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Pleasure may come from illusion, but happiness can come only of reality.
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2D Canvas
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The graphics pipeline 
• The 2nd major approach to rendering 

- Image-order rendering: simpler, flexible, (usually) more execution time

- Object-order rendering: efficiency 


• The standard approach to object-order graphics. Many versions exist  
- software, e.g. Pixar’s REYES architecture, used in film production  


• many options for quality and flexibility  
- hardware, e.g. graphics cards in PCs, for game, visualization, UI


• amazing performance: millions of triangles per frame 

• We’ll focus on an abstract version of hardware pipeline  

• “Pipeline” because of the many stages  
- very parallelizable  
- leads to remarkable performance of graphics cards (many times the flops of 

the CPU at ~1/5 the clock speed) 
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The graphics pipeline 
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Operations to geometry, matrix 
transformations => screen coords

Operations to fragments, HSR

The rasterizer breaks each primitive into a number of 
fragments, one for each pixel covered by the 

primitive. 

various fragments corresponding to each pixel are 

combined in the fragment blending stage 
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Primitives 
• Points  
• Line segments  

- and chains of connected line segments  
• Triangles  
• And that’s all!  

- Curves? Approximate them with chains of line segments  
- Polygons? Break them up into triangles 
- Curved surfaces? Approximate them with triangles  

• Trend over the decades: toward minimal primitives  
- simple, uniform, repetitive: good for parallelism 
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Rasterization 
• Input: primitives 

• Output: fragments with attributes per pixel. |{Fragments_i}| = |objects 
covered the pixel| 

- First job: enumerate the pixels covered by a primitive  

• simple, aliased definition: pixels whose centers fall inside  

- Second job: interpolate attributes across the primitive  

• e.g. colors computed at vertices – e.g. normals at vertices 

• e.g. texture coordinates 
 6
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Towards the Ideal Line
• We can only do a discrete approximation 

• Illuminate pixels as close to the true path as possible, consider bi-
level display only 

- Pixels are either lit or not lit
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Applications

• Highly efficient 

• Widely used 

- Robot 

• Path planning 

• Trajectory Generation
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What is an ideal line
• Must appear straight and continuous 

- Only possible axis-aligned and 45o lines 

• Must interpolate both defining end points 

• Must be efficient, drawn quickly 

- Lots of them are required!!! 
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Implicit Geometry Representation
• Define a curve as zero set of 2D implicit function 

- F(x,y) = 0 → on curve 

- F(x,y) < 0 → inside curve 

- F(x,y) > 0 → outside curve 

• Example: Circle with center (cx, cy) and radius r
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Implicit Rasterization
for all pixels (i,j)

  (x,y) = map_to_canvas (i,j)

   if F(x,y) < 0 

   set_pixel (i,j, color)
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Barycentric Interpolation
• Barycentric coordinates: 

- p = αa + βb + γc   with  α + β + γ = 1
- Unique for non-collinear a,b,c 
- Ratio of triangle areas 
- α(p), β(p), γ(p) are linear functions
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Barycentric Interpolation
• Barycentric coordinates: 

- p = αa + βb + γc   with  α + β + γ = 1
- Unique for non-collinear a,b,c 
- Ratio of triangle areas 
- α(p), β(p), γ(p) are linear functions 
- Gives inside/outside information 
- Use barycentric coordinates to interpolate vertex normals 

(or other data, e.g. colors)

A
B

C

P

Per-vertex Per-pixel

Evaluate color on vertices, 
then interpolates it

Interpolates positions 
and normals,  

then evaluate color on 
each pixel
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• Each triangle is represented as three 2D points 
(x0, y0), (x1, y1), (x2, y2) 

• Rasterization using barycentric coordinates

Triangle Rasterization

for all y do
     for all x do
          compute (α,β,γ) for (x,y)

          if (α ∈ [0,1] and β ∈ [0,1] and γ ∈ [0,1]

               set_pixel (x,y)
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Rasterizing lines 

• Define line as a rectangle  

• Specify by two endpoints  

• Approximate rectangle by 
drawing all pixels whose centers 
fall within the line  

• Problem: sometimes turns on 
adjacent pixels 

 15
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Rasterizing lines 

• Define line as a rectangle  

• Specify by two endpoints  

• Approximate rectangle by 
drawing all pixels whose centers 
fall within the line  

• Problem: sometimes turns on 
adjacent pixels 
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Point sampling in 
action 
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midpoint alg. 

• Point sampling unit width rectangle 
leads to uneven line width  

• Define line width parallel to pixel 
grid  

• That is, turn on the single nearest 
pixel in each column  

• Note that 45o lines are now thinner 
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midpoint alg.

