
Computer Graphics
-Spatial Data Structures

Junjie Cao @ DLUT
Spring 2019

http://jjcao.github.io/ComputerGraphics/

Review: ray-triangle intersection
• Find ray-plane intersection

• Determine if point of intersection is within triangle

Complexity of geometry

Types of Queries
• Graphic applications often require spatial queries

• Find the k points closer to a specific point p (k-Nearest Neighbours, knn)

• Is object X intersection with object Y? (Intersection)

• What is the volume of the intersection between two objects?

• Brute force search is expensive
• Instead, you can solve these queries with an initial preprocessing that creates a data

structure which supports efficient queries

• Speed-up of 10x, 100x, or more

Clipping with spatial data structure

Accelerating Geometric
Queries

Ray-primitive queries
• Given primitive p:

• p.intersect(r) returns value of t corresponding to the point
of intersection with ray r

• p.bbox() returns axis-alighed bounding box of the primitive
• tri.bbox():

• tri_min = min (p0, min(p1,p2))
• tri_max = max (p0, max(p1,p2))
• Return bbox(tri_min, tri_max)

Ray-scene intersection
• Find the first primitive the ray hits

• Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

Complexity: O(N)

A simpler problem
• Imagine I have a set of integers S
• Given an integer k=18, find the element in S that is closest to k:

• What’s the cost of finding k in terms of the size N of the set?
• Can we do better?
• Suppose we first sort the integers:

• How much does it now cost to find k (including sorting)?
• Cost for just ONE query: O(n log n)
• Amortized cost: O(log n)

How do we organize scene primitives to
enable fast ray-scene intersection queries?

Two main ideas
• object partitioning (Bounding Volume Hierarchies)

• objects are divided into disjoint groups,
• but the groups may end up overlapping in space.

• space partitioning (…)
• space is divided into separate partitions,
• but one object may have to intersect more than one partition.

Wrap complex objects in simple ones
• Does ray intersect bounding box?

• No: does not intersect enclosed objects
• Yes: calculate intersection with enclosed objects

• Common types:

Ray-axis-aligned-box intersection
• What is ray’s closest/farthest intersection with axis-aligned box?

Figure shows intersections with x=x0 and x=x1 planes.

Ray-axis-aligned-box intersection
• Compute intersections with all planes, take intersection of tmin/tmax

intervals

How do we know when the ray misses the box?

Only one bbox & Missing
Ray misses bounding box of all primitives in scene

Cost (misses box):
preprocessing: O(n)
ray-box test: O(1)
amortized cost*: O(1)

*over many ray-scene intersection
tests

Only one bbox & Hitted

Cost (hits box):
preprocessing: O(n)
ray-box test: O(1)
triangle tests: O(n)
amortized cost*: O(n)

Still no better than naïve algorithm
(test all triangles)!

Another simple case

A bounding box of bounding boxes!
There is no reason to stop there!

Bounding volume hierarchy (BVH)
• Interior nodes:

• Stores subtrees
• Not store primitives directly

• Leaf nodes:
• store small list of primitives

Two different BVH organizations of the
same scene containing 22 primitives.
Leaf node are the same.

Another BVH example
• BVH partitions each node’s primitives into disjoints sets

• Note: The sets can still be overlapping in space (below: child
bounding boxes may overlap in space)

Ray-
scene
interse
ction
using
a BVH

Improvement: “front-to-back” traversal

Another type of query: any hit
• Sometimes it’s useful to know if the ray hits ANY primitive in the

scene at all (don’t care about distance to first hit)

For a given set of primitives, there are many
possible BVHs

• (2N/2 ways to partition N primitives into two groups)

• Q: How do we build a high-quality BVH?

Intuition about a “good” partition?

What are we really trying to do?
• A good partitioning minimizes the cost of finding the

closest intersection of a ray with primitives in the node.

