follow the next lectures without a clear
understanding of this material
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Vectors
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VeClOrs ]

* A vector describes a direction and a length

* Do not confuse it with a location, which represent a position

* When you encode them in your program, they will both require 2 (or 3) numbers to be
represented, but they are not the same object!

d

These two are identical! Vectors repreéent displacements. If you represent

the displacement wrt the origin, then they encode a location.
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Difference

I Operator - I

/r
/
b—a
b—-—a=—-a+Db

Computer Graphics — Junjie Cao



e e

Operator |[]
c =cia-+ cob c=a—+2b

(c1, c2) Is coordinate of ¢

2b

a and b form a 2D basis
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Cartesian Coordinates of a Vector

C =C1X T+ Cy

-+ X and y form a canonical, Cartesian
basis

>

X
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_engtn

» The length of a vector is denoted as ||a|| a.norm()

e |f the vector Is represented in cartesian coordinates, then it is the L2

norm of the vector:
— 2 2 x
+ A vector can be normalized, to change its length to 1, without =
affecting the direction: N _,
Y CAREFUL.: |
A . .
— b.normalize() <— in place
||a|| b.normalized() <— returns the

normalized vector

Computer Graphics — Junjie Cao



a-b =||a|| ||b||cosé
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Dot Product

]

———

H

d

a.dot(b)
transpose

* The dot product is related to the length of
vector and of the angle between them

*

D

| )"0 |

e |f both are normalized, it is directly the cosine

of the angle between them

—




ot Product - Projection

* [he length of the projection of
b onto a can be computed
using the dot product

b-a

|al]

b —a=||b|/cosf =
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Cross Product peesaaezs

Eigen::Vector3d w(4, 5, 6);

~——

V.Cross(w);
, a x b| = [[a]| [[b]|sinf

e Defined only for 3D vectors
* [he resulting vector Is perpendicular 4

to both a and b, the direction

depends on the right hand rule la x b|

b

» The magnitude is equal to the area N~

of the parallelogram formed by a and aN, .

b M »
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Coordinate Systems

* You will often need to manipulate coordinate systems (i.e. for finding
the position of the pixels in Assignment 1)

* You will always use orthonormal bases, which are formed by
pairwise orthogonal unit vectors :

2D 3D
uf| = |jv]| =1, uf| = |[v]] = [[w]] = 1,
u-v =0 u-v=v-w=w-u=_>_0

Right-handed if: W = U1 X V
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Global vs local coordinate sys

» Canonical/global/world

¢ XYyZO

* never explicitly storea

* Frame of reference/local/object

* UVWD

o explicitly stored wrt global frame

Figure 2.21. There is always a master or “canonical” coordinate system with origin o and orthonor-
mal basis x, v, and z. This coordinate system 1s usually defined to be aligned to the global model and
is thus often called the “global™ or “world™ coordinate system. This origin and basis vectors are never
stored exphicitly. All other vectors and locations are stored with coordinates that relate them to the
global frame. The coordinate system associated with the plane are explicitly stored in terms of global
coordinates.
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local frame stored in canonical frame

U= TyX 1+ Yuy T+ Zu2.
- A location implicitly includes an offset from canonical o\(j{gin
P =0+ TpX+ Ypy + 2pZ, NGy
store a vector a with respect to the u-v-w frame X T
- The result is already in canonical frame )

a = U0+ VaV + W, W.

* To get the u-v-w coordinates of a vector b stored in the canonical
COOI’dIﬂate up = U - b Vp = V - b Wy — W - b.
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Overview

o Matrices will allow us to conveniently represent and ally
transformations on vectors, such as translation, scaling and rotation

o Similarly to what we did for vectors, we will briefly overview their
pbasic operations
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Determinants

 Think of a determinant as an operation between vectors.

abc]

L 4

Area of the parallelogram Volume of the parallelepiped
(positive since abc is a right-handed basis)

