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The purpose of computing is insight, not numbers
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Normal Vectors
• Continuous surface
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Discrete Face Normal Vectors
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Discrete Vertex Normal Vectors
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Shading via various Vertex Normal Vectors

A Comparison of Algorithms for Vertex-Normal Computation.“ The Visual Computer, 2005



Local Averaging



Local Averaging
• Local Neighborhood N (x) of a point

• often coincides with mesh vertex vi

• n-ring neighborhood Nn (vi ) or local geodesic ball
• Neighborhood size

• Large: smoothing is introduced, stable to noise
• Small: fine scale variation, sensitive to noise



Local average operator
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A particularly important class of local operators are local smoothings (also called filterings) that perform a 
local weighted sum around each vertex of the mesh. For this averaging to be consistent, we define a 
normalized operator W˜ whose set of weights sum to one

• Combinatorial/uniform weights
• Distance weights



An example of such iterations applied to the three 
coordinates of mesh.
• One can use iteratively a smoothing in order to further filter a function 

on a mesh. The resulting vectors Wf,  W2f,. .. , W^kf are increasingly 
smoothed version of f.

• The sharp features of the mesh tend to disappear during iterations. 



Normalization and some famous weights

( , )
( )i ij j

i j E
f w f

Î

= åW

03 Discrete Differential-Geometry Operators for Triangulated 2-Manifolds

What  is the area of the Voronoi region (in red) of the vertex?



Local Averaging: 1-Ring

Barycentric cell
(barycenters/edgemidpoints)

Voronoi cell
(circumcenters)

tight error bound

Mixed Voronoi cell
(circumcenters/midpoint)

better approximation



Barycentric Cells
• Connect edge midpoints and triangle barycenters

• Simple to compute
• Area is 1/3 o triangle areas



Mixed Cells
• Connect edge midpoints and

• Circumcenters for non-obtuse triangles
• Midpoint of opposite edge for obtuse triangles
• Better approximation, more complex to compute…



Mixed Regions



Discrete Curves
Q:	Where	and how should we	define curvature?
A:	Since the tangent only changes at vertices we should define the
curvature as a vertex value.

We	should define the value of the curvature as
the	change in the	tangent as
we	move	through the vertex.
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Discrete Curves

Note that we	cannot define the curvature as the result of a limiting
process:

vi
vi+1

Dt®0 [(1-Dt)vi +Dtvi+1]-[(1-Dt)vi +Dtvi-1]

Dt®0 Dt vi+1 - vi-1

ti - ti-1

ti - ti-1

= lim

k = limi

ti

ti+1ti-1



Discrete Curves
However, we	can estimate it	using the	finite- differences	using the
edge	centers (vi+vi+1)/2.
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Discrete Curves
However, we	can estimate it	using the finite- differences	using the
edge	centers (vi+vi+1)/2.

Specifically, we	define the curvature in terms	of	change in tangents
angle divided by the arc-length between edge	centers:
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Discrete Curves
• Since	we	are	only storing the curvature at the vertices,	we	want the
value to correspond to the “total curvature associated to the vertex”:
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Discrete Surfaces - normal curvatures
Q:	Where	and how should we compute the	normal curvatures?
A:	Since the normals only changes at edges	we should compute the
normal curvature at the	edges.
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Discrete Surfaces - normal curvatures
Picking a (good) normal at the edge and looking at the
set of planes passing through the normal, we get a family
of curves.
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Discrete Surfaces - principal	curvature	
Picking a (good) normal at the edge and looking at the set of planes
passing through the normal, we get a family of curves.
Defining the curvature of the curve	in terms	of	the angle between
curve	segments:

– The min curvature	is	0,
with	principal	curvature	direction along e.

– The max	curvature	is	equal	to the	dihedral	angle
(b(e)=Ðn1n2), with	principal	curvature	direction along nexe,	
so	orthogonal to	e.
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Dihedral-angle
• 𝜑#$ = acos	(𝑛# - 𝑛$) ∈ [0, PI] (see geom3d)

• sharp features (e.g. dihedral angles <90 degrees)
• Signed dihedral-angle: dir = (𝑁456×𝑁4) - 𝑒49

• dir>0,  the edge is ridge; 
• dir<0, the edge is ravine. 
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dihedral-angle
• 𝜑#$ = acos	(𝑛# - 𝑛$) ∈ [0, PI] (see geom3d)
• sharp features (e.g. dihedral angles <90 degrees)

• Signed dihedral-angle
• A surface may depart from planarity by a positive or a negative dihedral angle 

(convex or concave).
• vcg::face::DihedralAngleRad (FaceType &f, const int i)
• Compute the signed dihedral angle between the normals of two adjacent faces. 
• It simply use the projection of the opposite vertex onto the plane of the other one.
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Signed dihedral-angle v.s. Convex & Concave

• vcg::face::DihedralAngleRad (FaceType &f, 
const int i)

• It simply use the projection of the opposite 
vertex onto the plane of the other one.

