Computer Graphics

- Rasterization

Junjie Cao @ DLUT
Spring 2019
http://[jcao.qgithub.io/ComputerGraphics/

Computer Graphics — Junjie Cao Pleasure may come from illusion, but happiness can come only of reality.

http://jjcao.github.io/ComputerGraphics/

2D Canvas

(1.0, 1.0)

AN

(width-1, height-1)

\

(-1.0, -1.0)

Computer Graphics — Junjie Cao

canvas

(0, 0)

pixel grid

I'he grapnics pipeline
The 2nrd major approach to rendering

Image-order rendering: simpler, flexible, (usually) more execution time
Object-order rendering: efficiency

The standard approach to object-order graphics. Many versions exist
software, e.g. Pixar's REYES architecture, used in film production
many options for quality and flexibility
hardware, e.g. graphics cards in PCs, for game, visualization, Ul
amazing performance: millions of triangles per frame

We’ll focus on an abstract version of hardware pipeline

“Pipeline” because of the many stages
very parallelizable

leads to remarkable performance of graphics cards (many times the flops of
the CPU at ~1/5 the clock speed)

Computer Graphics — Junjie Cao 3

Application R

I'he grapnics pipeline

Command Stream

— Operations to geometry, matrix
Transtormed Geometry transformations => screen coords
Fragggents L Operations to fragments, HSR

The rasterizer breaks each primitive into a number of
fragments, one for each pixel covered by the

Framebuffer Image - primitive.

various fragments corresponding to each pixel are
combined in the fragment blending stage

Display

Computer Graphics — Junjie Cao A

Primitives

e Points
e LIne segments
- and chains of connected line segments
e [riangles
 And that's all!
- Curves”? Approximate them with chains of line segments
- Polygons”? Break them up into triangles
- Curved surfaces”? Approximate them with triangles
e [rend over the decades: toward minimal primitives
- simple, unitorm, repetitive: good for parallelism

Computer Graphics — Junjie Cao 5

Rasterization

e |nput: primitives

» QOutput: fragments with attributes per pixel. |{Fragments_i}| = |objects
covered the pixel|

- First job: enumerate the pixels covered by a primitive

e simple, aliased definition: pixels whose centers tall inside
- Second job: Interpolate attributes across the primitive

e e.9. colors computed at vertices — e.g. normals at vertices

e ©.Q. texture coordinates

Computer Graphics — Junjie Cao 6

lowaras the Ildeal Line

 \WWe can only do a discrete approximation

e [[luminate pixels as close to the true path as possible, consider bi-
level display only

- Pixels are either lit or not lit

(}(D' .:l'.D) | P [.
e® An 'Ideal line

8
el
X ’.\...\ (1, w1)

A discrete approximation e

Computer Graphics — Junjie Cao

Applications

Hello Mbed Drawbot

* Highly efticient

 Widely used

/ AngThigh

- Robot

Hypotenuse

* Path planning

AngShm

* Trajectory Generation

- AngAnkle
Afy

End-effector point
Computer Graphics — Junjie Cao

What Is an /deal line

 Must appear straight and continuous

- Only possible axis-aligned and 45° lines
* Must interpolate both defining end points

* Must be efficient, drawn quickly

- Lots of them are required!!!

Computer Graphics — Junjie Cao

implicit Geometry Representation

* Define a curve as zero set of 2D implicit function
- F(x,y) =0 — on curve
- F(x,y) < 0 — Inside curve
- F(x,y) > 0 — outside curve

 Example: Circle with center (cy, ¢,) and radius r

F(z,y)=(z—)"+ (y—cy)° —r°

Computer Graphics — Junjie Cao

Implicit Rasterization

for all pixels (i,73)
(X,y) = map to canvas (1,7])

(1.0, 1.0) (width-1, height-1)

1f F(x,y) < O \ \.

set pixel (i1,], color) ‘ i

(1.0, -1.0) canvas (0, 0) pixel grid

Computer Graphics — Junjie Cao

Barycentric Interpolation

* Barycentric coordinates:

- p=oa+PBb+yc wth a+pB+y=1
- Unigue for non-collinear a,b,c
- Ratio of triangle areas

- a(p), B(p), v(p) are linear functions

Computer Graphics — Junjie Cao

Barycentric Interpolation

* Barycentric coordinates:
p=aca+Bb+yc wth a+pB+y=1

Unique for non-collinear a,b,c

Ratio of triangle areas B
a(p), B(p), v(p) are linear functions A |
Gives inside/outside information Per-vertex Per—plxe\

Use barycentric coordinates to interpolate vertex normals
(or other data, e.g. colors)

nP) = a-n(A)+5-nB)+v n(C)

Interpolates positions

Evaluate color on vertices, and normals,
then interpolates it then evaluate color on
each pixel

Computer Graphics — Junjie Cao

ITriangle Rasterization

e Fach triangle Is represented as three 2D points
(X0, Yo), (X1, Y1), (X2, y2)

e Rasterization using barycentric coordinates

for all y do

for all x do

compute (a,f,y) for (x,y)
if (« €[0,1]and p&[0,1] and y €[0,1]

set_pixel (x,y)

Computer Graphics — Junjie Cao

Rasterizing lines

* Define line as a rectangle
e Specity by two endpoints

* Approximate rectangle by
drawing all pixels whose centers

fall within the line

e Problem: sometimes turns on
adjacent pixels

Computer Graphics — Junjie Cao 15

Rasterizing lines

* Define line as a rectangle
e Specity by two endpoints

* Approximate rectangle by
drawing all pixels whose centers

fall within the line

e Problem: sometimes turns on
adjacent pixels

Computer Graphics — Junjie Cao 16

Point sampling In
action

Computer Graphics — Junjie Cao

midpoint alg.

e Point sampling unit width rectangle
leads to uneven line width

* Define line width parallel to pixel
grid

e [hatis, turn on the single nearest
pixel In each column

e Note that 450 [ines are now thinner

Computer Graphics — Junjie Cao 18

midpoint alg.

e Point sampling unit width rectangle
leads to uneven line width

* Define line width parallel to pixel
grid

e [hatis, turn on the single nearest
pixel In each column

e Note that 450 [ines are now thinner

Computer Graphics — Junjie Cao 19

i
i

i Midpoint algorithm
" IN action

II

Computer Graphics — Junjie Cao

History

 Bresenham's line algorithm is named after Jack
—lton Bresenham who developed it in 1962 at [BM.

 The Calcomp 565 drum plotter, introduced in 1959,
was one of the first computer graphics output

devices sola.
* Later extended to Bresenham IS C/'I’C/e Closeup of Calcomp plotter right side, showing controls
a/QOf/fhm oOr midDOint CirC\e a\gori’[hm_ for manually moving the drum. Similar controls on the left

move the pen carriage.

Computer Graphics — Junjie Cao

https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/International_Business_Machines
https://en.wikipedia.org/wiki/Calcomp
https://en.wikipedia.org/wiki/Plotter
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Midpoint_circle_algorithm

Algorithm for computer control of a digital

plotter
e 1962 by Jack Elton Bresenham

Ly
i ,/
: o _
-
-/ 7 i
| | M/ T
/ Z —
-
-~ ’
MOTTER /m m_!m*—wl : _:-H
Q / “. /’ PATH L ! ‘ I! F_ ﬂ
' - 1 T
Q ’/ . ! —
- ! \ ;
-
| !
D, R

Comparison of r and g can be implemented by comparing hypotenuse since the two triangles are
similar.
Computation of distance of the hypotenuse is simpler, see next page.