By Startswithj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/
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M at r | C e S Eigen::MatrixXd A(2,2)

o | L11 L12
A matrix is an array of numeric elements
L2921 L29
sym | %11 12 n Y11 Yi2| |T11 T Y11 T12 T Y12
21 X22 Y21 Y22 T21 T+ Y21 T22 + Y22
aray)+ Baray) ]
L11 L192 L1711 L19
Scalar Product Y * — J J
o1 T29 Yray1 YIao

haray)ry ]
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Iranspose

* The transpose of a matrix is a new matrix whose entries are reflectead
over the diagonal

g7 [ 1 2] 13 L2 1 3 5
| ]_2 3 4 2 4 3 4 — |2 4 6

 [he transpose of a product is the product of the transposed, In
reverse order

(AB)" =BT AY
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Matrix Product

» The entry i,j is given by A B3
multiplying the entries
on the I-th row of A with

B
the entries of the J-th . D, 2 | b, 5
column of B and 02 | bz fb,

summing up the results
III=@I i

Eigen::MatrixXd A(4,2);

——————————————

e |tis NOT commutative a“la“

(In general):

AB # BA ‘
2

L2
—>10
HEE
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Dot product on each row
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Nntultion

y = T1C1 + Z2C2 + I3Cg

Weighted sum of the columns



A.inverse() <— do not use this
to solve a linear system!

————

| NVEersSe M at I | X Eigen::Matride A(4,4);

ﬁ
!
|
|
|
!
]

————— T ——e——— ——

» The inverse of a matrix A is the matrix A ~!suchthat AA~! =T
1 0 O
where lis the identity matrix [ = (O 1 (
0 0 1

* The inverse of a product is the product of the inverse in opposite order:

(AB)""=BA™"
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Diagonal Matrices

Eigen::Vector3d v(1,2,3);

A = v.asDiagonall()

 [hey are zero everywhere except the diagonal;
a 0 0
D=0 b6 0
0 0 c

o Useful properties:

a1 0 0
D!'=|0 b1 0
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Orthogonal Matrices

* An orthogonal matrix iIs a matrix where
e each column is a vector of length 1
 each column is orthogonal to all the others

o A useful property of orthogonal matrices that their inverse
corresponds to their transpose:

(R'R) =1I=(RR")
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| Inear Systems

o \We will often encounter in this class linear systems with n linear
equations that depend on n variables.

he + 3y — 7z =4 5 3 =7 x
* FOr example: —3z + by + 122 =9 -3 5 12 | |y| =
Or — 2y — 2z — =3 _9 —2 2 1 L®

e Jo find x,y,z you have to “solve” the linear system. Do not use an
inverse, but rely on a direct solver:

Matrix3f A;

Vector3f b;

A < 5,3,-7, -=-3,5,12, 9,-2,-2;

b << 4, 9, -3;

cout << "Here is the matrix A:\n" << A << endl;
cout << "Here is the vector b:\n" << b << endl;
Vector3f x = A.colPivHouseholderQr().solve(b);

cout << "The solution is:\n" << x << endl;
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Basic idea: f transforms xto f(x)
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And what is our favorite type of
transformation?
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What can we do with linear transtormations”

 What did linear mean”
e f(U+V)="FUu)+ (V)
* f(au) = af(u)
 Cheap to compute
 Composition of linear transformations is linear
e [ eads to uniform representation of transformations
* E.g., In graphics card (GPU) or graphics APIs
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Linear transforms

CH |
u-—(u,u _
( 11 2) a, . 4f( — Uia1 + Uran
N P a1
R U
C1
. Do you know...
. whatu, andu, are?
- what a;, and a, are?
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Linear transforms

A ' an ' 4f (W) = uja; + uzay

d1

o
’
' i.
r '
|

C1
- u is a linear combination of ¢; and ¢,
- f(u) is that same linear combination of a; and a,
- a; and a, are f(e;) and f(e,)
- by knowing what ¢; and ¢, map to, you know how to map
the entire space!
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2D Linear Transformations

 Each 2D linear map can be represented by a unigue 2x2 matrix

() = (¢ 5-()

o Concatenation of mappings corresponds to multiplication of matrices

LQ(Ll(X)) — LQ L1X [:LZ*U X 1]

o [inear transformations are very common in computer graphics!
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Linear transforms

If a map can be expressed as

m

f(U) =Oi=1 U;a;

with fixed vectors a,, then itis linear
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Let’s look at some transforms
that are important in graphics...

