Digital Geometry
 -Continuous Geometry of Curves \& Surfaces

Junjie Cao @ DLUT
Spring 2019
http://jicao.github.io/DigitalGeometry/

Pleasure may come from illusion, but happiness can come only of reality.

Last Time

- Discrete Representations

- Explicit (parametric, polygonal meshes)
- Implicit Surfaces (SDF, grid representation)

Geometry

Topology

- Conversions
- E \rightarrow I: Closest Point, SDF, Fast Marching
- I \rightarrow E: Marching Cubes Algorithm

Differential Geometry

Why do we care?

- Geometry of surfaces
- Mothertongue of physical theories
- Computation: processing / simulation

Motivation

- We need differential geometry to compute
- surface curvature
- parameterization distortion
- deformation energies

Getting Started - How to apply DiffGeo ideas?

- surfaces as a collection of samples
- and topology (connectivity)
- apply continuous ideas
- BUT: setting is discrete
- what is the right way?
- discrete vs. discretized

Let's look at that first

Differential Geometry

- Parametric Curves
- Parametric Surfaces

Formalism \& Intuition

What characterizes Surfaces/Shape?

- Intrinsic descriptor
- quantities which do not depend on a coordinate frame / Euclidean motions
- metric and curvatures

Metric on Surfaces

- Measure Stuff
- angle, length, area
- requires an inner product
-we have:
- Euclidean inner product in domain
- we want to turn this into:
- inner product on surface

Parameterized Surface

A parameterized surface is a map from a two-dimensional region $U \subset \mathbb{R}^{2}$ into \mathbb{R}^{2} :

$$
f: U \rightarrow \mathbb{R}^{n}
$$

The set of points $f(U)$ is called the image of the parameterization.

Differential of a Surface

Intuitively, the differential of a parameterized surface tells us how tangent vectors on the domain get mapped to vectors in space:

We say that $d f$ "pushes forward" vectors X into R ", yielding vectors $d f(X)$

Differentiable Surfaces

Definition:

A parameterized differentiable surface is a differentiable map \boldsymbol{M} : $\Omega \rightarrow R^{3}$ of an open domain $\Omega \subset \boldsymbol{R}^{2}$ into \boldsymbol{R}^{3} :

$$
M(u, v)=(x(u, v), y(u, v), z(u, v))
$$

where $x(u, v), y(u, v)$, and $z(u, v)$ are differentiable functions.

Curves and surfaces in 3D

- For our purposes:
- A curve is a map $\boldsymbol{\alpha}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ (or from some subset I of \mathbb{R})

$$
\boldsymbol{\alpha}(t)=(x, y, z)
$$

- A surface is a map $\mathbf{M}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ (or from some subset Ω of \mathbb{R}^{2})

$$
\mathbf{M}(u, v)=(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

Curve on a surface

- A curve C on surface M is defined as a map
- $\mathbf{C}(\mathrm{t})=\mathbf{M}(\mathbf{c}(\mathrm{t})), \mathrm{c}(\mathrm{t})=(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$ is preimage/inverse image of $\mathrm{C}(\mathrm{t})$

$$
=\mathbf{M}(\mathbf{u}(\mathrm{t}), \mathbf{v}(\mathrm{t}))=\left(\begin{array}{l}
\mathrm{x}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t})) \\
\mathrm{y}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t})) \\
\mathrm{z}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))
\end{array}\right.
$$

where u and v are smooth scalar functions

Special cases

- The curve $\mathrm{C}(\mathrm{t})=\mathrm{M}\left(\mathrm{u}_{0}, \mathrm{v}(\mathrm{t})\right)$ for constant u_{0} is called a u-curve
- The curve $C(t)=M\left(u(t), v_{0}\right)$ for constant v_{0} is called a v-curve
- These are collectively called coordinate curves

Tangent vector

- $\mathbf{C}(\mathrm{t})=\mathrm{M}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))=\mathrm{M}(\mathrm{c}(\mathrm{t})), \mathrm{c}(\mathrm{t})=(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$
- The tangent vector to the surface curve C at t can be found by the chain rule

$$
\frac{\partial \mathbf{C}}{\partial t}=\frac{\partial \mathbf{M}}{\partial u} \frac{d u}{d t}+\frac{\partial \mathbf{M}}{\partial v} \frac{d v}{d t}
$$

We will use the following shorthand

$$
\begin{gathered}
\mathrm{M}_{u}(u, v)=\frac{\partial \mathbf{M}(u, v)}{\partial u}=\left(\begin{array}{c}
\partial x / \partial u \\
\partial y / \partial u \\
\partial z / \partial u
\end{array}\right) \quad \mathrm{M}_{v}(u, v)=\frac{\partial \mathbf{M}(u, v)}{\partial v}=\left(\begin{array}{c}
\partial x / \partial v \\
\partial y / \partial v \\
\partial z / \partial v
\end{array}\right) \\
\mathbf{M}_{u}:=\frac{\partial \mathbf{M}}{\partial u} \quad \mathbf{M}_{v}:=\frac{\partial \mathbf{M}}{\partial v} \\
\dot{u}:=\frac{d u}{d t} \quad \dot{v}:=\frac{d v}{d t} \quad \dot{\mathbf{C}}:=\frac{\partial \mathbf{C}}{\partial t}
\end{gathered}
$$

- Then the tangent vector is $\dot{\mathbf{C}}=\mathbf{M}_{u} \dot{u}+\mathbf{M}_{v} \dot{v}$

Tangent vector

- $\mathbf{C}(\mathrm{t})=\mathrm{M}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))=\mathrm{M}(\mathrm{c}(\mathrm{t})), \mathrm{c}(\mathrm{t})=(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$
- The tangent vector to the surface curve C at $\mathrm{t}: \dot{C}=M_{u} \dot{u}+M_{v} \dot{v}=J\left[\begin{array}{l}\dot{u} \\ \dot{v}\end{array}\right]$
- What is (\dot{u}, \dot{v}) ?
- $c^{\prime}(t)=(d u / d t, d v / d t)=d u / d t \mathbf{e}_{1}+d v / d t \mathbf{e}_{2}$
- a tangent vector in parameter domain
- with basis: $e_{1}=(1,0), e_{2}=(0,1)$, and origin $p=c(t)$
- J is a linear transformation
- $\dot{c}->\dot{C}$
- transfers basis to basis, \& coefficients are kept.
- What is M_{u} and M_{v} ?