• If a node is a leaf node (no partitioning):

Cost of making a partition
• The expected cost of ray-node intersection, given that the node’s

primitives are partitioned into child sets A and B is:

Estimating probabilities
• For a given direction, the number of rays that hits an object is

proportional to the projected area

Estimating probabilities
• For convex object A inside convex object B, the probability that a

random ray that hits B also hits A is given by the ratio of the
surface areas SA and SB of these objects.

• Surface area heuristic (SAH):

Assumptions of the SAH (may not hold in practice):
Rays are randomly distributed
Rays are not occluded

Implementing partitions for build BVH
• Constrain search for good partitions to axis-aligned spatial

partitions
• Choose an axis; Choose a split plane on that axis
• Partition primitives by the side of splitting plane their centroid lies
• SAH changes only when split plane moves past triangle boundary
• Have to consider rather large number of possible split planes…

Build BVH x = 0, y = 1, and z = 2

Efficiently building BVH
• Efficient modern approximation: split spatial extent of primitives into B buckets (B is

typically small: B < 32)

function bvh-node::create(object-array A, int AXIS)
if (N==1) then … else if (N==2) …
else

initialize buckets along AXIS
For each primitive p in A:

b = compute_bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;

For each of the B-1 possible partitioning planes evaluate SAH, return array A1, A2
left= new bvh-node(A1, (AXIS +1) mod 3)
right = new bvh-node(A2, (AXIS +1) mod 3)
bbox = combine(left→bbox, right→bbox)

Primitive-partitioning acceleration
structures vs. space-partitioning structures

• Primitive partitioning (BVH): partitions
node’s primitives into disjoint sets (but
sets may overlap in space)

• Space-partitioning (grid, K-D tree)
partitions space into disjoint regions
(primitives may be contained in multiple
regions of space)

Space-partitioning
• Basic techniques:

Uniform grid
• Partition space into equal sized volumes (voxel/cell)
• Each grid cell contains primitives that overlap voxel. (very cheap to

construct acceleration structure)
• Indexing function:

• Point3D à cell index, (constant time!)
• Queries: (“gather” approach)

• “I’m here. Which object is around me?”
• given a point to test p,

find cell C[j], test all objects linked to it

Image Copyright: Marco Tarini

Uniform grid
• Walk ray through volume in order

• Very efficient implementation possible (think: 3D line rasterization)
• Only consider intersection with primitives in voxels the ray intersects
• When an object is hit, the traversal ends.

What should the grid resolution be?

Memory quadratic with inverse of cell size!

Heuristic
• Choose number of voxels ~ total number of primitives

(constant prims per voxel — assuming uniform distribution of
primitives)

Uniform distribution of primitives

Uniform grid cannot adapt to non-uniform
distribution of geometry in scene

• “Teapot in a stadium problem”
• Scene has large spatial extent.
• Contains a high-resolution object that

has small spatial extent (ends up in
one grid cell)

Non-uniform distribution of geometric detail
requires adaptive grids

Quad-tree / octree
• Like uniform grid: easy to build

(don’t have to choose partition
planes)

• Has greater ability to adapt to
location of scene geometry than
uniform grid.

• But lower intersection
performance than K-D tree (only
limited ability to adapt)

Oc-Tree (3D)

K-D tree
• Recursively partition space via axis-aligned partitioning planes

• Interior nodes correspond to spatial splits (still correspond to spatial volume)
• Node traversal can proceed in front-to-back order
• unlike BVH, can terminate search after first hit is found

kD-tree

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

Image Copyright: Marco Tarini

Challenge: objects overlap multiple nodes
• Want node traversal to proceed in front-to-back order so

traversal can terminate search after first hit found

Intersection of ray & node

Fundamentals of Computer Graphics, Fourth Edition
Chapter 12

BSP-tree
Binary Spatial Partitioning tree

Image Copyright: Marco Tarini

BSP-trees for
the Concave Polyhedron proxy

Image Copyright: Marco Tarini

Concave Polygons: Odd-Even Test
• For each scan line

• Find all scan line/polygon intersections
• Sort them left to right
• Fill the interior spans between intersections

