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Pleasure may come from illusion, but happiness can come only of reality.



3 Representations of Curve
* Explicit: y=mx +Db

 Explicit Parametric (seen as a kinematic motion):
*P=Py+t(P-Py)
e curve: r=r(t),
« surface: r=r(u,v)

* Implicit: ax + by +c =0



Implicit representation of 3d Curve

* surface: level set of function f(x,y,z): f(x,y,z)=0, viz, solution set
of f(x,y,z)=0.

e curve: solution set of
* f(x,y,2)=0
* g(x,y,z)=0

* point: solution set of
e f(x,y,2)=0

* 9(x,y,2)=0
* h(x,y,z)=0



From implicit 2 Parametric representation

* [f conditions of implicit function theorem are guaranteed
* Curve =>r(x)=(X,y(x),z(x))

« Surface =>r(x,y)=(x,y,z(x,y)) (Monge patch)



Parametric Curves
x : [a,b) € R — IR*
/ \.x{)

a t b

x(7)
Y{(T)

Advantages of parametric forms
1. Dimension independent
2. Easy to express in vector and matrix form X(a )

x(t) dx(t) dx(t) /dt
x(t) = | y(t) xe(t) = —— = [ dy(t)/dt
z(t) at dz(t) /dt




A parametric curve x(t)is

e simple: X(t) IS Injective (no self-intersections)
» differentiable: xt(t) s defined for all t € |a, b)
 regular: x¢(t) # 0 forall t € |a,b

{ x(7)

e 6§

x(a)

Simple curve IIOIISlmple curves



Differentiable Curves
Definition:
A parameterized differentiable curve is a differentiable map
x:I—R? of an open interval I=(a,b) of the real line R into R2:
x(u)=(x(u),y(u))
where x(u) and y(u) are differentiable functions.

X(u) = ( S —du,u’ —4)

X(u) = @3,u2)

S




Differentiable Curves - derivative

Definition:

The derivative of the curve at x(u) is the vector, tangent to the curve,
defined as:

x'(u)=(x"(u),y'(u))

X =) ' ) = @ —duu” —4)
X'(M)=(3u2’2u) _ W):@uz_éhzu)




Differentiable Curves - regular

Definition:

The derivative of the curve at x(u) is the vector, tangent to the
curve, defined as:

x'(u)=(x"(u),y'(u))
The curve is said to be regular if x'(u)=0.

X(u)z@ﬁ,uz) X(u)z@3 —4u,u2—4)
X' (u) = Gu2,2u) X ()= Bu?—42u) | |

S




Length of a Curve / Arc length
Polyline chord length

5= Y lax) = Y|

2

At, Ax; = | Xit1 — Xl

norm change

Curve arc length (At — 0) X,
t
s = s(t) = / x| dt

Icngth =

Integration of Infinitesimal change

x norm of speed



Regular Curves

Given a regular curve x(u), and given, the arc-length from a to the
point u is: y
s(u) = “X '(v)|dv

If we partition the interval [a,u] into N sub- intervals, setting
Au=(u-a)/A{§ll and u=a+iAu:

s(u):limZ\x(u a)-Xw) |
1mZ‘X(u ) X(u)‘

N—>oo

= ]lvgll ; X (u, )z[&u
= I‘X’ (v)ﬁv




Differentiable Curves

Definition:

We say that a regular curve is parameterized by arc-length if:
| x'(u)[=1

In this case: ] ]
s(u) = _”X'(v)dg’v = jdv =u—a

There are various names for such a parameterization (“unit speed”, “arc-length”
’ ’
“isometric”)



Regular Curves - Tangent

Definition:

The tangent to the curve at x(u) is the unit vector pointing in the
direction of the derivative:

t(u) :M
ON

If X is parameterized by arc-length: tw)=x (@)



Normal N: a unit vector

dr ar
T _ _ ds _
- N | (;_T dT/ds =N

The T and N vectors at two points on a plane curve, a translated version
of the second frame (dotted), and the change in T: 0T. &s is the distance
between the points. In the limit dT/ds will be in the direction N



T and N are always orthogonal. Why?