$J=\left(M_{u}, M_{v}\right)$, taking $T_{p} R^{2}$ to $T_{M(p)} R^{3}$

- What is M_{u} and M_{v} ? or what is the preimage of M_{u}, M_{v} ?
- J is a linear transformation
- transfers basis to basis, \& coefficients are kept.
- $M_{u}=\mathrm{Je}_{1}, M_{v}=\mathrm{Je}_{2}$
- $e_{1}=(1,0)^{\prime}, e_{2}=(0,1)^{\prime}$ are "pushed forward" to basis M_{u}, M_{v}
- $\dot{C}=J\left[\begin{array}{l}\dot{u} \\ \dot{v}\end{array}\right]$
- Coefficients du/dt, dv/dt are kept

$J=\left(M_{u}, M_{v}\right)$, taking $T_{p} R^{2}$ to $T_{M(p)} R^{3}$

- J: $T_{p} R^{2}->T_{M(p)} R^{3}$
- Frame of $T_{p} R^{2}: e_{1}=(1,0), e_{2}=(0,1), p$
- Frame of $\mathrm{T}_{\mathrm{M}(\mathrm{p})} \mathrm{R}^{3}: M_{u}, M_{v}, \mathrm{M}(\mathrm{p})$
- J is the Jacobian matrix taking directions/tangent vectors in Ω to tangent vectors on the surface.

Differentiall of a Function

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& D f=\left(\frac{\partial f_{i}:}{\partial x_{j}}\right) \in \mathbb{R}^{m \times n}
\end{aligned}
$$

Linear operator:

$$
D f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{f(p)} \mathbb{R}^{m}
$$

Regular surface

- A surface M is regular if $M_{u} \times M_{v} \neq 0$ everywhere
- (i.e. that a normal can be defined everywhere)
- A point where $M_{u} \times M_{v} \neq 0$ is called a regular point
- (else, it is a singular point)

Tangent space \& Normal Vectors

- If the point is regular, the tangent vectors form a 2D space called the tangent space T_{p} at p
- Mu and Mv are basis vectors for the tangent space
- The unit normal to the tangent space, also known as the normal to the surface at the point, is

Curve in parameter domain => curve on surface

Definition:

Given a point $p_{0}=\left(u_{0}, v_{0}\right) \in \Omega$ and given a direction $w=\left(w_{u}, w_{v}\right)$ in the parameter space, we can define the (3D) curve:

$$
\mathrm{C}(t)=\mathbf{C}\left(p_{0}+t w\right) \text {, (Special case: } 2 \mathrm{~d} \text { line to 3d curve) }
$$

Directional derivatives

Definition: $\quad \mathrm{M}(t)=\mathrm{M}\left(p_{0}+t w\right), w=\left(w_{u}, w_{v}\right)$

$$
\frac{\partial \mathbf{C}}{\partial t}=\frac{\partial \mathbf{M}}{\partial u} \frac{d u}{d t}+\frac{\partial \mathbf{M}}{\partial v} \frac{d v}{d t}
$$

Taking the derivative:

$$
\mathrm{M}^{\prime}(\mathrm{t})=w_{u} \mathrm{M}_{u}+w_{v} \mathrm{M}_{v}=\mathrm{J} w
$$

J is the Jacobian matrix taking directions in Ω to tangent vectors on the surface:

$$
\mathrm{M}_{u}(u, v)=\frac{\partial \mathrm{M}(u, v)}{\partial u}
$$

$$
\mathrm{M}_{v}(u, v)=\frac{\partial \mathrm{M}(u, v)}{\partial v}
$$

Differential is a linear operator

$$
\begin{aligned}
& \mathbf{X}^{\prime}(\mathrm{t})=w_{u} \mathbf{X}_{u}+w_{v} \mathbf{X}_{v}=\mathrm{Jw} \\
& \qquad \frac{\partial \mathbf{C}}{\partial t}=\frac{\partial \mathbf{M}}{\partial u} \frac{d u}{d t}+\frac{\partial \mathbf{M}}{\partial v} \frac{d v}{d t}
\end{aligned}
$$

- Basis of $T_{p} R^{2}: e_{1}=(1,0), e_{2}=(0,1)$
- Basis of $T_{f(p)} R^{3}: x_{u}, x_{v}$
- Vector $w=\left(w_{u}, w_{v}\right)$ in $T_{p} R^{2}: w=w_{u} e_{1}+w_{v} e_{2}$
- To vector $x^{\prime}(t)$ in $T_{f(p)} R^{3}$, coefficients are kept

Riemannian Metric \& first fundamental form

Metric Properties - length

Thus, given a point $p_{0}=\left(u_{0}, v_{0}\right) \in \Omega$ and given a direction $w=\left(w_{u}, w_{v}\right)$, we can use the Jacobian to compute the length of the corresponding tangent vector over $\boldsymbol{x}\left(p_{0}\right)$:

$$
\text { length }^{2}=\|\boldsymbol{\mathcal { L }} \boldsymbol{v}\|^{2}=w^{t} \boldsymbol{J}^{t} \boldsymbol{J} v
$$

Metric Properties - angle

- Similarly, given a point $p_{0}=\left(u_{0}, v_{0}\right) \in \Omega$ and given directions $w_{1}=\left(u_{1}, v_{1}\right)$ and $w_{2}=\left(u_{2}, v_{2}\right)$ we can use the Jacobian to compute the angle of the corresponding tangent vectors over $\boldsymbol{x}\left(p_{0}\right)$:

$$
\cos (\text { angle })=\frac{\left\langle\boldsymbol{\mathcal { N }} w_{1}, \boldsymbol{\lambda} w_{2}\right\rangle}{\left\|\boldsymbol{\mathcal { N }} w_{1}\right\| \boldsymbol{\mathcal { N }} w_{2} \|}=\frac{w_{1}^{t} \boldsymbol{J}^{t} \boldsymbol{J} v_{2}}{\sqrt{w_{1}^{t} \boldsymbol{J}^{t} \boldsymbol{J} w_{1}} \sqrt{w_{2}^{t} \boldsymbol{J}^{t} \boldsymbol{J} w_{2}}}
$$