Computer Graphics — Junjie Cao

https://en.wikipedia.org/wiki/Jack_Elton_Bresenham

Algorithms for drawing lines

- line equation:
y=b+mx

- Simple algorithm: evaluate line equation per
column

« W.l.o.g. X0 < x1;
O<m<

for x = cell(x0) to floor(x1)
v = b + m*x 0 + 2 3 4 5 6 7 8 9 10 H 12
output(x, round(y))

O - NN W A " 0 N O VW

y=191+037x

Computer Graphics — Junjie Cao 213

Optimizing line drawing

9
 Multiplying and rounding Is slow j
* At each pixel the only options are :

E and Nk :
e d=m(x+1)+b-y T
e d> 0.5 decides between T ot 234546764k
£ and NE

Computer Graphics — Junjie Cao o4

Optimizing line drawing

e d=m(x+1)+ b-y

e [fd> 0.5 .
- Y1 =y+1 4 _id__
- dl=mx+1+1) + b— y-1 3
=d+m-1) d+=m
e d<0.5 I
- yl=y :
- dl=mx+1+1)+ b-y ! I\CI)E 5
=d+m I =
* Do that with addition — (Xy)

* Known as
‘DDA" (digital differential analyzer)

Computer Graphics — Junjie Cao o5

Mid-Point

X = ceil(x0)

y = round(m*x + D)

d=m*(x+1)+b-vy

while x < floor(x1)
fd>0.5

y +=1

d—=
X +=1
d+=m

output(x, y)

Computer Graphics — Junjie Cao

=> Bresenham’s line alg.

* Still have a “float” operation in calculation of “d”

* [f known 2 endpoints (x0, y0O), (xn, yn), draw line
=> Ay=yn-y(, Ax=xn-x() are integers

* Lets create a new decision operator by multiplying
2Ax (recall m=Ay/Ax)

20

Bresenham line algorithm

e d=mx+1)+b-vy e 2dAx = 2Ay(x +1) + 2Ax(b - y)
e [fd>0.5 o |t 2ZdAx > Ax
- Y1 =y+1 - Y1 =y+1
- dl=mx+1+1) + b— y-1 - 2071Ax = 2Ay (x +1+1) + 2Ax(b — y-1)
=d+m-1 . = 2dAx + 2Ay — 2Ax
e d <05 e d <05
- yl=y -yl =y
- dl=mx+1+1)+ b-vy - 2d1Ax =m(x+1+1) + b—Vy

=d+m - = 2d Ax + 2Ay

Computer Graphics — Junjie Cao o7

Bresen

X = ceil(x0)
vy = round(m*x + b)
d=m*(x+1)+b-vy

while x < floor(x1)
fd>0.5

YV +=1

d—=1
X +=1
d+=m

output(x, y)

Computer Graphics — Junjie Cao

nam line algorithm

X = X0 Float”
y =Y0 /
&)=2Axd = 2Ay(x0 +1) + 2Ax(b — yO) J
vnlilfepx: Ax; o DdAX = 2Ay(X +1) ZAX(b — y)
e |t 2dAx > AXx
y +=1
- Y1 =y+1
p—= 2Ax 2d1Ax = 2Ay (x +1+1) + 2Ax(b — y-1)
X += 1 = 20AX + 2Ay — 2Ax
D 4o 2Ay e d<0.5
tput e
outputx. v) 2d1Ax = m(x +1+1) + b—y
= 2d Ax + 2Ay

28

Bresenham line algorithm

X = X0 p=2Axd = 2Ay(x0 +1) + 2Ax(b — y0)
y = 0 = 2Ay(x0 +1) - 2Axmx0
{p = 2y } = 2Ay(x0 +1) - 2Ayx0

while X < xXn A
fp > Ax

y +=1 Multiplication?

0 += 2Ay

output(x, y)

Computer Graphics — Junjie Cao 29

Bresenham line algorithm

p = 2Ay
while X < xn
it p > Ax
y +=1
0 —= 2Ax
X +=1

0 += 2Ay

output(x, y)

Computer Graphics — Junjie Cao

X = X0
Yy =Yy0

a= 2Ax; C = 2Ay;
P=C

while X < Xn
fp > Ax

V +=1

O —=24a

X +=1

D +=C
output(x, y)

30

Note -- main loop:

* Only integer math.