• Point sampling unit width rectangle 
leads to uneven line width  

• Define line width parallel to pixel 
grid  

• That is, turn on the single nearest 
pixel in each column  

• Note that 45o lines are now thinner 
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Midpoint algorithm 
in action 
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History
• Bresenham's line algorithm is named after Jack 

Elton Bresenham who developed it in 1962 at IBM. 

• The Calcomp 565 drum plotter, introduced in 1959, 
was one of the first computer graphics output 
devices sold. 

• Later extended to Bresenham's circle 
algorithm or midpoint circle algorithm.

A Calcomp 565 drum plotter.

Closeup of Calcomp plotter right side, showing controls 
for manually moving the drum. Similar controls on the left 

move the pen carriage.

https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
https://en.wikipedia.org/wiki/International_Business_Machines
https://en.wikipedia.org/wiki/Calcomp
https://en.wikipedia.org/wiki/Plotter
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Midpoint_circle_algorithm
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Algorithm for computer control of a digital 
plotter 

• 1962 by Jack Elton Bresenham

Comparison of r and q can be implemented by comparing hypotenuse since the two triangles are 
similar. 

Computation of distance of the hypotenuse is simpler, see next page.

https://en.wikipedia.org/wiki/Jack_Elton_Bresenham
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Algorithms for drawing lines 
• line equation: 

 y=b+mx 


• Simple algorithm: evaluate line equation per 
column 


• W.l.o.g. x0 < x1;  
 0≤m≤1 

 23

for x = ceil(x0) to floor(x1) 
  y = b + m*x  
  output(x, round(y)) 
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Optimizing line drawing 
• Multiplying and rounding is slow  

• At each pixel the only options are 
E and NE  

• d = m(x + 1) + b – y  

• d > 0.5 decides between  

• E and NE 

 24
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Optimizing line drawing 
• d = m(x +1) + b – y  
• If d > 0.5 

- y1 = y+1 
- d1 = m(x +1+1) + b – y-1 
-      = d + m – 1 

• d < 0.5  
- y1 = y 
- d1 = m(x +1+1) + b – y 
-      = d + m

 25

• Do that with addition  
• Known as 

“DDA” (digital differential analyzer)
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Mid-Point => Bresenham’s line alg. 
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x = ceil(x0) 
 
y = round(m*x + b) 
  
d = m*(x + 1) + b – y 
  
while x < floor(x1) 
     if d > 0.5 
  

y += 1 
  
d –= 1 
  

x += 1 

d += m 
  
output(x, y) 

• Still have a “float” operation in calculation of “d” 

• If known 2 endpoints (x0, y0), (xn, yn), draw line 
=> ∆y=yn-y0, ∆x=xn-x0 are integers 

• Lets create a new decision operator by multiplying 
2∆x  (recall m=∆y/∆x )
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Bresenham line algorithm
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• d = m(x +1) + b – y  
• If d > 0.5 

- y1 = y+1 
- d1 = m(x +1+1) + b – y-1 
-      = d + m – 1 

• d < 0.5  
- y1 = y 
- d1 = m(x +1+1) + b – y 
-      = d + m

• 2d∆x = 2∆y(x +1) + 2∆x(b – y)  
• If 2d∆x > ∆x  

- y1 = y+1 
- 2d1∆x = 2∆y (x +1+1) + 2∆x(b – y-1) 
-      = 2d∆x + 2∆y – 2∆x 

• d < 0.5  
- y1 = y 
- 2d1∆x = m(x +1+1) + b – y 
-      = 2d ∆x + 2∆y
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Bresenham line algorithm
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x = ceil(x0) 
 
y = round(m*x + b) 
  
d = m*(x + 1) + b – y 
  
while x < floor(x1) 
     if d > 0.5 
  

y += 1 
  
d –= 1 
  

x += 1 

d += m 
  
output(x, y) 

x = x0 
 
y = y0 
  
p=2∆xd = 2∆y(x0 +1) + 2∆x(b – y0)  
while x < xn 
     if p > ∆x 
  

y += 1 
  
p –= 2∆x 
  

x += 1 

p += 2∆y 
  
output(x, y) 

• 2d∆x = 2∆y(x +1) + 2∆x(b – y)  
• If 2d∆x > ∆x  

- y1 = y+1 
- 2d1∆x = 2∆y (x +1+1) + 2∆x(b – y-1) 
-      = 2d∆x + 2∆y – 2∆x 

• d < 0.5  
- y1 = y 
- 2d1∆x = m(x +1+1) + b – y 
-      = 2d ∆x + 2∆y

Float？
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Bresenham line algorithm
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x = x0 
 
y = y0 
  
p = 2∆y
while x < xn 
     if p > ∆x 
  

y += 1 
  
p –= 2∆x 
  

x += 1 

p += 2∆y 
  
output(x, y) 