» Because if the change in T were parallel to T, then it would cease to
have unit length!

* (This argument is a good one to keep in mind any time you work with unit vector
fields.)

* By convention, N is a quarter turn in the counter-clockwise direction
from T.

LoX'Wt Ey'w),x W)
() =tu)" = -
T T R@l Jewy s 6wy




« Curvature is the (negative) change in the normal is aligned with
the tangent direction relative to change in distance along the

() = <A1;2}) n(u) —Zgu + Au) ,t(u)>

Z gﬂ(U)-n(wAU)

t(u)

curve.

n(u)
t(u)_n(u+Au)




() = < o MG =M+ Au)
Au—>0 AS

w

If x is parameterized by arc-length, then As=Au

so the curvature becomes:
< . N(Au)—n(u+ Au)
K(u)=( lim

Au—0 Au

H)) =~ .t

Otherwise, we have As/Au=|x'(u)]|, so that:

()= fim ML) g ) (OOI) )

Au—0 Au | X'(u) | B

| X' (u)| (x' (), x" ()



Alternate Interpretation:

Curvature is the (positive) change in the tangent vector along the
normal direction relative to change in distance along the curve:

() = <AI;I_I}0 [(u+ AZS) —1{(u) | n(u)>

n(u)

n(u)

t(u)_n(u+Au)
u+Au) %t(wAu)—t(u)
kn(u) -n(u+Au)

t(u)




Regular Curves

* Proof of Equivalence:
« To show equivalence, we need to show that:

—(n' (), t(w)) = (N(w),t' (u))

Taking the derivative of both sides:
0= <n(u),l(u)>

we get:

0=2
U

y <n(u),l(u)> = <n'(u),t(u)> + <n(u),l'(u)>



Regular Curves

* Thus, we can also express the curvature as:

('), t@w)) (n@),t'w))  (nw),x"(u))

K(u) = = =..=

| X' (u)| | X' (u)| (X' (u), X" (u))



Curvature is the (negative) change in the normal is
aligned with the tangent

Claim:

If we look at how the normal changes along a curve, we find that for

small distances, the change is in the direction of the tangent:
An(u)=n(u+Au)-n(u)= k(u)t(u)

n(u) n(u+Au) An(u)

t(u) 4 )
x(u) x(u+Au) Z 41
t(u)




Change in the normal is aligned with the tangent
An(u)=n(u+Au)-n(u)~ k(u)t(u) " g2 — j‘\”i(:’:
t(u)

Proof x(u) x(u+Au)

Since n(u) is a unit-vector, we know that:
1= <n (u),n (u)>

Taking derivatives of both sides, we get:
0= (w).w) )

_qo 4
_2<du N(u),N(u) >

Thus, the change in the normal is perpendicular to the normal
direction, so it’s aligned with the tangent.



Change in the normal is aligned with the tangent

An(u)=n(u+Au)-n(u)= k(u)t(u) \
Note: L Hu)
If we look at the value of Kk we see thatit’s |, n(u+aw) §
An(u
— zero for straight curves u) >\
— small/positive for convex curves that turn 2 LN )
slowly weru
n(u+Au
— large/positive for convex curves that turn w4 Anfu)

quickly Z \l
—> ’,t(U)

— small/negative for concave curves that turn
slowly

— large/negative for concave curves that turn /MZ R
quickly ntw) I




Regular Curves - curvature

Definition:

The curvature at x(u) is the change in normal vector along the
tangent direction relative to change in distance along the curve:

() = <1im N(u+Au)—n(u) 1 (u)>
Au—0 As

n(u)
(u) n(u+Au)

1kn(u+Au)n(u)

t(u)



Regular Curves

Mot Au) 1) g >
As An

= {lim
Note: v
If X is parameterized by arc-length, then As=Au
so the curvature becomes:
K1) = <1im Nu + Au) —N(Au) Hu) >=<ri(u),t(u) >

Au—0 AM

Otherwise, we have As/Au=|x'(u)|, so that:
W(u) = <1im Mu + Au) —Nu) J(u) >=<”(M),t(u) )

w0 A X )] X ()]



Curvature

» Suppose that a particle moves along the curve with unit speed.