/

How do you formally tell a computer that this
cube should be squished and slanty? -
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|_inear transformation gallery

* Nonuniform scale lsx O] lfB] _ [Swml
0 syl |y Sy Y

.o 0
0 0.8

A




|_inear transformation gallery
« Rotation [COSO — sin 9:| lx] _ lx cosf — ysin

sinff  cosf | |y xrsinf + ycos6
[0.866 —0.5]

0.0 0.366

|



|_inear transformation gallery

e Reflection
—1 0
0 1

— can consider It a special case
of nonuniform scale




|_inear transformation gallery

e b L1
— can also bgi\d these 0 1] |y Y

8 rotat
nonuniform scales 1 0.5
0 1




Translation

* Simplest transformation: T(V) —v+u
* Inverse: T_l(v) =V —u

 Example of transforming circle
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Is translation linear?

T (x)+T,(y)
Ty(x) o
b ol .o Tp{x+y)
X x+y."
b
b

No. Translation is affine.
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Composing transformations

* Want to move an object, then move it some more
- p—T(p) = S(T'(p)) =(SoT)(p)
* We need to represent S o T (“S compose T”)

— and would like to use the same representation as for S and T

* Translation easy
- T'(p) =p+tur;S(p) =p+us

(SoT)(p)=p+ (ur + us)
* Translation by uT then by uS is translation by uT + uS

— commutative!
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Composing transformations

* Linear transformations also straightforward

- T(p) = Mrp; S(p) = Msp
(SoT)(p) = MsMrp

* Transforming first by Mt then by M is the same as
transforming by MM~
— only sometimes commutative

— e.g. rotations & uniform scales

— e.g. non-uniform scales w/o rotation
— Note MiMy,or So T,is T first, then §
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Combining linear with translation

* Need to use both in single framework

* Can represent arbitrary seq. as 1'(p) = Mp + u
- T(p) = Mrp+ur
- S(p) = Msp + us
- (SoT)(p)=Ms(Mrp+ ur) + us

— (MsM7)p + (Msug + us)
-eg S(7T'0))= S(ur)

* Transforming by M7 and ut, then by M¢ and ug, is the same as
transforming by McM+ and ug + Mcur

— This will work but Is a little awkward
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HOMOQgeneous coorainates

* A trick for representing the foregoing more elegantly

* Extra component w for vectors, extra row/column for
matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra row and
column

a b 0| |x ax + by
c d 0| |yl = |cx+ dy
0 0 1] (1 1
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HOMOQgeneous coorainates

* Represent translation using the extra column

1 0 ¢t |x x4+t
0 1 s| |yl = |y+s
0 0 1] |1 1
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HOMOQgeneous coorainates

* Composition just works, by 3x3 matrix multiplication

Kl
- [(AfSM’T)p + (Msur + us)]
1

* This is exactly the same as carrying around M and u

— but cleaner
— and generalizes in useful ways as we'll see later
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Affine transtformations

* The set of transformations we have been looking at is known
as the “affine” transformations

— straight lines preserved; parallel lines preservead
— ratios of lengths along lines preserved (midpoints preserved)
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3D Affine transtormation gallery

Represent 3D transforms as 3x3 matrices and 3D-H transforms as 4x4 matrices

Scale:
3D 3D-H
- . S, 0 0 0
| 5 00 0 S, 0 ©
Se=0 8, 01 S=17 ¢ g g
L0 05, 0 0 0 1
Shear (in x, based on y,z position):
U od d 1 d, d. O Reflection
y " 0 1 0 0 " )
Hra= |0 1 0] Haa=|, , 1 0 01 (1) 8
0o 0 1 0 0 0 1 0 0 1
Translate:
3D-H
1 0 0 b,
|01 0 b,
To=10 0 1 b.
000 1]
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A rotation in 2D is around a point