Metric Properties - area

- Finally, given a point $p_{0}=\left(u_{0}, v_{0}\right) \in \Omega$ and given directions $w_{1}=\left(u_{1}, v_{1}\right)$ and $w_{2}=\left(u_{2}, v_{2}\right)$ we can use the Jacobian to compute the area of the corresponding parallelogram in the tangent space:

$$
\text { area }=\left|w_{1} \times w_{2}\right|=\left|w_{1}\right| \cdot\left|w_{2}\right| \cdot \sin (\text { angle })
$$

Metric Properties - area

Note:
Given vectors v and w in \boldsymbol{R}^{n}, the area of the parallelogram spanned by v and w is:

$$
\begin{aligned}
\operatorname{Area}(v, w) & =|v| \cdot|w| \cdot \sin (\operatorname{Angle}(v, w)) \\
& =|v| \cdot|w| \cdot \sqrt{1-\cos ^{2} \operatorname{Angle}(v, w)} \\
& =|v| \cdot|w| \cdot \sqrt{1-\frac{\langle v, w\rangle^{2}}{|v|^{2}|w|^{2}}} \\
& =\sqrt{|v|^{2}|w|^{2}-\langle v, w\rangle^{2}}
\end{aligned}
$$

Metric Properties - area

- The area in tangent space is scaled by $\sqrt{\operatorname{det}(I)}$:

$$
\begin{gathered}
\operatorname{Area}\left(J w_{1}, J w_{2}\right)=\sqrt{\left|J w_{1}\right|^{2}\left|J w_{2}\right|^{2}-\left\langle J w_{1}, J w_{2}\right\rangle^{2}} \\
=\sqrt{\operatorname{det}(I)} \operatorname{Area}\left(w_{1}, w_{2}\right)
\end{gathered}
$$

where $I=J^{\prime} J=\left[\begin{array}{ll}\left\langle M_{u}, M_{u}\right\rangle & \left\langle M_{u}, M_{v}\right\rangle \\ \left\langle M_{u}, M_{v}\right\rangle & \left\langle M_{v}, M_{v}\right\rangle\end{array}\right]=\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]$

- When $w_{1}=(d u, 0), w_{2}=(0, d v)$:

$$
\begin{aligned}
& \operatorname{Area}\left(w_{1}, w_{2}\right)=\mathrm{dudv} \\
& \operatorname{Area}\left(J w_{1}, J w_{2}\right)=\sqrt{\operatorname{det}(I)} d u d v
\end{aligned}
$$

First Fundamental Form I

- Riemannian metric, Metric Tensor, Fundamental Tensor
- $I=J^{\prime} J=\left[\begin{array}{ll}\left\langle M_{u}, M_{u}\right\rangle & \left\langle M_{u}, M_{v}\right\rangle \\ \left\langle M_{u}, M_{v}\right\rangle & \left\langle M_{v}, M_{v}\right\rangle\end{array}\right]=\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]$
- $\mathrm{M}(\mathrm{u}, \mathrm{v})=(\mathrm{x}(\mathrm{u}, \mathrm{v}), \mathrm{y}(\mathrm{u}, \mathrm{v}), \mathrm{z}(\mathrm{u}, \mathrm{v}))$

$$
\text { - Jacobian matrix } J=\left[M_{u}, M_{v}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{array}\right]
$$

$$
\cdot w=J \widehat{w}=\left[M_{u}, M_{v}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
\cdot<\widehat{w_{1}}, \widehat{w_{2}}>_{\mathrm{S}}:=\boldsymbol{I}_{\boldsymbol{S}}\left(\widehat{w_{1}}, \widehat{w_{2}}\right)=<w_{1}, w_{2}>=\left(J \widehat{w_{1}}\right)^{T}\left(J \widehat{w_{2}}\right)={\widehat{w_{1}}}^{T}\left(J^{T} J\right) \widehat{w_{2}}
$$

First Fundamental Form

First fundamental form I allows to measure

(w.r.t. surface metric)

Angles

$$
\mathbf{t}_{1}^{\top} \mathbf{t}_{2}=\left\langle\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)\right\rangle
$$

Length $\quad \mathrm{d} s^{2}=\langle(\mathrm{d} u, \mathrm{~d} v),(\mathrm{d} u, \mathrm{~d} v)\rangle$

$$
=E \mathrm{~d} u^{2}+2 F \mathrm{~d} u \mathrm{~d} v+G \mathrm{~d} v^{2}
$$

Area

$$
\mathrm{d} A=\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\| \mathrm{d} u \mathrm{~d} v
$$

$$
=\sqrt{\mathbf{x}_{u}^{T} \mathbf{x}_{u} \cdot \mathbf{x}_{v}^{T} \mathbf{x}_{v}-\left(\mathbf{x}_{u}^{T} \mathbf{x}_{v}\right)^{2}} \mathrm{~d} u \mathrm{~d} v
$$

$$
=\underset{\text { cross product } \rightarrow \text { determinant with unit vectors } \rightarrow \text { area }}{=\sqrt{E G-F^{2}} \mathrm{~d} u \mathrm{~d} v}
$$

- curve length

$$
\begin{aligned}
& L=l(a, b)=\int_{a}^{b}\left\|\mathbf{x}^{\prime}(u)\right\| \mathrm{d} u \\
& \begin{aligned}
l(a, b) & =\int_{a}^{b} \sqrt{\left(u_{t}, v_{t}\right) \mathbf{I}\left(u_{t}, v_{t}\right)^{T}} \mathrm{~d} t \\
& =\int_{a}^{b} \sqrt{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}} \mathrm{~d} t
\end{aligned}
\end{aligned}
$$