• Parity rule: inside after an odd number of crossings
1 in

4 out
7 in

7 in

BSP-trees for Inside-Outside Test

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

F

E

C

B

A

Image Copyright: Marco Tarini

painter’s algorithm
• sort objects back to front relative to viewpoint
• for each object do

• draw object on screen

• How to implement it?
• BSP

Painter’s Algorithm with BSP Trees
• The BSP tree algorithm works on any scene composed of polygons

where no polygon crosses the plane defined by any other polygon.
• This restriction is then relaxed by a preprocessing step: cutting

triangles.

The basic idea

Assume that that T2 is on the f1(p) < 0

Generalize to many objects

BSP-tree
Binary Spatial Partitioning tree

• Another variant
• a binary tree (like the kD-tree)
• but, each node is split by an arbitrary plane (or a line, in 2D)

• plane is stored at node, as (nx, ny, nz, k)
• planes can be optimized for a given scene

• e.g. to go for a 50%-50% object split at each node

• Another use: to test (Generic) Polyhedron proxy:
• note: with planes defined in its object space
• each leaf: inside or outside (no need to store them: left-child = in, right-

child = out)
• tree precomputed for a given object

Summary of accelerating geometric queries:
choose the right structure for the job
• Primitive vs. spatial partitioning:

• Primitive partitioning: partition sets of objects
• Bounded number of BVH nodes, simpler to update if primitives in scene change position

• Spatial partitioning: partition space
• Traverse space in order (first intersection is closest intersection), may intersect primitive

multiple times

• Adaptive structures (BVH, K-D tree)
• More costly to construct (must be able to amortize construction over many

geometric queries)
• Better intersection performance under non-uniform distribution of primitives

• Non-adaptive accelerations structures (uniform grids)
• Simple, cheap to construct
• Good intersection performance if scene primitives are uniformly distributed

• Many, many combinations thereof

Spatial Indexing Structures
• Regular Grid

• the most parallelizable (to update / construct / use)
• constant time access (best!)
• quadratic / cubic space (2D, 3D)

• kD-tree, Oct-tree, Quad-tree
• Compact, simple
• non constant accessing time (still logarithmic on average)

• BSP-tree
• optimized splits! best performance when accessed
• optimized splits! more complex construction / update
• ideal for static parts of the scene
• (also, used for visibility, generic polyhedron inside/outside test, etc)

• BVH
• simplest construction
• non necessarily very efficient to access

• may need to traverse multiple children
• if you do not have a scene-graph you need to create one

• ideal for dynamic parts of the scene

Real-Time and Interactive Ray Tracing

• Interactive ray tracing via space subdivision
http://www.cs.utah.edu/~reinhard/egwr/

• State of the art in interactive ray tracing
http://www.cs.utah.edu/~shirley/irt/

Collision Detection

• It is easy to do, the challenge is to do it efficiently
• An observation:

• most pair of objects do not intersect each other in a
scene, collisions are rare

• optimizing the intersections directly is important but
not sufficient, we need to optimize the detection of
non intersecting pairs (“early rejects”)

Geometric Proxies
• Idea: use a geometric proxy to approximate the objects in the

scene

Geometric Proxy
• Extremely coarse approximation

• Used as a:
• Bounding Volume

• the entire object must be contained inside
• exact result, you need to do more work if you detect a

collision

• Collision Object (or “hit-box”)
• approximation of the object
• no need to do anything else if an approximation is ok for

your use case

Example: Fighting Games

Street Fighter Alpha, CAPCOM 1995

Geometric Proxy is Extremely Common
• Physic engine

• collision detection
• collision response

• Rendering
• view frustum culling
• occlusion culling

• AI
• visibility test

• GUI
• picking

Properties of Geometric Proxies

1.How expensive are they to compute/update?

2.How much space do you need?

