
Computer Graphics – Junjie Cao

Computer Graphics 
- Rasterization

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/

Pleasure may come from illusion, but happiness can come only of reality.

http://jjcao.github.io/ComputerGraphics/

Computer Graphics – Junjie Cao

2D Canvas

 2

Computer Graphics – Junjie Cao

The graphics pipeline
• The 2nd major approach to rendering

- Image-order rendering: simpler, flexible, (usually) more execution time

- Object-order rendering: efficiency

• The standard approach to object-order graphics. Many versions exist
- software, e.g. Pixar’s REYES architecture, used in film production

• many options for quality and flexibility
- hardware, e.g. graphics cards in PCs, for game, visualization, UI

• amazing performance: millions of triangles per frame

• We’ll focus on an abstract version of hardware pipeline

• “Pipeline” because of the many stages
- very parallelizable
- leads to remarkable performance of graphics cards (many times the flops of

the CPU at ~1/5 the clock speed)

 3

Computer Graphics – Junjie Cao

The graphics pipeline

 4

Operations to geometry, matrix
transformations => screen coords

Operations to fragments, HSR

The rasterizer breaks each primitive into a number of
fragments, one for each pixel covered by the

primitive.

various fragments corresponding to each pixel are

combined in the fragment blending stage

Computer Graphics – Junjie Cao

Primitives
• Points
• Line segments

- and chains of connected line segments
• Triangles
• And that’s all!

- Curves? Approximate them with chains of line segments
- Polygons? Break them up into triangles
- Curved surfaces? Approximate them with triangles

• Trend over the decades: toward minimal primitives
- simple, uniform, repetitive: good for parallelism

 5

Computer Graphics – Junjie Cao

Rasterization
• Input: primitives

• Output: fragments with attributes per pixel. |{Fragments_i}| = |objects
covered the pixel|

- First job: enumerate the pixels covered by a primitive

• simple, aliased definition: pixels whose centers fall inside

- Second job: interpolate attributes across the primitive

• e.g. colors computed at vertices – e.g. normals at vertices

• e.g. texture coordinates
 6

Computer Graphics – Junjie Cao

Towards the Ideal Line
• We can only do a discrete approximation

• Illuminate pixels as close to the true path as possible, consider bi-
level display only

- Pixels are either lit or not lit

Computer Graphics – Junjie Cao

Applications

• Highly efficient

• Widely used

- Robot

• Path planning

• Trajectory Generation

Computer Graphics – Junjie Cao

What is an ideal line
• Must appear straight and continuous

- Only possible axis-aligned and 45o lines

• Must interpolate both defining end points

• Must be efficient, drawn quickly

- Lots of them are required!!!

Computer Graphics – Junjie Cao

Implicit Geometry Representation
• Define a curve as zero set of 2D implicit function

- F(x,y) = 0 → on curve

- F(x,y) < 0 → inside curve

- F(x,y) > 0 → outside curve

• Example: Circle with center (cx, cy) and radius r

Computer Graphics – Junjie Cao

Implicit Rasterization
for all pixels (i,j)

 (x,y) = map_to_canvas (i,j)

 if F(x,y) < 0

 set_pixel (i,j, color)

Computer Graphics – Junjie Cao

Barycentric Interpolation
• Barycentric coordinates:

- p = αa + βb + γc with α + β + γ = 1
- Unique for non-collinear a,b,c
- Ratio of triangle areas
- α(p), β(p), γ(p) are linear functions

a

b

c a

b

c a

b

c

1

1

1

γ <0

β<0 α<0

a
b

c

α,β,γ > 0

Computer Graphics – Junjie Cao

Barycentric Interpolation
• Barycentric coordinates:

- p = αa + βb + γc with α + β + γ = 1
- Unique for non-collinear a,b,c
- Ratio of triangle areas
- α(p), β(p), γ(p) are linear functions
- Gives inside/outside information
- Use barycentric coordinates to interpolate vertex normals

(or other data, e.g. colors)