- Surface area
- $\mathrm{A}=\mathrm{A}(\mathrm{X})=\iint_{\mathrm{U}}\left|\mathrm{x}_{\mathrm{u}} \times \mathrm{x}_{\mathrm{v}}\right| \mathrm{dudv}=\iint_{\mathrm{U}} \sqrt{\mathrm{EG}-\mathrm{F}^{2}} \mathrm{dudv}=\iint_{\mathrm{U}} \sqrt{\operatorname{det}\left(\mathrm{I}_{\mathrm{X}}\right)} \operatorname{dudv}$

Anisotropy

- the axes of the anisotropy ellipse are $\mathbf{e}_{1}=\mathbf{J} \overline{\mathbf{e}}_{1}$ and $\mathbf{e}_{2}=\mathbf{J} \overline{\mathbf{e}}_{2}$;
- the lengths of the axes are $\sigma_{1}=\sqrt{\lambda_{1}}$ and $\sigma_{2}=\sqrt{\lambda_{2}}$.

$$
\begin{aligned}
& \sigma_{1}=\sqrt{ } 1 / 2(E+G)+\sqrt{(E-G)^{2}+4 F^{2}}, \\
& \sigma_{2}=\sqrt{1 / 2(E+G)-\sqrt{(E-G)^{2}+4 F^{2}}},
\end{aligned}
$$

Linear Map Surgery

- Singullar Value Decomposition (SVD) of J_{f}

$$
J_{f}=U \Sigma V^{T}=U\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right) V^{T}
$$

with rotations $U \in \mathbb{R}^{3 \times 3}$ and $V \in \mathbb{R}^{2 \times 2}$ and scalle factors (singular values) $\sigma_{1} \geq \sigma_{2}>0$

SVD

- Each matrix can be treated as a linear map or Jacobian Matrix of a map. Each owns a SVD decomposition, i.e. can be described as an aligner followed by a stretch followed by a hanger. (can be represented by a concatenation of rotation and scale.)
$J_{f}=\left(\begin{array}{ll}f_{u} & f_{v}\end{array}\right)$ is a matrix of 3 by 2 .
$J_{f}=U \Sigma V^{T}=\left(\begin{array}{lll}U_{1} & U_{2} & U_{3}\end{array}\right)\left(\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)^{T}, V_{i}$ are eigenvectors of $J_{f}{ }^{T} J_{f}, U_{i}$ are eigenvectors of $J_{f} J_{f}{ }^{T}$.
(Note: $\sigma_{1}=\sqrt{\lambda_{1}}, \sigma_{2}=$ $\sqrt{\lambda_{2}}, \lambda_{1}, \lambda_{2}$ are eigenvalues of $J_{f}{ }^{T} J_{f}$, not $\left.J_{f} J_{f}{ }^{T}\right)$

Notion of Distortion

- isometric or length-preserving

$$
\sigma_{1}=\sigma_{2}=1
$$

- conformal or angle-preserving

$$
\sigma_{1}=\sigma_{2}
$$

- equiareal or area-preserving

$$
\sigma_{1} \cdot \sigma_{2}=1
$$

- everything defined pointwise on Ω

Theorem 4. Every isometric mapping is conformal and equiareal, and every conformal and equiareal mapping is isometric, i.e.,

$$
\text { isometric } \Leftrightarrow \text { conformal }+ \text { equiareal. }
$$

Sphere Example

Spherical parameterization

$$
\mathbf{x}(u, v)=\left(\begin{array}{c}
\cos u \sin v \\
\sin u \sin v \\
\cos v
\end{array}\right), \quad(u, v) \in[0,2 \pi) \times[0, \pi)
$$

Tangent vectors

$$
\mathbf{x}_{u}(u, v)=\left(\begin{array}{c}
-\sin u \sin v \\
\cos u \sin v \\
0
\end{array}\right) \quad \mathbf{x}_{v}(u, v)=\left(\begin{array}{c}
\cos u \cos v \\
\sin u \cos v \\
-\sin v
\end{array}\right)
$$

First fundamental Form

$$
\mathbf{I}=\left(\begin{array}{cc}
\sin ^{2} v & 0 \\
0 & 1
\end{array}\right)
$$

Metric Properties

$$
\mathrm{X}(u, v)=\left(\begin{array}{lll}
\cos u \cos v & \sin v & \sin u \cos v
\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\cos ^{2} v & 0 \\
0 & 1
\end{array}\right)
$$

Example (Sphere):

- What is the length of the equator?

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

-What is the length of the equator?
The equator is the image of:

$$
\phi(t)=(t, 0) \quad \text { with } t \in[-\pi, \pi]
$$

under the parameterization.

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the length of the equator?

$$
\begin{aligned}
\text { length }(\boldsymbol{X} \circ \phi) & =\int_{-\pi}^{\pi} \sqrt{\phi^{\prime}(t)^{t} \boldsymbol{I} \phi^{\prime}(t)} d t \\
& =\int_{-\pi}^{\pi} \sqrt{(1,0)^{t}\left(\begin{array}{cc}
\cos ^{2}(0) & 0 \\
0 & 1
\end{array}\right)} \\
& =\int_{-\pi}^{\pi} d t \\
& =2 \pi
\end{aligned}
$$

Metric Properties

$$
\mathbf{x}(u, v)=\left(\begin{array}{lll}
\cos u \cos v & \sin v & \sin u \cos v
\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\cos ^{2} v & 0 \\
0 & 1
\end{array}\right)
$$

Example (Sphere):

- What is the length of the $w^{\text {th }}$ parallel?

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the length of the $w^{\text {th }}$ parallel? The $w^{\text {th }}$ parallel is the image of: $\phi(t)=(t, w)$ with $t \in[-\pi, \pi]$ under the parameterization.