• dist01 = n0*p0- n0*p1;
• dist10 = n1*p1- n1*p0
• // just to be sure use the sign of the largest in 

absolute value;
• if(fabs(dist01) > fabs(dist10)) sign = dist01;
• else sign=dist10;

• Positive for convex & negative for concave
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Curvature tensor	@	edge
•Thus, the mean curvature at a point on the edge is	equal to the
dihedral angle between the faces:	H ( pÎe) =0.5* b(e)

•Moreover,	since the principal curvatures at pÎe are	0	and b(e),	with
directions e/|e|	and	nexe/|nexe|, we	can use this to define a
curvature tensor at pÎe:
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Curvature	tensor	@	vertex

• Averaging the curvature tensor over	the edges coming out of a vertex
v,	we	get a curvature tensor associated with vertices:
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Discrete Surfaces – normal	curvature

For any “tangent direction” w	at v,	we	can now compute the normal
curvature along w	as:

allowing us to compute principal curvatures values and directions at
a vertex,	then	mean	&	Gaussian	curvature

nv
wwt wk (w) = w C(v)wt
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curvature of discrete curve=>normal curvature @ edge => principle curvature @ edge => 
curvature tensor @ edge => curvature tensor @ vertex => normal curvature @ vertex => 
principle curvature @ vertex => mean and Gaussian curvature @ vertex



Gaussian curvature	via	angle	deficits
• Note:

• This discretization of curvature information and does not have to
conform with others.

• For example, the computed Gaussian curvature is	not the	same as the
one defined using angle	deficits.
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Gauss-Bonnet Theorem

• The theorem states, somewhat surprisingly, if one deforms the 
surface M, its total Gaussian curvature will not change, while the 
curvatures at some points will. 



Gauss-Bonnet Theorem
• For a closed surface M

• Total Gauss Curvature:           ∫ 𝐾𝑑𝐴 = 2𝜋𝑥(𝑀)B , where V-E+F=2-2g=𝜒

• Sphere

when sphere is deformed, new positive and negative curvature cancel out



Gauss-Bonnet Theorem
• For a closed surface M

• Total Gauss Curvature: 

∫ 𝐾𝑑𝐴 = 2𝜋𝑥(𝑀)B , where V-E+F=2-2g=𝜒

• For a surface patch

• For voronoi region: òò ò =+
¶M MA A gG dldA pkk 2
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Curvature
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K=k1k2

noisy



Discrete Curvature
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𝑘E =
FGHFI
J

, 𝑘K = 𝑘6 - 𝑘J

Gauss-Bonnet theorem



Curvature Computation

• Approaches:
• Discrete differential geometry: Normal Cycle
• Smooth differential geometry: Jet-fitting

• Implementation:
• toolbox_mesh/compute_curvature
• CGAL
• MeshLab
• 3d-workspace



Links and literature

• M. Meyer, M. Desbrun, P. Schroeder, A. Barr Discrete 
Differential-Geometry Operators for Triangulated 2-Manifolds, 
VisMath, 2002

• [Hamann 93] simple way to determine principal curvature and direction using 
least-squared paraboloid fitting

• No easy way to selecting an appropriate tangent plane



Links and literature
• P. Alliez, Estimating Curvature Tensors on Triangle Meshes, Source 

code!

• [Taubin 95] introduced a complete derivation of surface properties approximating 
curvature tensors for polyhedral surface

• Gaussian curvature: tog06_Salient geometric features for partial shape matching 
and similarity.



Global concavity
• cvpr13_Efficient Computation of Shortest Path-Concavity for 3D 

Meshes, has source code
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Discrete Surfaces
Note:
This discretization of curvature information and does not have to
conform with others.	Similarly, we	can use the cotangent Laplacian
and the	fact	that:

DS f = -2Hn
to define the mean curvature at a vertex,	but this also won’t agree
with the mean-curvature defined by the curvature tensor.

How to compute it?



Scalar field & its 
gradient, Laplacian



Function on a mesh M={V,E,F}
• A function is a discrete set of values or vectors defined at each 

vertex location. Then we have these two definitions,
• Definition 2.1 (Scalar function on a mesh)

• A scalar function f on a mesh with n vertices is a discrete set of values 
defined at each vertex, and can be viewed equivalently as an n-vector, that 
is

• Definition 2.2 (Vector function on a mesh)
• A d-vector function on a mesh with n vertices is a discrete set of d-vectors 

defined at each vertex, and can be viewed equivalently as an n*d matrix, 
that is 𝑓 = (𝑓M)M∈N∈ 𝑅P∗R



Function	on	a	mesh
In considering functions on	the a mesh, we	will	associate values
with each	vertex.