Multiplication?

p=2∆xd = 2∆y(x0 +1) + 2∆x(b – y0) 
= 2∆y(x0 +1) - 2∆xmx0 
= 2∆y(x0 +1) - 2∆yx0
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Bresenham line algorithm
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x = x0 
; y = y0  
; 
a= 2∆x; c = 2∆y; 
p = c
while x < xn 
     if p > ∆x 
  

y += 1 
  
p –= a 
  

x += 1 

p += c  
output(x, y) 

Note -- main loop: 
• Only integer math. 
• No float representation, or 

operations needed. 
• No multiplication 

x = x0 
 
y = y0 
  
p = 2∆y 
while x < xn 
     if p > ∆x 
  

y += 1 
  
p –= 2∆x 
  

x += 1 

p += 2∆y 
  
output(x, y) 
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Bresenham Line Algorithm
Example: 

(20,10) to (30,18) 

∆x = 10, ∆y = 8 

(slope 0.8)

0 6 (21,11) 
2 (22,12) 
-2 (23,12) 
14 (24,13) 
10 (25,14)

5

1 

2

6 

7

3 8

4 9

k Pk (xk+1  ,yk+1 ) k pk (xk+1  ,yk+1 )

full algorithm -- page 90-91 Hearn  
• adjusts for slope m>1 
• re-orders x1,x2,y1,y2 as necessary 

6 (26,15)
2 (27,16)
-2 (28,16)
14 (29,17)
10 (30,18)

http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html

http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
http://www.cosc.canterbury.ac.nz/people/mukundan/cogr/LineMP.html
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A Simple Circle Drawing Algorithm

• The equation for a circle is: 
• where r is the radius of the circle 

• So, we can write a simple circle drawing algorithm by solving the 
equation for y at unit x intervals using: 

222 ryx =+

22 xry −±=
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A Simple Circle Drawing Algorithm (cont…)

20020 22
0 ≈−=y

20120 22
1 ≈−=y

20220 22
2 ≈−=y

61920 22
19 ≈−=y

02020 22
20 ≈−=y
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A Simple Circle Drawing Algorithm (cont…)

• However, unsurprisingly this is not a brilliant solution! 

• Firstly, the resulting circle has large gaps where the slope 
approaches the vertical 

• Secondly, the calculations are not very efficient 

- The square (multiply) operations 

- The square root operation – try really hard to avoid these! 

• We need a more efficient, more accurate solution
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Eight-Way Symmetry
• The first thing we can notice to make our circle drawing algorithm 

more efficient is that circles centred at (0, 0) have eight-way 
symmetry (x, y)

(y, x)

(y, -x)

(x, -y)(-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2
R
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Mid-Point Circle Algorithm

• Similarly to the case with lines, there is an 
incremental algorithm for drawing circles – the 
mid-point circle algorithm 

• In the mid-point circle algorithm we use eight-
way symmetry so only ever calculate the points 
for the top right eighth of a circle, and then use 
symmetry to get the rest of the points

The mid-point circle algorithm was 
developed by Jack Bresenham, who 
we heard about earlier. Bresenham’s 
patent for the algorithm can be 
viewed here. 

http://patft.uspto.gov/netacgi/nph-Parser?u=/netahtml/srchnum.htm&Sect1=PTO1&Sect2=HITOFF&p=1&r=1&l=50&f=G&d=PALL&s1=4371933.PN.&OS=PN/4371933&RS=PN/4371933
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Mid-Point Circle Algorithm (cont…)
(xk+1, yk)

(xk+1, yk-1)

(xk, yk)
• Assume that we have  

just plotted point (xk, yk) 

• The next point is a  
choice between (xk+1, yk)  
and (xk+1, yk-1) 

• We would like to choose  
the point that is nearest to  
the actual circle 

• So how do we make this choice?
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Mid-Point Circle Algorithm (cont…)
• Let’s re-jig the equation of the circle slightly: 

• The equation evaluates as follows: 

• By evaluating this function at the midpoint between the candidate pixels 
we can make our decision

222),( ryxyxfcirc −+=

⎪
⎩

⎪
⎨

⎧

>

=

<

 
,0
,0
,0

 ),( yxfcirc

boundary circle  theinside is ),( if yx
boundary circle on the is ),( if yx

boundary circle  theoutside is ),( if yx

xk+1

yk+1 

yk

d2 
d1

y=mx+b

xk
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Mid-Point Circle Algorithm (cont…)
• Assuming we have just plotted the pixel at (xk,yk) so we need to choose 

between (xk+1,yk) and (xk+1,yk-1) 