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the length of the $w^{\text {th }}$ parallel?

$$
\begin{aligned}
\text { length }(\boldsymbol{X} \circ \phi) & =\int_{-\pi}^{\pi} \sqrt{\phi^{\prime}(t)^{t} \boldsymbol{I} \phi^{\prime}(t)} d t \\
& =\int_{-\pi}^{\pi} \sqrt{(1,0)^{t}\left(\begin{array}{cc}
\cos ^{2} w & 0 \\
0 & 1
\end{array}\right)(1,0) d t} \\
& =\int_{-\pi}^{\pi} \cos w d t \\
& =2 \pi \cos w
\end{aligned}
$$

Metric Properties

$$
\mathrm{x}(u, v)=\left(\begin{array}{lll}
\cos u \cos v & \sin v & \sin u \cos v
\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\cos ^{2} v & 0 \\
0 & 1
\end{array}\right)
$$

Example (Sphere):

- What is the area of the band between the $w_{1}^{\text {th }}$ parallel and the $w_{2}^{\text {th }}$ parallel?

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the area of the band between the $w_{1}{ }^{\text {th }}$ parallel and the $w_{2}^{\text {th }}$ parallel?
The band is the image of:

$$
\phi(s, t)=(s, t) \quad \text { with } s \in[-\pi, \pi], t \in\left[w_{1}, w_{2}\right]
$$ under the parameterization.

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the area of the band between the $w_{1}^{\text {th }}$ parallel and the $w_{2}^{\text {th }}$ parallel?

$$
\begin{aligned}
\operatorname{area}(\mathrm{X} \circ \phi) & =\int_{w_{1}-\pi}^{w_{2} \pi} \sqrt{\operatorname{det} l d} d t \\
& =\int_{w_{1}-\pi}^{w_{2} \pi} \int \cos t d s d t \\
& =2 \pi \int_{w_{1}}^{w_{2}} \cos t d t \\
& =2 \pi\left(\sin w_{2}-\sin w_{1}\right)
\end{aligned}
$$

Metric Properties

$$
\mathrm{x}(u, v)=\left(\begin{array}{lll}
\cos u \cos v & \sin v & \sin u \cos v
\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\cos ^{2} v & 0 \\
0 & 1
\end{array}\right)
$$

Example (Sphere):

- What is the area of the band between the $w_{1}^{\text {th }}$ and the $w_{2}^{\text {th }}$ meridians?

Metric Properties

$\mathbf{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the area of the band between the $w_{1}{ }^{\text {th }}$ and the $w_{2}^{\text {th }}$ meridians?
The band is the image of:

$$
\phi(s, t)=(s, t) \quad \text { with } s \in\left[w_{1}, w_{2}\right], t \in[-\pi / 2, \pi / 2]
$$

under the parameterization.

Metric Properties

$\mathrm{x}(u, v)=\left(\begin{array}{lll}\cos u \cos v & \sin v & \sin u \cos v\end{array}\right) \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}\cos ^{2} v & 0 \\ 0 & 1\end{array}\right)$

Example (Sphere):

- What is the area of the band between the $w_{1}{ }^{\text {th }}$ and the $w_{2}{ }^{\text {th }}$ meridians?

$$
\begin{aligned}
\operatorname{area}(\mathbf{X} \circ \phi) & =\int_{-\pi / 2}^{\pi / 2} \int_{w_{1}}^{w_{2}} \sqrt{\operatorname{det} d} d s d t \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{w_{1}}^{w_{2}} \cos t d s d t \\
& =\left(w_{2}-w_{1}\right) \int_{-\pi / 2}^{\pi / 2} \cos t d t \\
& =\left(w_{2}-w_{1}\right)(\sin (\pi / 2)-\sin (-\pi / 2)) \\
& =2\left(w_{2}-w_{1}\right)
\end{aligned}
$$

Metric Properties

Example (Hyperbolic Plane):

If we are given the first fundamental form, we can ignore the embedding of the surface in 3D, and integrate directly.
Consider the domain $\Omega=\left\{u, v \mid\left(u^{2}+v^{2}<1\right)\right\}$, with the first fundamental form:

$$
\mathrm{I}(u, v)=\left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \quad \square^{v} u
$$

Metric Properties

$$
\begin{aligned}
& \left.\Omega=\{u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{l}(u, v)=\left\{\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the length of the circle with radius r ?

Metric Properties

$$
\begin{aligned}
& \left.\Omega=\{u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{\mid}(u, v)=\left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

-What is the length of the circle with radius r ?
The circle is described by:

$$
\phi(s)=r(\cos s, \sin s) \quad \text { with } s \in[0,2 \pi] .
$$

Metric Properties

$$
\begin{aligned}
& \left.\Omega=\{u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the length of the circle with radius r ?
length $(\phi)=\int_{0}^{2 \pi} \sqrt{\phi(t)^{t} I \phi(\mathrm{t})} \mathrm{dt}$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \sqrt{r(-\sin t, \cos t)\left(\begin{array}{cc}
\frac{1}{1-r^{2}} & 0 \\
0 & \frac{1}{1-r^{2}}
\end{array}\right) r(-\sin t, \cos t) d t} \\
& =\int_{0}^{2 \pi} \sqrt{\frac{r^{2}}{1-r^{2}}} d t \\
& =2 \pi r \sqrt{\frac{1}{1-r^{2}}}
\end{aligned}
$$

Metric Properties

$$
\begin{aligned}
& \left.\Omega=\{u, v) \mid u^{2}+v^{2}<1\right\} \\
& \text { Example (Hyperbolic Plane): }
\end{aligned} \text { (u,v)=1} \begin{aligned}
& \left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right)
\end{aligned}
$$

- What is the length of the segment with angle α and radius r ?