* No float representation, or
operations needed.

* No multiplication

Bresennham Line Algorithm

Example:

(20,10) to (30,18)

7 ”
18 e b
Ax =10, Ay=38
(slope 0.8) -..Il 17 -
5 J

Pl LIl
rl Ll - L
_ o
e [[
V"A « .‘\0.:'

”l' """ ey
K

20 21 22 25

full algorithm -- page 90-91 Hearn
adjusts for slope m>1
re-orders x1,x2,yl,y2 as necessary

http://www.cosc.canterburv.ac.nz/people/mukundan/cogr/LineMP.html

Computer Graphics — Junjie Cao

http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html

A Simple Circle Drawing Algorithm

* [he equation for a circle is: X + Vo =r

* where 7 Is the radius of the circle

* S0, we can write a simple circle drawing algorithm by solving the
equation for y at unit X intervals using:

y = i\/?‘z —x°

Computer Graphics — Junjie Cao

A Simple Circle Drawing Algorithm (cont...)

@

SSLe SIS SIS ISe IS SS Yy = V207 07 =20
— .

P R T T

OV 9RO VIVPOOI VIOV

O E R RO TRIDG 2

O OEOEEEEO-O & #FGOO-OOGOEHE =\/2()

DO TP O S 4

0:0:0:0,0:0,0:020:0:0:0: :0:0:05:0:0:0:0202020

B O OO OO OO OO

- OB~ -

T N _ 2 2

O-OC =420 =2 =2()

o T S T I b4

O-O-O-O-O-O-O-O-O-O0O-O-0O-O-O0-O0@O-O-O-0O-O0 2

O OGSOOOOOOSOGEOO-OGOEEOE

T T T T ®

OO O-O-O-O-OO-OOOO-OO0OO0O OO0

..0.........0’6’.’0’0’.’0’.’0’.’.’.“0’0’.’.’. ¢

Sletetetetete e tetetotetetetetetote! Setetole ®

5O OO O-O-- BONB-BE

OO OO OO OB OO0

o Y S S T R

0 S S S O S

S T T

0 T S

0:0:02020:0:02020200:0:0:0:0:0200202020020

o’o’o’o’o’o’o’o’o%’o’o’o’o’o’o’o’o’o’oﬁ’o’o \/ 20 2 _9 0 2 0

0...0...0.0.0..’0’.’0’.’0’0’0’.’0’.’.’. I.... y 20 — — =~

A Simple Circle Drawing Algorithm (cont...)

 However, unsurprisingly this is not a brilliant solution!

* Hirstly, the resulting circle has large gaps where the slope
approaches the vertical

o Secondly, the calculations are not very efficient
- The square (multiply) operations
- The square root operation — try really hard to avoid these!

e \We need a more etficient, more accurate solution

Computer Graphics — Junjie Cao

Eight-Way Symmetry

* The first thing we can notice to make our circle drawing algorithm
more efficient is that circles centred at (0, 0) have eight-way

symmetry xy) | (x5

('y ’ X)/ \(y) X)
('y ’ -X) K \/7()}) -X)

N o

('x) 'y) ‘ (x) 'y)

Computer Graphics — Junjie Cao

Mid-Point Circle Algorithm

o Similarly to the case with lines, there Is an

incremental algorithm for drawing circles — the
mid-point circle algorithm

* |n the mid-point circle algorithm we use eight-
way symmetry so only ever calculate the points
for the top right eighth of a circle, and then use
symmetry to get the rest of the points

Computer Graphics — Junjie Cao

http://patft.uspto.gov/netacgi/nph-Parser?u=/netahtml/srchnum.htm&Sect1=PTO1&Sect2=HITOFF&p=1&r=1&l=50&f=G&d=PALL&s1=4371933.PN.&OS=PN/4371933&RS=PN/4371933

Mid-Point Circle Algorithm (cont...)
 Assume that we have (XMJ,W A 1

just plotted point (X, ;))—O—CO

\\
N 7))
* The next point is a %/(x JJ@} T X
: k' Vi
choice between (x,+1, y,) OO0 C\

R\

and (x,+1, y,-1)

4
—O)
—O)
—QO

e \We would like to choose
the point that Is nearest to
the actual circle

e SO0 how do we make this choice”?