3.Are they invariant to the transformations applied on the object?

4.How good is the approximation?

5.How expensive are the collision queries with the other objects

in the scene?

Geometry Proxies: Sphere

Geometry Proxies: Capsule
• Sphere == points with dist from a point < radius
• Capsule == points with dist from a segment < radius

• Stored with:
• a segment (two end-points)
• a radius (a scalar)

• Popular option, compact to store, easy to construct,
easy to detect intersections, good approximation

Geometry Proxies: Half Space

• Trivial, but useful
• e.g. for a flat terrain,

or a wall

• Storage:
• (nx, ny, nz, k)
• a normal, a distance from the origin

• Tests are trivial

Geometry Proxies:
Axis-Aligned Bounding Box (AABB)

• Easy to update

• Compact (three intervals)

• Trivial to test

• It can only be translated or scaled, rotations are not supported

Geometry Proxies:
Box

• Similar to AABB, but not axis-aligned

• More expensive to compute and store
• You need intervals and a rotation

• Still not a great approximation, but it
is invariant to rotations and it is fast to
compute and use

Geometry Proxies (in 2D): Convex Polygon

• Intersection of half-planes
• each delimited by a line

• Stored as:
• a collection of (oriented) lines

• Test:
• a point is inside iff

it is in each half-plane
• Good approximation
• Moderate complexity

Geometry Proxies (in 3D): Convex Polyhedron

• Intersection of half-spaces

• Similar as previous, but in 3D
• Stored as a collection of planes
• Each plane is a normal + distance from origin
• Test: inside proxy iff inside each half-space

Geometry Proxies (in 3D): (General) Polyhedron

• Luxury Hit-Boxes :)
• The most accurate approximations

• The most expensive tests / storage

• Specific algorithms to test for collisions
• requiring some preprocessing

• and data structures (BSP-trees)

• Creation (as meshes):
• sometimes, with automatic simplification

• often, hand made (low poly modelling)

3D Meshes as Hit-Boxes

• These are often NOT the meshes that you use for

rendering

• much lower resolution (~ O(102))

• no attributes (no uv-mapping, no col, etc)

• closed, water-tight (inside != outside)

• often convex only

• can be polygonal (as long as the faces are flat)

3D Meshes as Hit-Boxes

mesh for rendering
(~600 tri faces)

(in wireframe) Collision object:
10 (polygonal) faces

3D Meshes as Hit-Boxes

mesh for rendering
(~300 tri faces) (in wireframe) Collision object:

12 (polygonal) faces

Geometry Proxies: Composite Hit-Boxes
• Union of Hit-Boxes

• inside iff inside of any sub Hit-Box

• Flexible
• union of convex Hit-Boxes ==> concave Hit-Box

• shape partially defined by a sphere,
partially by a box ==> better approximation

• Creation: typically by hand

• (remember: hit-boxes are usually assets)

How To Choose The Proxy?
• Application dependent
• Note: # of intersection tests to be implemented

quadratic wrt # of types supported

Type A

Type B

Type C

Type A Type B Type C

algorithm algorithm algorithm

algorithm

algorithmalgorithm

VS Point Ray

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm useful,
e.g.
for visibility

Collision Detection Strategies

• Static Collision detection
• (“a posteriori”, “discrete”)
• approximated
• simple + quick

• Dynamic Collision
detection
• (“a priori”, “continuous”)
• accurate
• demanding

Frame 1 Frame 2

???

Existing Implementations

• Intel Embree - BVH Tree - https://embree.github.io
• Nori - BVH - https://github.com/wjakob/nori
• Approximate knn - https://www.cs.umd.edu/~mount/ANN/
• Intersections -

http://www.realtimerendering.com/intersections.html

References
Foundations of Multidimensional and Metric Data Structures
Hanan Samet
http://www.realtimerendering.com/books.html
http://www.realtimerendering.com/intersections.html
Polygon Mesh Processing
Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy
Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley
Chapter 12