Metric Properties

$$
\begin{aligned}
& \left.\Omega=\{u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the length of the segment with angle α and radius r ?
The segment is described by:

$$
\phi(s)=s(\cos \alpha, \sin \alpha) \quad \text { with } s \in[0, r] .
$$

Metric Properties

$$
\begin{aligned}
& \quad \Omega=\left\{(u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{I}(u, v)=\left\{\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the length of the segment with angle α and radius r ?

$$
\operatorname{length}(\phi)=\int_{0}^{r} \sqrt{\phi(s)^{\prime} \phi(s) d s}
$$

$$
\begin{aligned}
& =\int_{0}^{r} \sqrt{\left.(\cos \alpha, \sin \alpha)| | \begin{array}{cc}
\frac{1}{1-s^{2}} & 0 \\
0 & \frac{1}{1-s^{2}}
\end{array}\right)(\cos \alpha, \sin \alpha) d s} \\
& =\int_{0}^{r} \frac{1}{1-s^{2}} d s=\frac{1}{2} \log \frac{1+r}{1-r}
\end{aligned}
$$

Metric Properties

$$
\begin{aligned}
& \quad \Omega=\left\{(u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{I}(u, v)=\left\{\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the area of the region with radius less than r ?

Metric Properties

$$
\begin{aligned}
& \left.\quad \Omega=\{u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the area of the region with radius less than r ?

The region is the image of:

$$
\phi(s, t)=s(\cos t, \sin t) \quad \text { with } s \in[0, r], t \in[-\pi, \pi] .
$$

Metric Properties

$$
\begin{aligned}
& \qquad \Omega=\left\{(u, v) \mid u^{2}+v^{2}<1\right\} \quad \mathrm{I}(u, v)=\left(\begin{array}{cc}
\frac{1}{1-u^{2}-v^{2}} & 0 \\
0 & \frac{1}{1-u^{2}-v^{2}}
\end{array}\right) \\
& \text { Example (Hyperbolic Plane): }
\end{aligned}
$$

- What is the area of the region with radius less than r ?

$$
\begin{aligned}
\operatorname{area}(\phi) & =\int_{-\pi 0}^{\pi r} \sqrt{\operatorname{det} \mid s} d s d t \\
& =\int_{-\pi 0}^{\pi r} \frac{s}{1-s^{2}} d s d t \\
& =2 \pi \int_{0}^{r} \frac{s}{1-s^{2}} d s \\
& =-\pi \ln \left(1-r^{2}\right)
\end{aligned}
$$

Surfaces Curvatures

Quantify how a surface bends.

Curvatures of curves

$$
\kappa(u)=-\frac{\left\langle\boldsymbol{\Pi}^{\prime}(u), \boldsymbol{t}(u)\right\rangle}{\left|\boldsymbol{X}^{\prime}(u)\right|}=\frac{\left\langle\boldsymbol{n}(u), \boldsymbol{t}^{\prime}(u)\right\rangle}{\left|\boldsymbol{X}^{\prime}(u)\right|}=\ldots=\frac{\left\langle\boldsymbol{n}(u), \boldsymbol{X}^{\prime \prime}(u)\right\rangle}{\left\langle\boldsymbol{x}^{\prime}(u), \boldsymbol{X}^{\prime}(u)\right\rangle}
$$

Curvature

- We extend the notion to the curvature of a surface at the point $\boldsymbol{x}(p)$ by looking at the curvature of curves on the surface.
- Using arbitrary curves, we don't get a sense of the curvature as we go "around" the surface, e.g. we can get the curvature to be arbitrarily small.

Curvature

Tangent vector t ...

Normal Curvature

Instead, we look at the curvature of normal curves $\mathrm{c}(\mathrm{t})$ - curves through $\boldsymbol{x}(p)$ obtained by intersecting the surface with a plane containing the normal at $\boldsymbol{x}(p)$.

Regular Surfaces

$$
\kappa(u)=\frac{\left\langle\boldsymbol{n}(u), \boldsymbol{X}^{\prime \prime}(u)\right\rangle}{\left\langle\boldsymbol{X}^{\prime}(u), \boldsymbol{X}^{\prime}(u)\right\rangle}
$$

Computing the curvature of the curve $\boldsymbol{x}(\phi(t))$ at $\boldsymbol{x}(\phi(0))=\boldsymbol{x}(p)$ gives:

$$
\begin{aligned}
& \kappa(0)=\frac{\left\langle\boldsymbol{n},(\boldsymbol{x} \circ \phi)^{\prime}(0)\right\rangle}{\left\langle(\boldsymbol{x} \circ \phi)^{\prime}(0),(\boldsymbol{x} \circ \phi)^{\prime}(0)\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Image courtesy of Wikipedia }
\end{aligned}
$$

Geometry of the Normal

Gauss map

- normal at point

$$
N(p)=\frac{S_{, u} \times S_{, v}}{\left|S_{, u} \times S_{, v}\right|}(p) \quad N: S \rightarrow \mathbb{S}^{2}
$$

- consider curve in surface again
- study its curvature at p

- normal "tilts" along curve

normal curvature $\kappa_{n}(\overline{\mathbf{t}})$ at \mathbf{p}

Let $t=u_{t} X_{u}+v_{t} X_{v}$ be a tangent vector at a surface point $p \in S$ represented as $\bar{t}=\left(u_{t}, v_{t}\right)^{T}$ in parameter domain

$$
\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I I} \overline{\mathbf{t}}}{\overline{\mathbf{t}}^{T} \mathbf{I} \mathbf{t}}=\frac{e u_{t}^{2}+2 f u_{t} v_{t}+g v_{t}^{2}}{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}},
$$

where II denotes the second fundamental form defined as

$$
\mathbf{I I}=\left[\begin{array}{ll}
e & f \\
f & g
\end{array}\right]:=\left[\begin{array}{cc}
\mathbf{x}_{u u}^{T} \mathbf{n} & \mathbf{x}_{u v}^{T} \mathbf{n} \\
\mathbf{x}_{u v}^{T} \mathbf{n} & \mathbf{x}_{v v}^{T} \mathbf{n}
\end{array}\right] .
$$

Principal Curvatures

- Normal curvatures
- Principal curvatures

$$
\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I I} \overline{\mathbf{t}}}{\overline{\overline{\mathbf{t}}}^{T} \mathbf{I} \overline{\mathbf{t}}}
$$

- We can find the principal curvature values (and directions) by setting the derivative of normal curvature to 0 :

$$
\nabla \kappa_{p}(w)=0 \Rightarrow \frac{\left(w^{t} / w\right)}{\left(w^{t} / / w\right)} / / w=h w
$$

