Digital Geometry -Continuous Geometry of Curves

Junjie Cao @ DLUT
Spring 2019
http://jicao.github.io/DigitalGeometry/

Pleasure may come from illusion, but happiness can come only of reality.

3 Representations of Curve

- Explicit: $y=m x+b$
- Explicit Parametric (seen as a kinematic motion):
- $P=P_{0}+t\left(P_{1}-P_{0}\right)$
- curve: $\mathrm{r}=\mathrm{r}(\mathrm{t})$,
- surface: $r=r(u, v)$
- Implicit: $a x+b y+c=0$

Implicit representation of 3d Curve

- surface: level set of function $f(x, y, z): f(x, y, z)=0$, viz, solution set of $f(x, y, z)=0$.
- curve: solution set of
- $f(x, y, z)=0$
- $g(x, y, z)=0$
- point: solution set of
- $f(x, y, z)=0$
- $g(x, y, z)=0$
- $h(x, y, z)=0$

From implicit 2 Parametric representation

- If conditions of implicit function theorem are guaranteed
- Curve $=>r(x)=(x, y(x), z(x))$
- Surface $=>r(x, y)=(x, y, z(x, y))$ (Monge patch)

Parametric Curves

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right) \quad \mathbf{x}_{t}(t):=\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\left(\begin{array}{l}
\mathrm{d} x(t) / \mathrm{d} t \\
\mathrm{~d} y(t) / \mathrm{d} t \\
\mathrm{~d} z(t) / \mathrm{d} t
\end{array}\right)
$$

A parametric curve $\mathbf{x}(t)$ is

- simple: $\mathbf{x}(t)$ is injective (no self-intersections)
- differentiable: $\mathbf{x}_{t}(t)$ is defined for all $t \in[a, b]$
- regular: $\quad \mathbf{x}_{t}(t) \neq 0$ for all $t \in[a, b]$

nonsimple curves

Differentiable Curves

Definition:

A parameterized differentiable curve is a differentiable map $\boldsymbol{x}: I \rightarrow \boldsymbol{R}^{2}$ of an open interval $I=(a, b)$ of the real line \boldsymbol{R} into \boldsymbol{R}^{2} :

$$
\boldsymbol{x}(u)=(x(u), y(u))
$$

where $x(u)$ and $y(u)$ are differentiable functions.

Differentiable Curves - derivative

Definition:

The derivative of the curve at $\boldsymbol{x}(u)$ is the vector, tangent to the curve, defined as:

$$
x^{\prime}(u)=\left(x^{\prime}(u), y^{\prime}(u)\right)
$$

Differentiable Curves - regular

Definition:

The derivative of the curve at $\boldsymbol{x}(u)$ is the vector, tangent to the curve, defined as:

$$
\boldsymbol{x}^{\prime}(u)=\left(x^{\prime}(u), y^{\prime}(u)\right)
$$

The curve is said to be regular if $x^{\prime}(u) \neq 0$.

Length of a Curve / Arc length

Polyline chord length

$$
S=\sum_{i}\left\|\Delta \mathrm{x}_{i}\right\|=\sum_{i}\left\|\frac{\Delta \mathrm{x}_{i}}{\Delta t}\right\| \Delta t, \quad \Delta \mathrm{x}_{i}:=\left\|\mathrm{x}_{i+1}-\mathrm{x}_{i}\right\|
$$

Curve arc length ($\Delta t \rightarrow 0$)

$$
s=s(t)=\int_{a}^{t}\left\|\mathrm{x}_{t}\right\| \mathrm{d} t
$$

length $=$
Integration of Infinitesimal change

Regular Curves

Given a regular curve $x(u)$, and given, the arc-length from a to the point u is:

$$
s(u)=\int^{u}\left|\mathbf{X}^{\prime}(v)\right| d v
$$

If we partition the interval $[a, u]$ into N sub- intervals, setting $\Delta u=(u-a) / N$ and $u_{i}=a+i \Delta u$:

$$
\begin{aligned}
s(u) & =\lim _{N \rightarrow \infty} \sum_{i=0}\left|\mathrm{x}\left(u_{i+1}\right)-\mathrm{x}\left(u_{i}\right)\right| \\
& =\lim _{N \rightarrow \infty} \sum_{i=0}^{N-1} \frac{\left|\mathrm{x}\left(u_{i+1}\right)-\mathrm{x}\left(u_{i}\right)\right|}{\Delta u} \Delta u \\
& =\lim _{N \rightarrow \infty} \sum_{i=0}^{N-1} \mathrm{x}\left(u_{i}\right) \Delta u \\
& =\int_{a}^{u} \mid \mathrm{x}^{\prime}(v) d v
\end{aligned}
$$

