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Pleasure may come from illusion, but happiness can come only of reality.



3 Representations of Curve
• Explicit: y = mx + b

• Explicit Parametric (seen as a kinematic motion): 
• P = P0 + t (P1 - P0)
• curve: r=r(t),  
• surface: r=r(u,v)

• Implicit: ax + by + c = 0



Implicit representation of 3d Curve
• surface: level set of function f(x,y,z): f(x,y,z)=0, viz, solution set 

of f(x,y,z)=0.

• curve: solution set of 
• f(x,y,z)=0 
• g(x,y,z)=0

• point: solution set of  
• f(x,y,z)=0 
• g(x,y,z)=0
• h(x,y,z)=0



From implicit 2 Parametric representation
• If conditions of implicit function theorem are guaranteed

• Curve =>r(x)=(x,y(x),z(x))

• Surface =>r(x,y)=(x,y,z(x,y)) (Monge patch)



Parametric Curves

Advantages of parametric forms
1. Dimension independent
2. Easy to express in vector and matrix form



Simple curve



Differentiable	Curves
Definition:
A	parameterized differentiable curve is	a differentiable map
x:I®R2	of an open interval	I=(a,b) of the	real	line R	into R2:

x(u)=(x(u),y(u))
where	x(u) and y(u) are	differentiable functions.

x(u) = (u3 - 4u,u2 - 4)x(u) = (u3,u2 )



Differentiable	Curves - derivative

x(u) = (u3 - 4u,u2 - 4)x(u) = (u3,u2 )
x' (u) = (3u 2 - 4,2u)x' (u) = (3u2 ,2u)

Definition:
The derivative of the curve	at x(u) is	the vector,	tangent to the curve,	
defined as:

x'(u)=(x'(u),y'(u))



Differentiable	Curves - regular
Definition:
The derivative of the curve	at x(u) is	the vector,	tangent to the
curve,	defined as:

x'(u)=(x'(u),y'(u))
The curve	is	said to be regular if x'(u)≠0.

x(u) = (u3 - 4u,u2 - 4)x(u) = (u3,u2 )
x' (u) = (3u 2 - 4,2u)x' (u) = (3u2 ,2u)



Length of a Curve / Arc length



Regular Curves
Given a regular	curve x(u), and given, the arc-length from a	to the
point u is:

If we	partition the interval [a,u] into N sub- intervals, setting
Du=(u-a)/N and ui=a+iDu:N -1

s(u) = limå x(ui+1)-x(ui )

x(u )-x(u )
= limå i+1 i Du

= limå x'(ui )Du

u

= ò x'(v)dv
a

Du
N -1

N®¥ i=0

N -1

i=0N®¥

N®¥ i=0

x(u0)=x(a)

x(ui) x(uN)

u

s(u) = ò x ' (v) dv
a



Differentiable	Curves
Definition:
We	say that a regular curve	is parameterized by	arc-length if:

|x'(u)|=1

In this case:
u u

s(u) = ò x' (v) dv = ò dv = u - a
a a

There are various names for such a parameterization (“unit speed”, “arc-length”, 
“isometric”)



Regular Curves - Tangent
Definition:
The tangent to the curve	at x(u) is	the unit	vector pointing in the
direction of the derivative:

t(u) = x' (u)

If x	is	parameterized by arc-length: t(u) = x'(u)

x' (u)



Normal N: a unit vector

The T and N vectors at two points on a plane curve, a translated version 
of the second frame (dotted), and the change in T: δT. δs is the distance 
between the points. In the limit dT/ds will be in the direction N

dT/ds = kN



T and N are always orthogonal. Why?
• Because if the change in T were parallel to T, then it would cease to 

have unit length! 
• (This argument is a good one to keep in mind any time you work with unit vector 

fields.)

• By convention, N is a quarter turn in the counter-clockwise direction 
from T.