Computer Graphics — Junjie Cac

Mid-Point Circle Algorithm (cont...)

e [et'sre-jig the equation of the circle slightly: Jeire(X, 1) = x* 4y —r’

* [he equation evaluates as follows: (<0, if (x, y) is inside the circle boundary
f.. (x,¥)1=0,if (x,y)is on the circle boundary

> 0, 1f (x, y) 1s outside the circle boundary

» By evaluating this function at the midpoint between the candidate pixels

we can make our decision .. | coin 1 y=mx+b
A
S d2
<> 77 y1(‘|‘ 1 -~
x;t1, yp-1 \’ -~ o > dl
) > - -
I I Yk
Xk Xk+1

Computer Graphics — Junjie Cao

Mid-Point Circle Algorithm (cont...)

» Assuming we have just plotted the pixel at (X;,);) so we need to choose
petween (x,+1,y,) and (x,+1,y,-1) wayl Gl |

./

e
\

 Qur decision variable can be defined as: Q@
pk —]fcirc(xk +19yk —%) N\) rﬂ)
./ ./ L/ ./ \
~(x, +1)° +(yk—%)2—’”2 O—O—0O—0

» It p;, < 0the midpoint is inside the circle and and the pixel at), is closer to
the circle

- Otherwise the midpoint is outside and ;-1 is closer

Computer Graphics — Junjie Cao

Mid-Point Circle Algorithm (cont...)

e O ensure things are as efficient as possible we can do all of our
calculations incrementally

P = fcz’rc Q‘kn +1, Y0 - %)
=[(x, +1)+1]2 T (Yk+1 _%) -7

* Or: Pia =P +2(x, +1) + (y/irl —yi) ~(Viw = V) +1

e First consider:

« where y,, ; is either y, or y,-1 depending on the sign of p,

Computer Graphics — Junjie Cao

Mid-Point Circle Algorithm (cont...)
+ The first decision variable is Do = fc,.,,c(l,l”—%)
given as:
=1+(7f—%)2—r2

=A_,/

* Pr<O0=>Yy,,1= V!
P = P +2x;,, +1

* P> 0=> Y= Y T
k pk+1=pk+2xk+1+1—2yk+2

P =Dy +2(x, +1)+ (J’/§+1 —y;?) ~ (Vi = Vi) +1

Computer Graphics — Junjie Cao

The Mid-Point Circle Algorithm

The Mid-Point Circle Algorithm (cont...)

Computer Graphics — Junjie Cao

Mid-Point Circle Algorithm Summary

* [he key Insights in the mid-point circle algorithm are:

- Eight-way symmetry can hugely reduce the work in drawing a circle

- Moving In unit steps along the x axis at each point along the circle’s
edge we need to choose between two possible y coordinates

Computer Graphics — Junjie Cao

|_Inear Interpolation

* We often attach attributes to vertices
— e.g. computed diffuse color of a hair being drawn using lines
— want color to vary smoothly along a chain of line segments

* Recall basic definition
— IDifx)=(1—-a)yg+ ay
— where a = (x — xq) / (x| — Xxp)
* In the 2D case of a line segment, alpha is just the fraction of

the distance from (x), yg) to (x1,y1)

Computer Graphics — Junjie Cao 45

|_Inear Interpolation

e Pixels are not
exactly on the line

AP
* Define 2D function [L

Dy projection on po Y1 ;0\

ine f\,.w

0L=V-(q-Ppo)/L

—this is linear in 2D L'=v-(p; - Po)