A
B

C

P

Per-vertex Per-pixel

Evaluate color on vertices,
then interpolates it

Interpolates positions
and normals,

then evaluate color on
each pixel

Computer Graphics – Junjie Cao

• Each triangle is represented as three 2D points
(x0, y0), (x1, y1), (x2, y2)

• Rasterization using barycentric coordinates

Triangle Rasterization

for all y do
 for all x do
 compute (α,β,γ) for (x,y)

 if (α ∈ [0,1] and β ∈ [0,1] and γ ∈ [0,1]

 set_pixel (x,y)

Computer Graphics – Junjie Cao

Rasterizing lines

• Define line as a rectangle

• Specify by two endpoints

• Approximate rectangle by
drawing all pixels whose centers
fall within the line

• Problem: sometimes turns on
adjacent pixels

 15

Computer Graphics – Junjie Cao

Rasterizing lines

• Define line as a rectangle

• Specify by two endpoints

• Approximate rectangle by
drawing all pixels whose centers
fall within the line

• Problem: sometimes turns on
adjacent pixels

 16

Computer Graphics – Junjie Cao 17

Point sampling in
action

Computer Graphics – Junjie Cao

midpoint alg.

• Point sampling unit width rectangle
leads to uneven line width

• Define line width parallel to pixel
grid

• That is, turn on the single nearest
pixel in each column

• Note that 45o lines are now thinner

 18

Computer Graphics – Junjie Cao

midpoint alg.

• Point sampling unit width rectangle
leads to uneven line width

• Define line width parallel to pixel
grid

• That is, turn on the single nearest
pixel in each column

• Note that 45o lines are now thinner

 19

Computer Graphics – Junjie Cao 20

Midpoint algorithm
in action

Computer Graphics – Junjie Cao

History
• Bresenham's line algorithm is named after Jack

Elton Bresenham who developed it in 1962 at IBM.

• The Calcomp 565 drum plotter, introduced in 1959,
was one of the first computer graphics output
devices sold.

• Later extended to Bresenham's circle
algorithm or midpoint circle algorithm.

A Calcomp 565 drum plotter.

Closeup of Calcomp plotter right side, showing controls
for manually moving the drum. Similar controls on the left

move the pen carriage.

https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/International_Business_Machines
https://en.wikipedia.org/wiki/Calcomp
https://en.wikipedia.org/wiki/Plotter
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Midpoint_circle_algorithm

Computer Graphics – Junjie Cao

Algorithm for computer control of a digital
plotter

• 1962 by Jack Elton Bresenham

Comparison of r and q can be implemented by comparing hypotenuse since the two triangles are
similar.

Computation of distance of the hypotenuse is simpler, see next page.

https://en.wikipedia.org/wiki/Jack_Elton_Bresenham

Computer Graphics – Junjie Cao

Algorithms for drawing lines
• line equation: 

 y=b+mx

• Simple algorithm: evaluate line equation per
column

• W.l.o.g. x0 < x1;  
 0≤m≤1

 23

for x = ceil(x0) to floor(x1)
 y = b + m*x  
 output(x, round(y))

Computer Graphics – Junjie Cao

Optimizing line drawing
• Multiplying and rounding is slow

• At each pixel the only options are
E and NE

• d = m(x + 1) + b – y

• d > 0.5 decides between

• E and NE

 24

Computer Graphics – Junjie Cao

Optimizing line drawing
• d = m(x +1) + b – y
• If d > 0.5

- y1 = y+1
- d1 = m(x +1+1) + b – y-1
- = d + m – 1

• d < 0.5
- y1 = y
- d1 = m(x +1+1) + b – y
- = d + m

 25

• Do that with addition
• Known as 

“DDA” (digital differential analyzer)

Computer Graphics – Junjie Cao

Mid-Point => Bresenham’s line alg.