General Rotation Matrices

A rotation in 3D is around an axis

— so 3D rotation 1s wirt a line, not just a point
D

—a 3D space around a given point, not just |

— there are many more 3D rotations than 2

(f

\—

convention: positive

ﬁ

rotation 1s CCW
.
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55

(

\_ _

\

convention: positive
rotation is CCW
when axis vector Is
pointing at you




Culer angles

* An object can be oriented arbitrarily

* Euler angles: simply compose three coord. axis rotations

—egxthenythenz R(6,,0,,0.) = R.(0,)R,(0,)R:(0)
— "heading, attritude, bank”
(common for airplanes)

— "roll, prtch, yaw"
(common for vehicles)

— "pan, tilt, roll”
(common for cameras)
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Culer angles N applications

an TIlt Roll &

gle

Center of
Gravity

Ishikawa Watanabe Labora

Pitch Axis

+ Pitch

Roll Axis .
+Yaw i_%
Yaw AXis §

+ Roll
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Representing Rotations ip 3D: Euler Angles

View looking down - axis:

Rotation about x axis:

pu— -

l () 0
R,p= |0 cosf# —sin#
0 sin# cosé |

—

X coordinate Is unchanged by
rotation about x

)

Rotation about y axis:

" cosfl 0 sinf
R,s= 0 1 0
—sinfl 0 cos H-

—

Rotation about z axis:

cosf) —sinf 0
R.g= |sinf cosf 0O
() () |

X

Z coordinate Is unchanged by
rotation about z
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(General affine transformations

* [he previous slides showed “canonical” examples of the types of
affine transtormations

o (Generally, transformations contain elements of multiple types
e Often define them as products of canonical transtorms

 sometimes work with their properties more directly

Computer Graphics — Junjie Cao 59



Composite affine transformations
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Commutativity of Rotations—2D

e |n 2D, order of rotations doesn’'t matter:

g d
e
A‘ —

s

Same result! 2D rotations commute

rotate by 20°
—

rotate by 40°
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Commutativity of Rotations—3D

e \What about in 3D? !

e IN-CLASS ACTIVITY: "

» Rotate 90°around Y, then 90°around Z, then .

90°around X &

» Rotate 90° around Z, then 90° around Y, then 90° E
around X

e (Was there any difference?)

- "}
=
-
A

CONCLUSION: bad things can happen if we’re not
careful about the order in which we apply rotations!
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Composite affine transformations

* |n general not commutative: order matters!

rotate, then translate translate, then rotate
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Composite affine transformations

* |n general not commutative: order matters!

\

rotate, then translate translate, then rotate
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RIgIAd Motions

* A transform made up of only translation and rotation is a rigid
motion or a rigid body transformation

* The linear part is an orthonormal matrix

_|@ u
=10 1

* Inverse of orthonormal matrix is transpose

— 50 Inverse of rigid motion Is easy:

1 1
L [@T —QTu] [Q wu
it = 0 1 0 1

Computer Graphics — Junjie Cao 65



Composing to change axes

o \Want to rotate about a particular point
» could work out formulas directly...

 Know how to rotate about the origin

—1
* SO translate that point to the origin M — ¥4 RT
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Transforming points and vectors

* Recall distinction points vs. vectors

— vectors are just offsets (differences between points)
— points have a location
— represented by vector offset from a fixed origin

* Points and vectors transform differently
— points respond to translation; vectors do not
v=p—qg
T'(x)=Mx+t
T'p—q)=Mp+t—(Mq-+t)
=M(p—q)+(t—t)=Mv
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Transforming points and vectors

* Homogeneous coords. let us exclude translation
tw

= —just put O rather than | In the last place

! A M t][p]  [Mp+t] [M t][v] [Mv
o' 1] |1 1 o' 1| |0 0

—_ —_ —_ —_—

— — — —_—

— and note that subtracting two points cancels the extra coordinate,
resulting In a vector!

