
Computer Graphics
- Scene Graphs

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/



The representations of Mesh && Scene
• Mesh: {triangles}, an object in a scene
• Scene: {objects} in desired positions => a great many transformations
• What => easier scene manipulation?
• Most scenes admit to a hierarchical organization =>
• Scene graph



Hierarchical Models

• Many graphical objects are structured
• Structure often naturally hierarchical

• Wheels of a car 
• Arms or legs of a figure
• Chess pieces

• Exploit structure for
• Efficient rendering

• Example: tree leaves
• Concise specification of model parameters

• Example: joint angles



Instance Transformation
• Instances can be shared across space or time

• Write a function that renders the object in “standard” configuration
• Apply transformations to different instances
• Typical order: scaling, rotation, translation



Animation: modeling motion
Luxo Jr. (Pixar 1986)

Pixar Shorts Collection Luxo Jr 1986



1st example



1st example



1st example

Scene graph



2nd example – How to draw a scene?

Interleave Drawing



More Complex Objects
• Tree rather than linear structure
• Interleave along each branch
• Use push and pop to save state



3rd example
• Can represent drawing with flat list

• but editing operations require updating many transforms

Cornell CS4620 Fall 2018 • Lecture 17 © 2018 Steve Marschner • 5



• Treat a set of objects as one
• Introduce new object type: group

– contains list of references to member objects
• This makes the model into a tree

– interior nodes = groups
– leaf nodes = objects
– edges = membership of object in group

Groups of objects



3rd example
• Add group as a new object type

– lets the data structure reflect the drawing structure
– enables high-level editing by changing just one node



• Simple idea: allow an object to be a member of more than  
one group at once
– transform different in each case
– leads to linked copies
– single editing operation changes all instances

Variants of the Scene Graph - Instancing



3rd example
• Allow multiple references to nodes

– reflects more of drawing structure
– allows editing of repeated parts in one operation



3rd example
• Allow multiple references to nodes

– reflects more of drawing structure
– allows editing of repeated parts in one operation



Jan-Walter Schliep, Burak Kahraman,Timm Dapper | Laubwerk via PBRT gallery



• With instances, there is no more tree
– an object that is instanced multiple times has 

more than one parent
• Transform tree becomes DAG

–directed acyclic graph
– group is not allowed to contain itself, even

indirectly
• Transforms still accumulate along path 

from root
– now paths from root to leaves are identified 

with scene objects

The Scene Graph (with instances)



Scene Graph & matrix stack

pop( )

Active matrixActive matrixActive matrix
M = I

The current matrix is postmultiplied by the matrix



A recursive traversal of a scene graph



Hierarchical Tree Traversal
• Order not necessarily fixed
• Example:



Using Tree Data Structures
• Can make tree form explicit in data structure



Initializing Tree Data Structure
• Initializing transformation matrix for node 

treenode torso, head, ...;
/* in init function */
glLoadIdentity();
glRotatef(...);
glGetFloatv(GL_MODELVIEW_MATRIX, torso.m);

• Initializing pointers
torso.f = drawTorso;
torso.sibling = NULL;
torso.child = &head;



Generic Traversal
• Recursive definition



• Object-oriented language is convenient
– define shapes and groups as derived from single class

abstract class Shape { void draw();}

class Square extends Shape { 
void draw() {

// draw unit square}}

class Circle extends Shape { 
void draw() {

// draw unit circle}}

Implementing a hierarchy



• Pass a transform down the hierarchy
– before drawing, concatenate

abstract class Shape { void draw(Transform t_c);}

class Square extends Shape { 
void draw(Transform t_c) {

// draw t_c * unit square
}

}

class Circle extends Shape {  
void draw(Transform t_c) {

// draw t_c * unit circle
}

}

Implementing traversal

class Group extends Shape {  
Transform t;
ShapeList members;
void draw(Transform t_c) { 
for (m in members) {

m.draw(t_c * t);}}}



• Editing a transformation
– good to present usable UI

• Getting transform of object in canonical (world) frame
– traverse path from root to leaf

• Grouping and ungrouping
– can do these operations without moving anything
– group: insert identity node
– ungroup: remove node, push transform to children

• Reparenting
– move node from one parent to another
– can do without altering position

Basic Scene Graph operations



• Where transforms go
– in every node
– on edges
– in group nodes only
– in special Transform nodes

• Tree vs. DAG
• Nodes for cameras and lights
• Nodes that set attributes

– e.g. “make everything in my subtree green”

Scene Graph variations



OpenGL Terrain Generator
• An example of OpenGL terrain generator developed by 

António Ramires Fernandes can be found in: 
http://www.lighthouse3d.com/opengl/appstools/tg/

• Terrain generation from an image, computing normals
and simulating both directional and positional lights

29



Assignment 1： Building the solar system

• You will need to write from scratch a complete OpenGL programme that 
renders a Sun with an orbiting planet and a moon orbiting the planet

30



Assignment Basic Implementation
The basic implementation includes the following:
• Add a sphere representing the sun planet
• Make the sun planet to rotate around itself
• Add another sphere representing the earth
• Make the earth planet to rotate around itself
• Make the earth planet to rotate around sun
• Add another sphere representing the moon
• Make the moon planet to rotate around itself
• Make the moon planet to rotate around the earth
• Control the camera position using the keyboard
• Control the camera position using widget menus
• Add a light source
• Add shading to the planets
• Add material properties to the planets (you have to check this out
• yourselves)

31



Assignment Advanced Implementation
Recommended Implementation
• Add more planets, e.g. if you are quick enough you could create the 

complete solar system
• Add more light sources (OpenGL supports up to 8 lights)
• Have planets counter rotating
• Add more moons to planets
• Add stars to the planetary system
• Add spaceships

32



Assignment 2: Building a robot arm or a robot



Thanks