 26

x = ceil(x0) 
 
y = round(m*x + b) 

d = m*(x + 1) + b – y 

while x < floor(x1)
 if d > 0.5 

y += 1 

d –= 1 

x += 1 

d += m 

output(x, y)

• Still have a “float” operation in calculation of “d”

• If known 2 endpoints (x0, y0), (xn, yn), draw line
=> ∆y=yn-y0, ∆x=xn-x0 are integers

• Lets create a new decision operator by multiplying
2∆x (recall m=∆y/∆x)

Computer Graphics – Junjie Cao

Bresenham line algorithm

 27

• d = m(x +1) + b – y
• If d > 0.5

- y1 = y+1
- d1 = m(x +1+1) + b – y-1
- = d + m – 1

• d < 0.5
- y1 = y
- d1 = m(x +1+1) + b – y
- = d + m

• 2d∆x = 2∆y(x +1) + 2∆x(b – y)
• If 2d∆x > ∆x

- y1 = y+1
- 2d1∆x = 2∆y (x +1+1) + 2∆x(b – y-1)
- = 2d∆x + 2∆y – 2∆x

• d < 0.5
- y1 = y
- 2d1∆x = m(x +1+1) + b – y
- = 2d ∆x + 2∆y

Computer Graphics – Junjie Cao

Bresenham line algorithm

 28

x = ceil(x0) 
 
y = round(m*x + b) 

d = m*(x + 1) + b – y 

while x < floor(x1)
 if d > 0.5 

y += 1 

d –= 1 

x += 1 

d += m 

output(x, y)

x = x0 
 
y = y0 

p=2∆xd = 2∆y(x0 +1) + 2∆x(b – y0)
while x < xn
 if p > ∆x 

y += 1 

p –= 2∆x 

x += 1 

p += 2∆y 

output(x, y)

• 2d∆x = 2∆y(x +1) + 2∆x(b – y)
• If 2d∆x > ∆x

- y1 = y+1
- 2d1∆x = 2∆y (x +1+1) + 2∆x(b – y-1)
- = 2d∆x + 2∆y – 2∆x

• d < 0.5
- y1 = y
- 2d1∆x = m(x +1+1) + b – y
- = 2d ∆x + 2∆y

Float？

Computer Graphics – Junjie Cao

Bresenham line algorithm

 29

x = x0 
 
y = y0 

p = 2∆y
while x < xn
 if p > ∆x 

y += 1 

p –= 2∆x 

x += 1 

p += 2∆y 

output(x, y)

Multiplication?

p=2∆xd = 2∆y(x0 +1) + 2∆x(b – y0)
= 2∆y(x0 +1) - 2∆xmx0
= 2∆y(x0 +1) - 2∆yx0

Computer Graphics – Junjie Cao

Bresenham line algorithm

 30

x = x0 
; y = y0  
;
a= 2∆x; c = 2∆y;
p = c
while x < xn
 if p > ∆x 

y += 1 

p –= a 

x += 1 

p += c
output(x, y)

Note -- main loop:
• Only integer math.
• No float representation, or

operations needed.
• No multiplication

x = x0 
 
y = y0 

p = 2∆y
while x < xn
 if p > ∆x 

y += 1 

p –= 2∆x 

x += 1 

p += 2∆y 

output(x, y)

Computer Graphics – Junjie Cao

Bresenham Line Algorithm
Example:

(20,10) to (30,18)

∆x = 10, ∆y = 8

(slope 0.8)

0 6 (21,11)
2 (22,12)
-2 (23,12)
14 (24,13)
10 (25,14)

5

1

2

6

7

3 8

4 9

k Pk (xk+1 ,yk+1) k pk (xk+1 ,yk+1)

full algorithm -- page 90-91 Hearn
• adjusts for slope m>1
• re-orders x1,x2,y1,y2 as necessary

6 (26,15)
2 (27,16)
-2 (28,16)
14 (29,17)
10 (30,18)

http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html

http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html

Computer Graphics – Junjie Cao

A Simple Circle Drawing Algorithm

• The equation for a circle is:
• where r is the radius of the circle

• So, we can write a simple circle drawing algorithm by solving the
equation for y at unit x intervals using:

222 ryx =+

22 xry −±=

Computer Graphics – Junjie Cao

A Simple Circle Drawing Algorithm (cont…)

20020 22
0 ≈−=y

20120 22
1 ≈−=y

20220 22
2 ≈−=y

61920 22
19 ≈−=y

02020 22
20 ≈−=y

Computer Graphics – Junjie Cao

A Simple Circle Drawing Algorithm (cont…)

• However, unsurprisingly this is not a brilliant solution!