* Preview: projective transformations

— what'’s really going on with this last coordinate!?

— think of RZ embedded in R3: all affine xfs. preserve z=1 plane

— could have other transforms; project back to z=|
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Transforming normal vectors

* Transforming surface normals

— differences of points (and therefore tangents) transform OK
— normals do not; therefore use inverse transpose matrix

have: t n=t'n=0

want: Mt- Xn=t'M' ' Xn=0

soset X = (M?*)~!

then: Mt- Xn=t'MT(M")"ln=tTn=0
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Transforming normal vectors

* Transforming surface normals

— differences of points (and therefore tangents) transtorm OK
— normals do not; therefore use inverse transpose matrix

\ [

C

have: t n=t'n=0

want: Mt- Xn=tIM'Xn=0

so set X = (M*1)~1

then: Mt- Xn=t'M' (M) n=tIn=0
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Summary of basic transforms

Linear:
f(x+y)=f(x)+ f(y)
flax) = af(x)

Scale
Rotation
Reflection
Shear

Not linear:
Translation

Computer Graphics — Junjie Cao

Affine:

Composition of linear transform + translation
(all examples on previous two slides)
f(x)=g(x)+Db

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)
Preserve distance between points (preserves length)
fIx)—fly)l=|x—y

Translation
Rotation
Reflection

“Rigid body” transforms are Euclidean transforms that
also preserve “winding” (does not include reflection)



2D Geometric Transformations

/_m projective
translation O g
. Euclidcan

affine




Transform Object or Camera”

—T(-1,-1) —5(0.5,0.5) — R(45°) — 1(1,1)

~T(-1,-1) —

— T(1,1) — S(2,2) — R(-450°)

Computer Graphics — Junjie Cao Image Copyright: Mark Pauly




Affine change of coordinates

* Coordinate frame: point plus basis

* [nterpretation: transformation
changes representation of
point from one basis to another

* "Frame to canonical™ matrix has

frame In columns a1 a9 as -
u Vv
. . a a a or
e takes points represented in frame 5N 9 0 0
0 0 1 -
e expresents them in canonical basis
A
* €.0.[00[,[10],[0 1]
€2
* Seems backward but bears thinking about )| - | v
0 e
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frame-to-canonical
T_, _ ,l”y (up,vp) e + u,u+ v,V.

© X 0 2.5x P =
m = 0+ IpX + .
The point p can be represented 1n terms of either coordinate system. p P yp P yp y
Lp 1 0 Ze| |y Ty Ty Te| |Up
Yp | — 0 1 we Yu — | Yu Yv Ye Up
1 0 0 1 0 1 1
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Canonical-to-frame

Ty 1 0 Ze| 2w 2 O] [uy Tu Ty Tel| |Up
Yp | — 0 1 Ye Yu Yo 0 Up| = |Yu Yov Ye Up
1 0 0 1 0O 0 1 1 0 0 1 1

o |ja v
Puv =10 0
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Affine change of coordinates

* When we move an object to the canonical frame to apply a
transformation, we are changing coordinates

— the transformation Is easy to express in object’'s frame
— so define It there and transform it

T, = FTpF !

— T, 1s the transformation expressed wrt. {e|, e)}

— TF s the transformation expressed in natural frame

— F 1s the frame-to-canonical matrix [u v p]

* This is a similarity transformation
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Bullding general rotations

* Using elementary transforms you need three

— translate axis to pass through origin

— rotate about y to get into x-y plane

— rotate about z to align with x axis

* Alternative: construct frame and change coordinates

— choose p, u, v, w to be orthonormal frame with p and u matching
the rotation axis

— apply similarity transform T = F R (0 ) F-/
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Coordinate frame summary

* Frame = point plus basis

* Frame matrix (frame-to-canonical) is

ju v p
r=l5 5 %

* Move points to and from frame by multiplying with F

_ _ 1
Pe = PP PFP =1 "Pe
* Move transformations using similarity transforms

T, =FTrF ' Tp=F 'T.F
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