- Thus, the principal curvature values (and directions) can be obtained by solving:

$$
I^{-1} / / w=\lambda w
$$

- it has two distinct eigen values

$$
\boldsymbol{I}^{-1} / / w_{1}=\kappa_{1} w_{1} \quad \boldsymbol{J}^{-1} / / w_{2}=\kappa_{2} w_{2}
$$

- We denote with k 1 the minimum curvature and with k 2 the maximum curvature.

$$
\boldsymbol{I}^{-1} / / w_{1}=\kappa_{1} w_{1} \quad I^{-1} / / w_{2}=\kappa_{2} w_{2}
$$

- $I^{-l} l$ is also called the shape operator S
- This implies that mean and Gaussian curvatures are the trace and determinant of this matrix:
- mean curvature $H=\operatorname{Tr}(\mathrm{S})=\mathrm{k} 1+\mathrm{k} 2$
- Gaussian curvature $K=\operatorname{Det}(\mathrm{S})=\mathrm{k} 1 * \mathrm{k} 2$

Principal Curvatures

$$
\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I I} \overline{\mathbf{t}}}{\overline{\mathbf{t}}^{T} \mathbf{I} \overline{\mathbf{t}}}
$$

- Euler theorem

$$
\kappa_{n}(\overline{\mathrm{t}})=\kappa_{1} \cos ^{2} \psi+\kappa_{2} \sin ^{2} \psi,
$$

- ψ is the angle between t and t 1
- t1 \& t2 are principal directions: tangent vectors corresponding to $\varphi_{\min } \& \varphi_{\max }$
- any normal curvature is a convex combination of the minimum and maximum curvature
- principal directions are orthogonal to each other

Curvature tensor

$$
\kappa_{p}(w)=\kappa_{1}(p) \cos ^{2} \alpha+\kappa_{2}(p) \sin ^{2} \alpha
$$

To prove it, we define curvature tensor
Given the unit principal curvatures directions $J w 1$ and $J w 2$, and the principal curvature k 1 and k 2 , the curvature tensor is a 3×3 symmetric matrix associated to each point on the surface, defined by:

$$
C(X(p))=k_{1} J w_{1} J w_{1}^{t}+k_{2} J w_{2} J w_{2}^{t}
$$

Curvature tensor \& Euler theorem

$$
C(X(p))=k_{1} J w_{1} J w_{1}{ }^{t}+k_{2} J w_{2} J w_{2}^{t}
$$

Note:
Given a (non-tangent) vector v at the point $\boldsymbol{x}(p)$, we can express v as:

$$
v=\cos \psi J w_{1}+\sin \psi J w_{2}+\gamma n(p)
$$

Applying the curvature tensor to v, gives:

$$
v^{t} C(X(p)) v=k_{1} \cos \psi^{2}+k_{2} \sin \psi^{2}
$$

So the curvature tensor gives the curvature in the tangent component (scaled by square length).

$$
\kappa_{n}(\overline{\mathbf{t}})=\kappa_{1} \cos ^{2} \psi+\kappa_{2} \sin ^{2} \psi,
$$

Surfaces Curvatures

$$
\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I I} \overline{\mathbf{t}}}{\overline{\mathbf{t}}^{T} \mathbf{I} \overline{\mathbf{t}}}=\frac{e u_{t}^{2}+2 f u_{t} v_{t}+g v_{t}^{2}}{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}}
$$

- Principal curvatures
- Maximal curvature $\kappa_{1}=\max _{\phi} \kappa_{n}(\phi)$
- Minimal curvature $\kappa_{2}=\min _{\phi} \kappa_{n}(\phi)$
- Mean curvature: $\quad k_{H}=\frac{k_{1}+k_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} k_{n}(\theta) d \theta=\lim _{\operatorname{diam}(A) \rightarrow 0} \frac{\nabla A}{A}$
- Gaussian curvature: $\quad k_{G}=k_{1} \cdot k_{2}=\lim _{\operatorname{diam}(A) \rightarrow 0} \frac{A^{G}}{A}$
- Curvature tensor: $\quad C=P D P^{-1}$, with $\mathrm{P}=[\mathrm{t} 1, \mathrm{t} 2, \mathrm{n}]$ and $\mathrm{D}=\operatorname{diag}(\mathrm{k} 1, \mathrm{k} 2,0)$

Surfaces Curvatures

$$
\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I I} \overline{\mathbf{t}}}{\overline{\mathbf{t}}^{T} \mathbf{I} \overline{\mathbf{t}}}=\frac{e u_{t}^{2}+2 f u_{t} v_{t}+g v_{t}^{2}}{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}}
$$

- Principal curvatures: eigenvalues of the shape operator $\mathrm{S}: \digamma^{-} \|$
- Maximal curvature $\kappa_{1}=\max _{\phi} \kappa_{n}(\phi)$
- Minimal curvature $\kappa_{2}=\min _{\phi} \kappa_{n}(\phi)$
- Mean curvature:

$$
k_{H}=\frac{k_{1}+k_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} k_{n}(\theta) d \theta=\lim _{\operatorname{diam}(A) \rightarrow 0} \frac{\nabla A}{A}
$$

- Gaussian curvature:

$$
k_{G}=k_{1} \cdot k_{2}=\lim _{\operatorname{diam}(A) \rightarrow 0} \frac{A^{G}}{A}
$$