(- y' (u), x' (u))
(x' (u))2 + (y' (u))2x ' (u)

x ' (u)^n (u) = t (u)^ = =



• Curvature is the (negative) change in the normal is aligned with
the tangent direction relative to change in distance along the 
curve:





Alternate Interpretation:

Curvature is the (positive) change in the tangent vector along the 
normal direction relative to change in distance along the curve:



Regular Curves
• Proof of Equivalence:

• To show equivalence, we need to show that:



Regular Curves
• Thus, we can also express the curvature as:



Curvature is the (negative)	change in the normal is	
aligned with the	tangent

Claim:
If we	look	at how the normal changes along a curve,	we	find that for
small distances, the	change is	in the direction of the	tangent:

Dn(u)=n(u+Du)-n(u)» k(u)t(u)

n(u+Du)n(u)

x(u) x(u+Du)
t(u)

t(u)
Dn(u)



Change in the normal is	aligned with the	tangent
Dn(u)=n(u+Du)-n(u)» k(u)t(u)	

Proof:
Since n(u) is	a unit-vector, we	know	that:

1 = n (u),n (u)

n(u+Du)n(u)

x(u) x(u+Du)
t(u)

t(u)
Dn(u)

d n(u),n(u)= 2

0 = d n(u),n(u)

du

du

Taking derivatives of both sides,	we	get:

Thus, the change in the normal is	perpendicular to	the	normal
direction, so	it’s aligned with the	tangent.



Change in the normal is	aligned with the	tangent
Dn(u)=n(u+Du)-n(u)» k(u)t(u)	
Note:

If we	look	at the value of kwe see that it’s
– zero for	straight curves
– small/positive for convex curves	that	turn	
slowly

– large/positive for convex curves	that	turn
quickly

– small/negative for concave curves that	turn
slowly

– large/negative for	concave	curves	that	turn
quickly

n(u+Du)
n(u)

t(u)
t(u)

Dn(u)

n(u+Du)

t(u)
n(u)

t(u)

Dn(u)

n(u+Du)	

t(u)
n(u)

t(u)

Dn(u)

t(u)

Dn(u)
n(u +Du)

n(u)



n(u)

Regular Curves - curvature
Definition:
The curvature at x(u) is the change in normal vector along the
tangent direction relative to change in distance along the curve:

t(u)	 n(u+Du)

n(u+Du)-n(u)	

t(u)

lim n (u +Du) -n (u) ,t (u)k(u) =
Du®0 Ds



Regular Curves

Note:
If x	is	parameterized by arc-length, then Ds=Du
so the curvature becomes:

Otherwise, we	have Ds/Du=|x'(u)|, so that:

= n' (u),t(u)lim n(u +Du)-n(Du) ,t(u)k(u) =
Du®0 Du

lim n(u +Du)-n(u) ,t(u)k(u) =
Du®0 Ds

|x' (u) |
n' (u),t(u)

,t(u) =
Du× |x' (u) |

n(u +Du)-n(u)k(u) = lim
Du®0



Curvature
• Suppose that a particle moves along the curve with unit speed. 
• Tangent T: velocity vector
• dT/ds:        acceleration vector

• Curvature: magnitude of it

• Normal: direction of it





Fundamental Theorem of Plane Curves
• Fact. Up to rigid motions, an arc-length parameterized plane curve is 

uniquely determined by its curvature. 
• Q: Given only the curvature function, how can we recover the curve?





Curvature: Some Intuition



Turning number
• Turning number, k
• Number of orbits in Gaussian image



Turning number theorem
• For a closed curve, the integral of curvature is an integer multiple of 2π



Whitney-Graustein Theorem
• (Whitney-Graustein) Two curves have the same turning number k if and 

only if they are related by regular homotopy, i.e., if one can
continuously “deform” into the other while remaining regular 
(immersed).

“Regular Homotopies in the Plane” — https://youtu.be/fKFH3c7b57s



Turning and Winding Numbers
• For a closed regular curve in the plane… 
• The turning number k is the number of 

counterclockwise turns made by the tangent
• The winding number n is the number of times the 

curve goes around a particular point p 
• can also be viewed as the total signed length of the 

projection of the curve onto a unit-length circle around p



Application: Generalized Winding Numbers
• winding number gives good indication 

of which points are inside/ outside

• Useful for a wide variety of practical 
tasks: extracting “watertight” mesh, 
tetrahedral meshing, constructive 
solid geometry (booleans), …

Jacobson et al, “Robust Inside-Outside Segmentation using Generalized Winding Numbers” (2013)



Space curves



Curvature and Torsion of a Space Curve
• Euclidean invariants, i.e. invariant under rigid motion

• Curvature: Deviation from straight line, “bending”
• Torsion: Deviation from planarity, “twisting”

• Intrinsic properties of the curve
• Independent of parameterization

• Define curve uniquely up to a rigid motion



The Frenet Frame & formula



Curvature & Torsion
• Change in the tangent describes bending (curvature); 
• Change in binormal describes twisting (torsion)



Curvature & Osculating circle



Thanks