Differentiable Curves

Definition:

We say that a regular curve is parameterized by arc-length if:

$$
\left|x^{\prime}(u)\right|=1
$$

In this case:

$$
s(u)=\int_{a}^{u} \mid X^{\prime}(v) d v=\int_{a}^{u} d v=u-a
$$

There are various names for such a parameterization ("unit speed", "arc-length", "isometric")

Regular Curves - Tangent

Definition:

The tangent to the curve at $\boldsymbol{x}(u)$ is the unit vector pointing in the direction of the derivative:

$$
\mathrm{t}(u)=\frac{\mathbf{X}^{\prime}(u)}{\left\|\mathbf{X}^{\prime}(u)\right\|}
$$

If \boldsymbol{x} is parameterized by arc-length: $\mathfrak{t}(u)=x^{\prime}(u)$

Normal N: a unit vector

$$
\mathbf{T}=\frac{d \mathbf{r}}{d s} \quad \mathbf{N}=\frac{\frac{d \mathbf{T}}{d s}}{\left\|\frac{d \mathbf{T}}{d s}\right\|} \quad \mathrm{dT} / \mathrm{d} s=\kappa \mathrm{N}
$$

The \mathbf{T} and \mathbf{N} vectors at two points on a plane curve, a translated version of the second frame (dotted), and the change in $\mathbf{T}: \delta \mathbf{T}$. $\delta \mathrm{s}$ is the distance between the points. In the limit dT/ds will be in the direction \mathbf{N}

T and N are always orthogonal. Why?

- Because if the change in T were parallel to T, then it would cease to have unit length!
- (This argument is a good one to keep in mind any time you work with unit vector fields.)
- By convention, N is a quarter turn in the counter-clockwise direction from T .

$$
\mathrm{n}(u)=\mathrm{t}(u)^{\perp}=\frac{\mathbf{x}^{\prime}(u)^{\perp}}{\left\|\mathrm{X}^{\prime}(u)\right\|}=\frac{\left(-y^{\prime}(u), x^{\prime}(u)\right)}{\sqrt{\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}}}
$$

- Curvature is the (negative) change in the normal is aligned with the tangent direction relative to change in distance along the curve:

$$
\kappa(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\boldsymbol{n}(u)-\boldsymbol{n}(u+\Delta u)}{\Delta s}, \boldsymbol{t}(u)\right\rangle
$$

If \boldsymbol{x} is parameterized by arc-length, then $\Delta s=\Delta u$ so the curvature becomes:

$$
\kappa(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\boldsymbol{n}(\Delta u)-\boldsymbol{n}(u+\Delta u)}{\Delta u}, \boldsymbol{t}(u)\right\rangle=-\left\langle\boldsymbol{n}^{\prime}(u), \boldsymbol{t}(u)\right\rangle
$$

Otherwise, we have $\Delta s / \Delta u=\left|x^{\prime}(u)\right|$, so that:

$$
\kappa(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{n(u)-\boldsymbol{n}(u+\Delta u)}{\Delta u \cdot\left|X^{\prime}(u)\right|}, t(u)\right\rangle=-\frac{\left\langle\boldsymbol{n}^{\prime}(u), t(u)\right\rangle}{\left|x^{\prime}(u)\right|}=-\frac{\left\langle\boldsymbol{n}^{\prime}(u), X^{\prime}(u)\right\rangle}{\left\langle\boldsymbol{X}^{\prime}(u), \boldsymbol{X}^{\prime}(u)\right\rangle}
$$

Alternate Interpretation:

Curvature is the (positive) change in the tangent vector along the normal direction relative to change in distance along the curve:

$$
\kappa(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\boldsymbol{t}(u+\Delta u)-\boldsymbol{t}(u)}{\Delta s}, n(u)\right\rangle
$$

Regular Curves

- Proof of Equivalence:
- To show equivalence, we need to show that:

$$
-\left\langle\boldsymbol{n}^{\prime}(u), \boldsymbol{t}(u)\right\rangle=\left\langle\boldsymbol{n}(u), \boldsymbol{t}^{\prime}(u)\right\rangle
$$

Taking the derivative of both sides:

$$
0=\langle\boldsymbol{n}(u), \boldsymbol{t}(u)\rangle
$$

we get:

$$
0=\frac{d}{d u}\langle\boldsymbol{n}(u), \boldsymbol{t}(u)\rangle=\left\langle\boldsymbol{n}^{\prime}(u), \boldsymbol{t}(u)\right\rangle+\left\langle\boldsymbol{n}(u), \boldsymbol{t}^{\prime}(u)\right\rangle
$$