 Tangent T: velocity vector T — ﬂ
. dT/ds: acceleration vector ds k(s) := (N(s), %T(s)}
« Curvature: magnitude of it dT 2
=% = (N(s), £7(s))
JT Equivalently:
* Normal: direction of it N — E k(s) = —0







Fundamental Theorem of Plane Curves

 Fact. Up to rigid motions, an arc-length parameterized plane curve is
uniquely determined by its curvature.

* Q: Given only the curvature function, how can we recover the curve?
A: Just “invert” the two relationships %9 = K, %7 =T

S
First integrate curvature to get angle: 0(s) := /0 K(t) dt

Then evaluate unit tangents: T(s) := (cos(0),sin(6))

S
Finally, integrate tangents to get curve: y(s) := /0 I(t) dt



GauB map n(x)

Point on curve maps to point on unit circle




Curvature: Some Intuition

Shape operator (Weingarten map)

Change in normal as we slide along curve

negatlive directional derivative D of GauB map
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describes directional curvature

using normals as degrees of freedom

— accuracy/convergence/implementation (discretization)



Turning number

* Turning number, k
« Number of orbits in Gaussian image

OO
QG

OJOJ©1©



Turning number theorem

* For a closed curve, the integral of curvature is an integer multiple of 21

— —

+ 2 7.":4

/ rds = 21k N
Q 7




Whitney-Graustein Theorem

* (Whitney-Graustein) Two curves have the same turning number K if and
only if they are related by regular homotopy, i.e., if one can
continuously “deform” into the other while remaining regular
(immersed).

“Regular Homotopies in the Plane” — https://youtu.be/fKFH3c7b57s



Turning and Winding Numbers

* For a closed regular curve in the plane...

* The turning number k is the number of k=2 @ ©k2
counterclockwise turns made by the tangent
» The winding number n is the number of times the Q Q

curve goes around a particular point p o

 can also be viewed as the total signed length of the
projection of the curve onto a unit-length circle around p




Application: Generalized Winding Numbers

* winding number gives good indication
of which points are inside/ outside

» Useful for a wide variety of practical
tasks: extracting “watertight” mesh,
tetrahedral meshing, constructive
solid geometry (booleans), ...

Jacobson et al, “Robust Inside-Outside Segmentation using Generalized Winding Numbers” (2013)



Space curves




Curvature and Torsion of a Space Curve

 Euclidean invariants, i.e. invariant under rigid motion
« Curvature: Deviation from straight line, “bending”
» Torsion: Deviation from planarity, “twisting”

* Intrinsic properties of the curve
* Independent of parameterization

 Define curve uniquely up to a rigid motion

Intuition: torsion is @

»

“out of plane bending” increasing torsion



The Frenet Frame & formula

» The tangent unit vector T is defined as

=

\

e The binormal unit vector B is defined as the cross product of T and N:

dr
T = —. 1
= (1)
e The normal unit vector N is defined as
dT
. ds
ds
B =T x N. (3)
T 0 kK
N'il=|-x 0
B’ 0 —7

e

e

‘h_/

Torsion (deviation from planarity)

T

1
5
Ha..

det.( [xs y Xss, xsss] )



Curvature & Torsion

« Change in the tangent describes bending (curvature);
« Change in binormal describes twisting (torsion)

=

d
N, %=T)
(N, 45B)
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Curvature & Osculating circle
Planes defined by X and two vectors

* osculating plane: vectors t and n
» normal plane: vectors n and b

» rectifying plane: vectors t and b

Osculating circle
* second order contact with curve
» center c=X+ (1/K)n

* radius 1/k