• Our decision variable can be defined as: 

• If pk < 0 the midpoint is inside the circle and and the pixel at yk is closer to 
the circle 

• Otherwise the midpoint is outside and yk-1 is closer

222 )2
1()1(

)2
1,1(

ryx

yxfp

kk

kkcirck

−−++=

−+=
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Mid-Point Circle Algorithm (cont…)
• To ensure things are as efficient as possible we can do all of our 

calculations incrementally 

• First consider: 

• or: 
• where yk+1 is either yk or yk-1 depending on the sign of pk

( )
( ) 22

1
2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck

−−+++=

−+=

+

+++

1)()()1(2 1
22

11 +−−−+++= +++ kkkkkkk yyyyxpp
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Mid-Point Circle Algorithm (cont…)
• The first decision variable is 

given as: 

• pk < 0 => yk+1= yk : 

• pk > 0 => yk+1= yk -1:

r

rr

rfp circ

−=

−−+=

−=

4
5

)2
1(1

)2
1,1(

22

0

12 11 ++= ++ kkk xpp

1)()()1(2 1
22

11 +−−−+++= +++ kkkkkkk yyyyxpp

𝑝𝑘+1 = 𝑝𝑘  +  2𝑥𝑘+1 + 1 − 2𝑦𝑘 + 2
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The Mid-Point Circle Algorithm
1. Input radius r and circle centre (xc, yc), then set the coordinates for the first 
point on the circumference of a circle centred on the origin as: 

2. Calculate the initial value of the decision parameter as: 

3. Starting with k = 0 at each position xk, perform the following test. If pk < 0, the 
next point along the circle centred on (0, 0) is (xk+1, yk) and: 

),0(),( 00 ryx =

rp −= 4
5

0

12 11 ++= ++ kkk xpp
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The Mid-Point Circle Algorithm (cont…)
4. Otherwise the next point along the circle is (xk+1, yk-1) and: 

5. Determine symmetry points in the other seven octants 

6. Move each calculated pixel position (x, y) onto the circular path centred at (xc, yc) 
to plot the coordinate values: 
7. Repeat steps 3 to 5 until x >= y 

111 212 +++ −++= kkkk yxpp

cxxx += cyyy +=
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Mid-Point Circle Algorithm Summary

• The key insights in the mid-point circle algorithm are: 

- Eight-way symmetry can hugely reduce the work in drawing a circle 

- Moving in unit steps along the x axis at each point along the circle’s 
edge we need to choose between two possible y coordinates
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Linear interpolation 

 45
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Linear interpolation 
• Pixels are not  

 exactly on the line  

• Define 2D function  
 by projection on 
 line  

– this is linear in 2D  

– therefore can use  
 DDA to interpolate

 46
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Linear interpolation 
• Pixels are not  

 exactly on the line  

• Define 2D function  
 by projection on 
 line  

– this is linear in 2D  

– therefore can use  
 DDA to interpolate

 47
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Linear interpolation 
• Pixels are not  

 exactly on the line  

• Define 2D function  
 by projection on 
 line  

– this is linear in 2D  

– therefore can use  
 DDA to interpolate

 48
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Alternate interpretation 

• We are updating d and α as we step from pixel to pixel  

- d tells us how far from the line we are 

- α tells us how far along the line we are  

• So d and α are coordinates in a coordinate system oriented to the 
line 

 49
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Rasterizing triangles 
• The most common case in most applications  

- with good antialiasing can be the only case 
- some systems render a line as two skinny triangles  

• Triangle represented by three vertices  

• Simple way to think of algorithm follows the pixel-walk interpretation 
of line rasterization  
- walk from pixel to pixel over (at least) the polygon’s area 
- evaluate linear functions as you go 
- use those functions to decide which pixels are inside

 50



Computer Graphics – Junjie Cao

Rasterizing triangles 

 51
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Rasterizing triangles 
• Summary  

1  evaluation of linear functions on pixel  
grid  

2 these functions are defined by 
parameter values at vertices  

3  using extra parameters  
to determine  
 fragment set 

 52
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1. Incremental linear evaluation 

 53
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Incremental linear evaluation 

 54
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Rasterizing triangles 
• Summary  

1  evaluation of linear functions on pixel  
grid  

2 these functions are defined by 
parameter values at vertices  

3  using extra parameters  
to determine  
 fragment set 

 55
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2. Defining parameter functions 

 56
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Defining parameter functions 

 57
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Defining parameter functions 

 58



Computer Graphics – Junjie Cao

Interpolating several parameters 

 59
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Rasterizing triangles 
• Summary  

1  evaluation of linear functions on pixel  
grid  

2 these functions are defined by 
parameter values at vertices  

3  using extra parameters  
to determine  
 fragment set 

 60



Computer Graphics – Junjie Cao

3. Clipping to the triangle 
• Interpolate three barycentric 

 coordinates across the  
 plane  

- recall each barycentric coord 
 is 1 at one vert. and 0 at 
 
the other two  

• Output fragments only 
 when all three are > 0.  