Regular Curves

- Thus, we can also express the curvature as:

$$
\kappa(u)=-\frac{\left\langle\boldsymbol{n}^{\prime}(u), \boldsymbol{t}(u)\right\rangle}{\left|\boldsymbol{x}^{\prime}(u)\right|}=\frac{\left\langle\boldsymbol{n}(u), \boldsymbol{t}^{\prime}(u)\right\rangle}{\left|\boldsymbol{x}^{\prime}(u)\right|}=\ldots=\frac{\left\langle\boldsymbol{n}(u), \boldsymbol{x}^{\prime \prime}(u)\right\rangle}{\left\langle\boldsymbol{x}^{\prime}(u), \boldsymbol{x}^{\prime}(u)\right\rangle}
$$

Curvature is the (negative) change in the normal is

 aligned with the tangent
Claim:

If we look at how the normal changes along a curve, we find that for small distances, the change is in the direction of the tangent:

$$
\Delta n(u)=n(u+\Delta u)-n(u) \approx \kappa(u) t(u)
$$

Change in the normal is aligned with the tangent

Since $\boldsymbol{n}(u)$ is a unit-vector, we know that:

$$
1=\langle\mathrm{n}(u), \mathrm{n}(u)\rangle
$$

Taking derivatives of both sides, we get:

$$
\begin{aligned}
0 & =\frac{d}{d u}\langle\mathrm{n}(u), \mathrm{n}(u)\rangle \\
& =2\left\langle\frac{d}{d u} \mathrm{n}(u), \mathrm{n}(u)\right\rangle
\end{aligned}
$$

Thus, the change in the normal is perpendicular to the normal direction, so it's aligned with the tangent.

Change in the normal is aligned with the tangent $\Delta n(u)=n(u+\Delta u)-n(u) \approx \kappa(u) t(u)$ Note:

If we look at the value of κ we see that it's

- zero for straight curves
- small/positive for convex curves that turn slowly

- large/positive for convex curves that turn quickly
- small/negative for concave curves that turn slowly
- large/negative for concave curves that turn quickly

Regular Curves - curvature

Definition:

The curvature at $\boldsymbol{x}(u)$ is the change in normal vector along the tangent direction relative to change in distance along the curve:

$$
\kappa(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\mathrm{n}(u+\Delta u)-\mathrm{n}(u)}{\Delta s}, \mathrm{t}(u)\right\rangle
$$

Regular Curves

$$
\mathrm{k}(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\mathrm{n}(u+\Delta u)-\mathrm{n}(u)}{\Delta s}, \mathrm{t}(u)\right\rangle
$$

Note:
If \boldsymbol{x} is parameterized by arc-length, then $\Delta s=\Delta u$ so the curvature becomes:

$$
\mathfrak{k}(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\mathrm{n}(u+\Delta u)-\mathrm{n}(\Delta u)}{\Delta u}, \mathbf{t}(u)\right\rangle=\left\langle\mathrm{n}^{\prime}(u), \mathrm{t}(u)\right\rangle
$$

Otherwise, we have $\Delta s / \Delta u=\left|x^{\prime}(u)\right|$, so that:

$$
\mathfrak{k}(u)=\left\langle\lim _{\Delta u \rightarrow 0} \frac{\mathrm{n}(u+\Delta u)-\mathrm{n}(u)}{\Delta u \cdot\left|\mathrm{X}^{\prime}(u)\right|}, \mathrm{t}(u)\right\rangle=\frac{\left\langle\mathrm{n}^{\prime}(u), \mathrm{t}(u)\right\rangle}{\left|\mathrm{X}^{\prime}(u)\right|}
$$

Curvature

- Suppose that a particle moves along the curve with unit speed.
- Tangent \mathbf{T} : velocity vector
-dT/ds: acceleration vector

$$
\mathbf{T}=\frac{d \mathbf{r}}{d s}
$$

$$
\kappa(s):=\left\langle N(s), \frac{d}{d s} T(s)\right\rangle
$$

$$
\kappa=\left\|\frac{d \mathbf{T}}{d s}\right\|
$$

- Normal: direction of it

$$
\mathbf{N}=\frac{\frac{d \mathbf{T}}{d s}}{\left\|\frac{d \mathbf{T}}{d s}\right\|}
$$

Equivalently:

$$
\kappa(s)=\frac{d}{d s} \theta(s)
$$

$$
\begin{aligned}
T(s) & =(\cos \theta(s), \sin \theta(s)) \\
T^{\prime}(s) & =\theta^{\prime}(s)(-\sin \theta(s), \cos \theta(s)) \\
& :=\kappa(s) N(s)
\end{aligned}
$$

Fundamental Theorem of Plane Curves

- Fact. Up to rigid motions, an arc-length parameterized plane curve is uniquely determined by its curvature.
- Q: Given only the curvature function, how can we recover the curve?