— therefore can use
DDA to Interpolate

Computer Graphics — Junjie Cao 46

|_Inear Interpolation

e Pixels are not
exactly on the line

» Define 2D function NBas : | .
' ') 2 i
by porojection on p'o/,\,r- | -a\» y
ine ’ at=ly, /L
—this is linear in 2D o =Vv-(q—po) /L
L=v:(p; - Po)

— therefore can use
DDA to Interpolate

Computer Graphics — Junjie Cao 17

|_Inear Interpolation

e Pixels are not
exactly on the line

e Define 2D function
Dy projection on .-
- p
lIne \
—this Is linear in 2D

— therefore can use
DDA to Interpolate

Computer Graphics — Junjie Cao 48

Alternate interpretation

 We are updating d and a as we step from pixel to pixel
- dtells us how tar from the line we are
- atells us how far along the line we are

e SO dand aare coordinates in a coordinate system oriented to the
Ine

Computer Graphics — Junjie Cao 49

Rasterizing triangles

 [he most common case In most applications
- with good antialiasing can be the only case
- some systems render a line as two skinny triangles

e [riangle represented by three vertices

e Simple way to think of algorithm follows the pixel-walk interpretation
of line rasterization

- walk from pixel to pixel over (at least) the polygon’s area
- evaluate linear functions as you go
- use those functions to decide which pixels are inside

Computer Graphics — Junjie Cao 50

oDz aonnne

Rasterizing triangles

* |nput:
— three 2D points (the triangle’s vertices in pixel space) .

- (an yO)a (x]_ayl)a (x23 y2) fragme

— parameter values at each vertex

4000 --+> 90n> 910> - +-> 91n> 920> -+ > 92n
* Output: a list of fragments, each with

— the integer pixel coordinates (x, y)

— Interpolated parameter values q, ..., g,

Computer Graphics — Junjie Cao 51

Rasterizing trlangles

e Summary]

1 evaluation of linear functions on pixel
grid

2 these functions are defined by
parameter values at vertices

3 using extra parameters
to determine
fragment set

Computer Graphics — Junjie Cao 59

1. Incremental linear evaluation

* A linear (affine, really) function on the plane is:

q(x,y) = Cczx + cyy + ck
* Linear functions are efficient to evaluate on a grid:

Q(ZB—I— 1,3/) — C$($+ 1) +ny+Ck — Q(mvy) + Cy
Q(xay+ 1) — me+cy(y+ 1) + Ci = Q($ay) T Cy

Computer Graphics — Junjie Cao 53

iNncremental linear evaluation

linEval(xm, xM, ym, yM, cX, Cy, ck) {

// setup
qgRow =c¢cx*xm + cy *ym + cKk;

// traversal
fory =ym to yM ({
qPix = qRow;
for x =xm to xM {
output(x, y, qPix);
qPix += CX;
)
gRow += Cy;

) ¢y = 005;¢, = 005;¢;, =0
(image size 100x]00)

)

Computer Graphics — Junjie Cao 54

Rasterizing trlangles

e Summary]

1 evaluation of linear functions on pixel
grid

2 these functions are defined by
parameter values at vertices

3 using extra parameters
to determine
fragment set

Computer Graphics — Junjie Cao 55

2 Defining parameter functions

To interpolate parameters across a triangle we need to find

the c,. Cy» and ¢y, that define the (unique) linear function that

matches the given values at all 3 vertices
— this I1s 3 constraints on 3 unknown coefticients:

CxT0 T CyYo T Ck = qo (each states that the function
CxT1 T CyY1 + Ckp = 1 agrees with the given value
CxT2 + CyY2 + Ck = q2 at one vertex)

— leading to a 3x3 matrix equation for the coefficients:

ro Yo 1| [ca q0
r1 y1 1 Cy | — |q1
ro Y2 1| |ck o

(singular iff triangle
is degenerate)