• Firstly, the resulting circle has large gaps where the slope
approaches the vertical

• Secondly, the calculations are not very efficient

- The square (multiply) operations

- The square root operation – try really hard to avoid these!

• We need a more efficient, more accurate solution

Computer Graphics – Junjie Cao

Eight-Way Symmetry
• The first thing we can notice to make our circle drawing algorithm

more efficient is that circles centred at (0, 0) have eight-way
symmetry (x, y)

(y, x)

(y, -x)

(x, -y)(-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2
R

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm

• Similarly to the case with lines, there is an
incremental algorithm for drawing circles – the
mid-point circle algorithm

• In the mid-point circle algorithm we use eight-
way symmetry so only ever calculate the points
for the top right eighth of a circle, and then use
symmetry to get the rest of the points

The mid-point circle algorithm was
developed by Jack Bresenham, who
we heard about earlier. Bresenham’s
patent for the algorithm can be
viewed here.

http://patft.uspto.gov/netacgi/nph-Parser?u=/netahtml/srchnum.htm&Sect1=PTO1&Sect2=HITOFF&p=1&r=1&l=50&f=G&d=PALL&s1=4371933.PN.&OS=PN/4371933&RS=PN/4371933

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm (cont…)
(xk+1, yk)

(xk+1, yk-1)

(xk, yk)
• Assume that we have  

just plotted point (xk, yk)

• The next point is a  
choice between (xk+1, yk)  
and (xk+1, yk-1)

• We would like to choose  
the point that is nearest to  
the actual circle

• So how do we make this choice?

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm (cont…)
• Let’s re-jig the equation of the circle slightly:

• The equation evaluates as follows:

• By evaluating this function at the midpoint between the candidate pixels
we can make our decision

222),(ryxyxfcirc −+=

⎪
⎩

⎪
⎨

⎧

>

=

<

,0
,0
,0

),(yxfcirc

boundary circle theinside is),(if yx
boundary circle on the is),(if yx

boundary circle theoutside is),(if yx

xk+1

yk+1

yk

d2
d1

y=mx+b

xk

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm (cont…)
• Assuming we have just plotted the pixel at (xk,yk) so we need to choose

between (xk+1,yk) and (xk+1,yk-1)

• Our decision variable can be defined as:

• If pk < 0 the midpoint is inside the circle and and the pixel at yk is closer to
the circle

• Otherwise the midpoint is outside and yk-1 is closer

222)2
1()1(

)2
1,1(

ryx

yxfp

kk

kkcirck

−−++=

−+=

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm (cont…)
• To ensure things are as efficient as possible we can do all of our

calculations incrementally

• First consider:

• or:
• where yk+1 is either yk or yk-1 depending on the sign of pk

()
() 22

1
2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck

−−+++=

−+=

+

+++

1)()()1(2 1
22

11 +−−−+++= +++ kkkkkkk yyyyxpp

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm (cont…)
• The first decision variable is

given as:

• pk < 0 => yk+1= yk :

• pk > 0 => yk+1= yk -1:

r

rr

rfp circ

−=

−−+=

−=

4
5

)2
1(1

)2
1,1(

22

0

12 11 ++= ++ kkk xpp

1)()()1(2 1
22

11 +−−−+++= +++ kkkkkkk yyyyxpp

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘 + 2

Computer Graphics – Junjie Cao

The Mid-Point Circle Algorithm
1. Input radius r and circle centre (xc, yc), then set the coordinates for the first
point on the circumference of a circle centred on the origin as:

2. Calculate the initial value of the decision parameter as:

3. Starting with k = 0 at each position xk, perform the following test. If pk < 0, the
next point along the circle centred on (0, 0) is (xk+1, yk) and:

),0(),(00 ryx =

rp −= 4
5

0

12 11 ++= ++ kkk xpp

Computer Graphics – Junjie Cao

The Mid-Point Circle Algorithm (cont…)
4. Otherwise the next point along the circle is (xk+1, yk-1) and:

5. Determine symmetry points in the other seven octants

6. Move each calculated pixel position (x, y) onto the circular path centred at (xc, yc)
to plot the coordinate values:
7. Repeat steps 3 to 5 until x >= y

111 212 +++ −++= kkkk yxpp

cxxx += cyyy +=

Computer Graphics – Junjie Cao

Mid-Point Circle Algorithm Summary

• The key insights in the mid-point circle algorithm are:

- Eight-way symmetry can hugely reduce the work in drawing a circle

- Moving in unit steps along the x axis at each point along the circle’s
edge we need to choose between two possible y coordinates

Computer Graphics – Junjie Cao

Linear interpolation

 45

Computer Graphics – Junjie Cao

Linear interpolation
• Pixels are not  

 exactly on the line

• Define 2D function  
 by projection on 
 line

– this is linear in 2D

– therefore can use  
 DDA to interpolate

 46

Computer Graphics – Junjie Cao

Linear interpolation
• Pixels are not  

 exactly on the line

• Define 2D function  
 by projection on 
 line

– this is linear in 2D

– therefore can use  
 DDA to interpolate

 47

Computer Graphics – Junjie Cao

Linear interpolation
• Pixels are not  

 exactly on the line

• Define 2D function  
 by projection on 
 line

– this is linear in 2D

– therefore can use  
 DDA to interpolate

 48

Computer Graphics – Junjie Cao

Alternate interpretation

• We are updating d and α as we step from pixel to pixel

- d tells us how far from the line we are

- α tells us how far along the line we are

• So d and α are coordinates in a coordinate system oriented to the
line

 49

Computer Graphics – Junjie Cao

Rasterizing triangles
• The most common case in most applications

- with good antialiasing can be the only case
- some systems render a line as two skinny triangles

• Triangle represented by three vertices

• Simple way to think of algorithm follows the pixel-walk interpretation
of line rasterization
- walk from pixel to pixel over (at least) the polygon’s area
- evaluate linear functions as you go
- use those functions to decide which pixels are inside

 50

Computer Graphics – Junjie Cao

Rasterizing triangles

 51

Computer Graphics – Junjie Cao

Rasterizing triangles
• Summary

1 evaluation of linear functions on pixel  
grid

2 these functions are defined by
parameter values at vertices

3 using extra parameters  
to determine  
 fragment set

 52

Computer Graphics – Junjie Cao

1. Incremental linear evaluation

 53

Computer Graphics – Junjie Cao

Incremental linear evaluation

 54

Computer Graphics – Junjie Cao

Rasterizing triangles
• Summary

1 evaluation of linear functions on pixel  
grid

2 these functions are defined by
parameter values at vertices

3 using extra parameters  
to determine  
 fragment set

 55

Computer Graphics – Junjie Cao

2. Defining parameter functions

 56

Computer Graphics – Junjie Cao

Defining parameter functions

 57

Computer Graphics – Junjie Cao

Defining parameter functions

 58

Computer Graphics – Junjie Cao

Interpolating several parameters

 59

Computer Graphics – Junjie Cao

Rasterizing triangles
• Summary

1 evaluation of linear functions on pixel  
grid

2 these functions are defined by
parameter values at vertices

3 using extra parameters  
to determine  
 fragment set

 60

Computer Graphics – Junjie Cao

3. Clipping to the triangle
• Interpolate three barycentric 

 coordinates across the  
 plane

- recall each barycentric coord 
 is 1 at one vert. and 0 at 
 
the other two

• Output fragments only 
 when all three are > 0.