A: Just "invert" the two relationships $\frac{d}{d s} \theta=\kappa, \frac{d}{d s} \gamma=T$
First integrate curvature to get angle: $\theta(s):=\int_{0}^{s} \kappa(t) d t$
Then evaluate unit tangents: $T(s):=(\cos (\theta), \sin (\theta))$
Finally, integrate tangents to get curve: $\gamma(s):=\int_{0}^{s} T(t) d t$

Gauß map $\widehat{\mathbf{n}}(\mathbf{x})$

Point on curve maps to point on unit circle

Curvature: Some Intuition

Shape operator (Weingarten map)

Change in normal as we slide along curve
negative directlonal derlvative D of Gauß map

$$
\mathrm{S}(\mathrm{v})=-D_{\mathrm{v}} \hat{\mathbf{n}}
$$

describes directional curvature
using normals as degrees of freedom
\rightarrow accuracy/convergence/Implementation (discretization)

Turning number

- Turning number, k
- Number of orbits in Gaussian image

Turning number theorem

- For a closed curve, the integral of curvature is an integer multiple of 2π

Whitney-Graustein Theorem

- (Whitney-Graustein) Two curves have the same turning number k if and only if they are related by regular homotopy, i.e., if one can continuously "deform" into the other while remaining regular (immersed).

Turning and Winding Numbers

- For a closed regular curve in the plane...
- The turning number k is the number of counterclockwise turns made by the tangent

- The winding number n is the number of times the curve goes around a particular point p

- can also be viewed as the total signed length of the projection of the curve onto a unit-length circle around p

Application: Generalized Winding Numbers

- winding number gives good indication of which points are inside/ outside
- Useful for a wide variety of practical tasks: extracting "watertight" mesh, tetrahedral meshing, constructive solid geometry (booleans), ...

Space curves

Curvature and Torsion of a Space Curve

- Euclidean invariants, i.e. invariant under rigid motion
- Curvature: Deviation from straight line, "bending"
- Torsion: Deviation from planarity, "twisting"
- Intrinsic properties of the curve
- Independent of parameterization
- Define curve uniquely up to a rigid motion

The Frenet Frame \& formula

- The tangent unit vector \mathbf{T} is defined as

$$
\begin{equation*}
\mathbf{T}=\frac{d \mathbf{r}}{d s} \tag{1}
\end{equation*}
$$

- The normal unit vector \mathbf{N} is defined as

$$
\begin{equation*}
\mathbf{N}=\frac{\frac{d \mathbf{T}}{d s}}{\left\|\frac{d \mathbf{T}}{d s}\right\|} \tag{2}
\end{equation*}
$$

- The binormal unit vector \mathbf{B} is defined as the cross product of \mathbf{T} and \mathbf{N} :

$$
\mathbf{B}=\mathbf{T} \times \mathbf{N} .
$$

(3)

$$
\left[\begin{array}{c}
\mathbf{T}^{\prime} \\
\mathbf{N}^{\prime} \\
\mathbf{B}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right] \begin{gathered}
\text { Torsion (deviation from planarity) } \\
\tau=\frac{1}{\kappa^{2}} \operatorname{det}\left(\left[\mathbf{x}_{s}, \mathbf{x}_{s s}, \mathbf{x}_{s s s}\right]\right)
\end{gathered}
$$

Curvature \& Torsion

- Change in the tangent describes bending (curvature);
- Change in binormal describes twisting (torsion)

$$
\begin{aligned}
\kappa & =-\left\langle N, \frac{d}{d s} T\right\rangle \\
\tau & =\left\langle N, \frac{d}{d s} B\right\rangle
\end{aligned}
$$

Curvature \& Osculating circle Planes defined by x and two vectors

- osculating plane: vectors \mathbf{t} and \mathbf{n}
- normal plane: vectors \mathbf{n} and \mathbf{b}
- rectifying plane: vectors \mathbf{t} and \mathbf{b}

Osculating circle

- second order contact with curve
- center $\mathbf{c}=\mathbf{x}+(1 / \kappa) \mathbf{n}$
- radius $1 / \kappa$

Thanks