Computer Graphics — Junjie Cao 56

Defining parameter functions

* More efficient version: shift origin to (xg, y¢)
q(7,y) = cx(x — x0) + ¢y (¥ — Yo) + Qo
q(z1,y1) = cx(1 — x0) + ¢y (Y1 —yo) + @0 = @1
q(r2,y2) = cz(T2 — x0) + Cy(Y2 — Yo) + qo = q2
— now this is a 2x2 linear system (since g falls out):
(21— 20) (y1— o) [Ca:] _ (¢ — Q()}
(T2 — o) (Y2 — yo)_ Cy 42 — 40
— solve using Cramers rule (see Shirley):
cz = (Aq1Ayz — AgeAy1)/(Az1Ays — AzaAy)
cy = (AgeAz; — Aq1Axs) /(Azi Ays — Az Ay)

Computer Graphics — Junjie Cao 57

Defining parameter tunctions

linInterp(xm, xM, ym, yM, x0, yO, q0,
x1,y1,4l, xR, y%, q-) {

// setup

det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);

ex = ((q1-q0)*(yR-y0) — (qQR—-q0)*(y1-y0)) / det;
ey = ((qg—q0)*(x1-x0) - (q1-q0)*(xk-x0)) / det;
gRow = ¢x*(xm-x0) + cy*(ym-y0) + q0;

// traversal (same as before)
for y =ym to yM {
gPix = qgRow;
for x = xm to XM {
output(x, y, qPix);
gPix += ¢x;
}
qRow += ¢y;
}
]

Computer Graphics — Junjie Cao 58

INnterpolating several parameters

linInterp(xm, xM, ym, yM, n, x0, yO, qO[],
x1,y1, qlf], 2%, y2, qR[]) {

// setup
fork=0ton—1

// compute c¢x[K], cy[k], gRow[k]
// from qO[k], ql[k], qR[K]

// traversal
for y =ym to yM {
for k = 1 to n, qPix[k] = gRow[K]:
for x = xm to XM {
output(x, y, qPix);
for k = 1 to n, qPix[k] += cx[k];
}
for k = 1 to n, qRow[k] += ¢y[k];
}
}

Computer Graphics — Junjie Cao 59

Rasterizing trlangles

e Summary]

1 evaluation of linear functions on pixel
grid

2 these functions are defined by
parameter values at vertices

3 using extra parameters
to determine
fragment set

Computer Graphics — Junjie Cao 60

3. Clipping to the triangle

* |nterpolate three barycentric
coordinates across the
plane

- recall each barycentric coorad
s 1 at one vert. and O at

the other two

* Qutput fragments only
when all three are > 0.

Computer Graphics — Junjie Cao 61

Pixel-walk (Pineda) rasterization

o Conservatively
Vvisit a superset of
the pixels (BBox)

e |nterpolate linear
functions

e Use those functions
to determine when
to emit a fragment

Computer Graphics — Junjie Cao 82

Rasterizing triangles

e EXercise caution with rounding
and arbitrary decisions

- need to visit these pixels once:
No hole

- but it's Important not to visit
them twice!

Computer Graphics — Junjie Cao 63

Rasterizing triangles

e EXxercise caution with rounding and arbitrary

decisions e Off-screen point

- need to visit these pixels once: no hole

- pbut It's iImportant not to visit them twice!

e Consistency

- Coordinate inner contradiction via a

global view: off-screen point p

Computer Graphics — Junjie Cao 84

Perspective and Interpolation

Interpolating values In screen space is not the whole story
- often we are interpolating values that are supposed to vary linearly in the scene

- because perspective projection
does not preserve ratios of lengths, these values should not vary linearly in
screen space

projection plane projection plane

projection
eye point " of midpoint

2

{—projections of
endpoints

/

eye point

Computer Graphics — Junjie Cao 65

Perspective and interpolation

* [exture coordinates are the canonical example

- equal steps In screen space are unequal steps in texture space

straightforward linear interpolation
all checkers in each triangle are equal size