 61



Computer Graphics – Junjie Cao

Pixel-walk (Pineda) rasterization 
• Conservatively 

 visit a superset of  
 the pixels (BBox) 

• Interpolate linear 
 functions  

• Use those functions 
 to determine when 
 to emit a fragment  

 62
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Rasterizing triangles 

• Exercise caution with rounding 
and arbitrary decisions  

- need to visit these pixels once: 
no hole 

- but it’s important not to visit 
them twice! 

 63



Computer Graphics – Junjie Cao

Rasterizing triangles 
• Exercise caution with rounding and arbitrary 

decisions  

- need to visit these pixels once: no hole 

- but it’s important not to visit them twice!  

• Consistency 

- Coordinate inner contradiction via a 
global view: off-screen point p

 64
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Perspective and interpolation 
• interpolating values in screen space is not the whole story  

- often we are interpolating values that are supposed  to vary linearly in the scene

- because perspective projection 

 does not preserve ratios of lengths, these values should not vary linearly in 
screen space 

 65
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Perspective and interpolation 
• Texture coordinates are the canonical example  

- equal steps in screen space are unequal steps in texture space  

 66

straightforward linear interpolation 
all checkers in each triangle are equal size 
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Perspective and interpolation 
• Texture coordinates are the canonical example  

- equal steps in screen space are unequal steps in texture space  

 67
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Perspective correct interpolation
• Linear interpolation still suffices if we do it the right way  

- remember projective transformations preserve straight lines 

 68
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Perspective correct interpolation
• Linear interpolation still suffices if we do it the right way  

- remember projective transformations preserve straight lines 
- just carrying the tex, coord. along is not a projective transform.  

 69
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Perspective correct interpolation
• Solution: treat u and v as additional coordinates in the projective 

transformation 

- now the full transformation on (x, y, z, u, v) is projective 

 70
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Perspective correct interpolation
• Bottom line: treat all attributes the same as (x, y, z)  

- divide them by w before interpolation 

- interpolate quantities u/w, etc., linearly across screen 

- also interpolate 1/w as an additional attribute 

- divide interpolated u/w by 1/w to recover u  

 71
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Clipping 
• Rasterizer tends to assume triangles are on screen  

- particularly problematic to have triangles 
crossing 
 the plane z = 0  

• After projection, before perspective divide  

- clip against the planes x, y, z = 1, –1 (6 planes) 

- primitive operation: clip triangle against axis-
aligned plane  

 72
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Clipping a triangle against a plane 
• 4 cases, based on sidedness of vertices 

- all in (keep) 
- all out (discard) 
- one in, two out (one clipped triangle) 
- two in, one out (two clipped triangles) 
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Objects Depth Sorting
• To handle occlusion, you 

can sort all the objects in 
a scene by depth 

• This is not always 
possible!
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z-buffering

Image Depth (z)

• You render the image both in the Image and in 
the depth buffer, where you store only the depth 

• When a new fragment comes in, you draw it in 
the image only if it is closer 

• This always work and it is cheap to evaluate! It is 
the default in all graphics hardware 

• You still have to sort for transparency…
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z-buffer quantization and “z-fighting”
• The z-buffer is quantized (the 

number of bits is heavily 
dependent on the hardware 
platform) 

• Two close object might be 
quantized differently, leading to 
strange artifacts, usually called 
“z-fighting”
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• Render nxn pixels instead of one 

• Assign the average to the pixel

Super Sampling Anti-Aliasing

Image Copyright: Fritz Kessler



Computer Graphics – Junjie Cao

Many different names and variants
• SSAA (FSAA) 

• MSAA 

• CSAA 

• EQAA 

• FXAA 

• TX AA

Copyright: tested.com (http://www.tested.com/tech/pcs/1194-
how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/#)

MSAA

http://tested.com/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
http://www.tested.com/tech/pcs/1194-how-to-choose-the-right-anti-aliasing-mode-for-your-gpu/
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