 61

Computer Graphics – Junjie Cao

Pixel-walk (Pineda) rasterization
• Conservatively 

 visit a superset of  
 the pixels (BBox)

• Interpolate linear 
 functions

• Use those functions 
 to determine when 
 to emit a fragment

 62

Computer Graphics – Junjie Cao

Rasterizing triangles

• Exercise caution with rounding
and arbitrary decisions

- need to visit these pixels once:
no hole

- but it’s important not to visit
them twice!

 63

Computer Graphics – Junjie Cao

Rasterizing triangles
• Exercise caution with rounding and arbitrary

decisions

- need to visit these pixels once: no hole

- but it’s important not to visit them twice!

• Consistency

- Coordinate inner contradiction via a
global view: off-screen point p

 64

Computer Graphics – Junjie Cao

Perspective and interpolation
• interpolating values in screen space is not the whole story

- often we are interpolating values that are supposed to vary linearly in the scene

- because perspective projection 

 does not preserve ratios of lengths, these values should not vary linearly in
screen space

 65

Computer Graphics – Junjie Cao

Perspective and interpolation
• Texture coordinates are the canonical example

- equal steps in screen space are unequal steps in texture space

 66

straightforward linear interpolation 
all checkers in each triangle are equal size

Computer Graphics – Junjie Cao

Perspective and interpolation
• Texture coordinates are the canonical example

- equal steps in screen space are unequal steps in texture space

 67

Computer Graphics – Junjie Cao

Perspective correct interpolation
• Linear interpolation still suffices if we do it the right way

- remember projective transformations preserve straight lines

 68

Computer Graphics – Junjie Cao

Perspective correct interpolation
• Linear interpolation still suffices if we do it the right way

- remember projective transformations preserve straight lines
- just carrying the tex, coord. along is not a projective transform.

 69

Computer Graphics – Junjie Cao

Perspective correct interpolation
• Solution: treat u and v as additional coordinates in the projective

transformation

- now the full transformation on (x, y, z, u, v) is projective

 70

Computer Graphics – Junjie Cao

Perspective correct interpolation
• Bottom line: treat all attributes the same as (x, y, z)

- divide them by w before interpolation

- interpolate quantities u/w, etc., linearly across screen

- also interpolate 1/w as an additional attribute

- divide interpolated u/w by 1/w to recover u

 71

Computer Graphics – Junjie Cao

Clipping
• Rasterizer tends to assume triangles are on screen

- particularly problematic to have triangles
crossing 
 the plane z = 0

• After projection, before perspective divide

- clip against the planes x, y, z = 1, –1 (6 planes)

- primitive operation: clip triangle against axis-
aligned plane

 72

Computer Graphics – Junjie Cao

Clipping a triangle against a plane
• 4 cases, based on sidedness of vertices

- all in (keep)
- all out (discard)
- one in, two out (one clipped triangle)
- two in, one out (two clipped triangles)

 73

Computer Graphics – Junjie Cao

Objects Depth Sorting
• To handle occlusion, you

can sort all the objects in
a scene by depth

• This is not always
possible!

Computer Graphics – Junjie Cao

z-buffering

Image Depth (z)

• You render the image both in the Image and in
the depth buffer, where you store only the depth

• When a new fragment comes in, you draw it in
the image only if it is closer

• This always work and it is cheap to evaluate! It is
the default in all graphics hardware

• You still have to sort for transparency…

Computer Graphics – Junjie Cao

z-buffer quantization and “z-fighting”
• The z-buffer is quantized (the

number of bits is heavily
dependent on the hardware
platform)

• Two close object might be
quantized differently, leading to
strange artifacts, usually called
“z-fighting”

Computer Graphics – Junjie Cao

• Render nxn pixels instead of one

• Assign the average to the pixel

Super Sampling Anti-Aliasing

Image Copyright: Fritz Kessler

Computer Graphics – Junjie Cao

Many different names and variants
• SSAA (FSAA)

• MSAA

• CSAA

• EQAA

• FXAA

• TX AA

Copyright: tested.com (http://www.tested.com/tech/pcs/1194-
how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/#)

MSAA

http://tested.com/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/

Computer Graphics – Junjie Cao

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 8

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