Computer Graphics — Junjie Cao 66

Perspective and interpolation

* [exture coordinates are the canonical example

- equal steps In screen space are unegual steps in texture space

perspective correct interpolation
checkers have unequal size on screen

Computer Graphics — Junjie Cao

Perspective correct interpolation

o Linear interpolation still suffices if we do it the right way

- remember projective transformations preserve straight lines

Lap $C_ _CE’C/QL’C L
Zw | = | Ze | = | Ze/We 2
1 W, 1 |

Z'LU / > ZS

Computer Graphics — Junjie Cao 68

Perspective correct interpolation

o Linear interpolation still suffices if we do it the right way
- remember projective transformations preserve straight lines
- Just carrying the tex, coord. along is not a projective transform.

T Te Te /W, T
2w || Fe| | Fe/We| _ | s
1 W, 1 1
Ty T

Computer Graphics — Junjie Cao 69

Perspective correct interpolation

e Solution: treat u and v as additional coordinates in the projective

transformation

- now the full transformation on (x, vy, z, u, V) IS projective

L

2n
U

1

Computer Graphics — Junjie Cao

4>

Le
e
U

EXNGA s
. 2o/ W, _ | %
u/w,. U
1| |1
> Us \

Perspective correct interpolation

e Bottom line: treat all attributes the same as (x, v, z)
- divide them by w before interpolation
- Interpolate quantities u/w, etc., linearly across screen
- also interpolate 1/w as an additional attribute

- divide interpolated u/w by 1/w to recover u

Computer Graphics — Junjie Cao 71

Clipping

* Rasterizer tends to assume triangles are on screen

- particularly problematic to have triangles | ...
Crossing
the plane z=0

o After projection, before perspective divide

- clip against the planes X, y, z= 1, -1 (6 planes) \

. o . . _ . _ eyeﬂ—w:e a
- primitive operation: clip triangle against axis-
aligned plane -

Computer Graphics — Junjie Cao 70

Clipping a triangle against a plane

e 4 cases, based on sidedness of vertices
- all in (keep)
- all out (discard)
- one in, two out (one clipped triangle)
- two In, one out (two clipped triangles)

Computer Graphics — Junjie Cao 7

Objects Depth Sorting

: |
* [o hanadle occlusion, you V|
can sort all the objects in o _—
a scene by depth =
y dep A -«

* [his Is not always
possible!

Computer Graphics — Junjie Cao

Z-butfering

] * You render the image both in the Image and in
the depth bufter, where you store only the depth

. When a new fragment comes in, you draw it in
the image only it it is closer

Image Depth (z)

* This always work and it is cheap to evaluate! It is
the default in all graphics hardware

* You still have to sort for transparency...

Computer Graphics — Junjie Cao

z-bufter quantization and “z-fighting”

e The z-buffer Is quantized (the
number of bits is heavily /N
dependent on the hardware
platform)

* [wo close object might be
quantized differently, leading to
strange artitacts, usually called
‘z-fighting”

Computer Graphics — Junjie Cao

Super Sampling Anti-Aliasing

d d

Non-antialiased type Antialiased type

s & T

Enlarged portion of type

 Render nxn pixels instead of one

* Assign the average to the pixel

C1 + C2+ C3 + C4
4

Computer Graphics — Junjie Cao Image Copyright: Fritz Kessler

Many different names and variants

o SOAA (FSAA)

¢« MSAA
o« COAA
« EQAA
e FXAA

e [XAA

Computer Graphics — Junjie Cao

(1)

4 pixels Pixel (1) gets Colour averages are When downsized
supersampled to 4 taken from the 4 again, (1) is a
times the resolution points in the pixel blended colour

MSAA

Rather than individually, pixels are Assuming 4x AA, the two pixels share
sampled together. In this example, two samples in the middle, meaning
we’ve taken two. The pixels are not only six samples instead of eight.
scaled up.

Copyright: tested.com (http://www.tested.com/tech/pcs/1194-
how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/#)

http://tested.com/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 8

Computer Graphics — Junjie Cao

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