Gauss-Bonnet Theorem

For any closed manifold surface with Euler characteristic $\chi=2-2 g$

$$
\int K=2 \pi \chi
$$

Gauss-Bonnet Theorem

Sphere

$$
\begin{aligned}
& \kappa_{1}=\kappa_{2}=1 / r \\
& K=\kappa_{1} \kappa_{2}=1 / r^{2} \\
& \int K=4 \pi r^{2} \cdot \frac{1}{r^{2}}=4 \pi
\end{aligned}
$$

when sphere is deformed, new positive and negative curvature cancel out

高斯曲率 反应了曲面的弯曲程度。在给出高斯曲率的几何解释之前，首先引入高斯映射的定义，设 A 是曲面上包含 p 点的一小片曲面（其面积仍用 A 表示），把 A 上的每点的单位法向量 ${ }^{n}$ 平移到原点 O 处，那么 n 的终点轨迹是以 O 为中心的单位球面 $S 2$ 上的一块区域 A^{*} 。这个对应称为高斯映射。则 p 点的高斯曲率可以表示为：

$$
\kappa_{G}(p)=\lim _{A \rightarrow 0} \frac{A^{*}}{A}
$$

其中高斯曲率 κ_{G} 和平均曲率 κ_{H} 都反映局部曲面的几何特征。

Lagrange注意到 $\kappa_{H}=0$ 是极小曲面的Lagrange方程，于是就给出了一个极小曲面与平均曲率的直接关系：

$$
2 \kappa_{H} n=\lim _{\operatorname{dian}(A) \rightarrow 0} \frac{\nabla A}{A}
$$

其中，A 是点 p 处无穷小区域的面积， $\operatorname{diam}(A$ 是它的直径， ∇ 是关于点 $\quad p(x, y, z)$ 坐标的梯度，因此，定义算子 $K(p)=2 \kappa_{H}(p) n(p)$ 这就是著名的Laplace－Beltrami算子。

Analogies with curves

Curves:

First derivative \rightarrow arc length
Second derivative \rightarrow curvature

Surfaces:
First fundamental form \rightarrow distances
Second fundamental form \rightarrow (extrinsic) curvatures

Intrinsic and Extrinsic Properties

- Properties of the surface related to the first fundamental form are called intrinsic properties
- Determined only by measuring distances on the surface
- Properties of the surface related to the second fundamental form are called extrinsic properties
- Determined by looking at the full embedding of the surface in \mathbb{R}^{3}

Gaussian Curvature

- The Gaussian curvature at a surface point is an intrinsic property

$$
K=\frac{L N-M^{2}}{E G-F^{2}}
$$

- But this involves L, M, N from the second fundamental form, how is this intrinsic?

Theorem Egregium of Gauss

- The Gaussian curvature can be expressed solely as a function of the coefficients of the first fundamental form and their derivatives
$K=\frac{\operatorname{det}\left|\begin{array}{ccc}-\frac{1}{2} E_{v v}+F_{u v}-\frac{1}{2} G_{u u} & \frac{1}{2} E_{u} & F_{u}-\frac{1}{2} E_{v} \\ F_{v}-\frac{1}{2} G_{u} & E & F \\ \frac{1}{2} G_{v} & F & G\end{array}\right|-\operatorname{det}\left|\begin{array}{ccc}0 & \frac{1}{2} E_{v} & \frac{1}{2} G_{u} \\ \frac{1}{2} E_{v} & E & F \\ \frac{1}{2} G_{u} & F & G\end{array}\right|}{\left(E G-F^{2}\right)^{2}}$

Bonnet's Theorem

- A surface in 3-space is uniquely determined upto rigid motion by its first and second fundamental forms
- Compare to the Fundamental Theorem of Space Curves:
- curvature and torsion uniquely define a curve upto rigid motion.

Who cares?

Curvature

 completely determineslocal surface geometry.

Classification

A point p on the surface is called

Isotropic: all directions are principle directions

spherical (umbilical)

$$
K=0
$$

planar

Anisotropic: 2 distinct principle directions
$K>0$
$K=0$

parabolic

$$
K<0
$$

Use as a descriptor

Fairness measure

Triangular Surface Mesh Fairing via Gaussian Curvature

 FlowZhao, Xu
Journal of Computational and Applied Mathematics (2006)

Guiding rendering

Highlight Lines for Conveying Shape DeCarlo, Rusinkiewicz NPAR(2007)

Guiding meshing

input mesh

direction fields

sampling

meshing

Anisotropic Polygonal Remeshing
Alliezet al.
SIGGRAPH(2003)

Curvature of Surfaces

Mean curvature $H=\frac{d_{1}+d_{2}}{2}$

- $H=0$ everywhere minimal surface

soap film

Curvature of Surfaces

Mean curvature $H=\frac{d_{1}+d_{2}}{2}$

- $H=0$ everywhere minimal surface

Green Void, Sydney Architects: Lava

Curvature of Surfaces

Gaussian curvature $\mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2}$

- K = 0 everywhere developable surface
surface that can be flattened to a plane without distortion (stretching or compression)

Disney, Concert Hall, L.A.
Architects: Gehry
Partners

Timber Fabric IBOIS, EPFL

Differential Operators

Gradient

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

- points in the direction of the steepest ascend

Differential Operators
 Divergence

$$
\operatorname{div} F=\nabla \cdot F:=\frac{\partial F_{1}}{\partial x_{1}}+\ldots+\frac{\partial F_{n}}{\partial x_{n}}
$$

- volume density of outw
- magnitude of source or
- Example: incompressik
- velocity field is diver
- $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
- $f=f(x, y, z), \nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
- $F=(U(x, y, z), V(x, y, z), W(x, y, z))$
- $\operatorname{divF}=\nabla \cdot F=\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}$

Laplace-Beltrami Operator

- Extension of Laplace of functions on manifolds

Laplace-	gradient
Beltrami	operator

Laplace on the surface
note 4 of Advanced Topics in Computer Graphics: Mesh Processing (600.657) - Michael Misha Kazhdan

Laplace-Beltrami Operator

- Extension of Laplace of functions on manifolds

Laplace-
Beltrami
gradient
operator

Literature

- M. Do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, 1976
- A. Pressley: Elementary Differential Geometry, Springer, 2010
- G. Farin: Curves and Surfaces for CAGD, Morgan Kaufmann, 2001
- W. Boehm, H. Prautzsch: Geometric Concepts for Geometric Design, AK Peters 1994
- H. Prautzsch, W. Boehm, M. Paluszny: Bézier and B-SplineTechniques, Springer 2002
- ddg.cs.columbia.edu
- http://graphics.stanford.edu/courses/cs468-13-spring/schedule.html