We	then extend the functions to the interior	of the triangles using
barycentric interpolation:	

f ( p) = å fi Bi ( p)
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The linear basis functions for barycentric
interpolation on a triangle.

𝑩𝒊

Triangle barycentric coordinates. Left: 𝜆J; Right: iso-curve of 𝜆J.



Triangle barycentric coordinates

• Mobius [Mobius1827] was the first to study ωW and he defined ωW
as the barycentric coordinates of v.

• ω6 v = A v, vJ, v[ = 6
J

1 1 1
x xJ x[
y yJ y[

= 6
J
[x yJ − y[ + y x[ − xJ +

xJy[ − x[yJ] is linear in v. 

• add one other condition: ∑ 𝛌𝐢�
𝐢 = 𝟏.

• {λ6 =
i(j,jI,jk)
i(jG,jI,jk)

, λJ =
i(jG,j,jk)
i(jG,jI,jk)

, λ[ =
i(jG,jI,j)
i(jG,jI,jk)

} are called 
Normalized barycentric coordinates (NBC).



Function on mesh
• f 𝒖 = ∑ BW 𝒖 fW�

W ,
• Where u=(u,v) is the parameter pair corresponding to the surface point 

x in a 2D conformal parameterization induced by the triangle.

𝑩𝒊



Approximating 
Integrals on a Mesh



Approximating Integrals on a Mesh
• In the continuous domain, filtering is defined through integration of 

functions over the mesh. 

• In order to descretize integrals, one needs to define a partition of the 
mesh into small cells centered around a vertex or an edge.



Approximating Integrals on a Mesh - Voronoi

Meyer, 2003, Course; Discrete Differential-Geometry 
Operators for Triangulated 2-Manifolds



Approximating Integrals on a Mesh



Dirichlet's energy of a function (f: M → R,M ⊑
𝑅P) on a manifold:

• Dirichlet's energy is a measure of how variable a function is.
• Solutions to  ∆f = 0 are functions that make the Dirichlet energy 

functional stationary:

Ex(f) =
1
2
y 𝛻f Jdudv
|

• i.e. the Euler equation of the Dirichlet problem is a Laplacian equation: 
∆f = 0





• M is a 2D manifold, and χ = u(x, y, z), v(x, y, z) is an unknown map 
(vector function) defined on M. G =

g6
gJ is a known 2*2 tensor field

defined on M, formed by two vector fields g6	and	gJ.
• If we want find a χ, using  𝛻χ to approximate the tensor field G, we can 

get the following formula:

• min
�
∫ 𝛻χ − G J
| = min

�,j
∫ 𝛻u − g6 J + 𝛻v − gJ J
| =

min
�,j

∫ F u, v, 𝛻u, 𝛻v|

Approximate two vector fields



Poisson Equation
• min

�
∫ 𝛻χ − G J
| = min

�,j
∫ 𝛻u − g6 J + 𝛻v − gJ J
| =

min
�,j

∫ F u, v, 𝛻u, 𝛻v|

• The Euler equation of the above problem is:

• �� �,j
��

= −div 𝛻u − g6 = 0, �� �,j
�j

= −div 𝛻v − g6 = 0
• i.e. a Poisson Equation

• �∆u = div g6
∆v = div gJ

	or	∆χ = div G



Dirichlet energy
• When G is zero everywhere, we get the Dirichlet energy:

• Ex(χ) =
6
J∬ 𝛻χ Jds|

• The Euler equation of the Dirichlet problem is a Laplacian equation:
• ∆χ = div G = 0

• The heat equation is: k∆χ = ��
��



Variational: Euler equation

单元单标量函数
E u = � F(x, u, u�, u′′)

`

�
dx

𝛛𝐅
𝛛𝐮

−
𝐝
𝐝𝐱

𝛛𝐅
𝛛𝐮�

+
𝐝𝟐

𝐝𝐱𝟐
𝛛𝐅
𝛛𝐮′′

= 0

多元单标量函数

E u = y F(x, y, u, u�, u�, u��, u��)
�

dxdy

𝜕F
𝜕u

−
d
dx

𝜕F
𝜕u�

−
d
dy

𝜕F
𝜕u�

+
dJ

dxJ
𝜕F
𝜕u��

+
dJ

dyJ
𝜕F
𝜕u��

= 0

= 𝐅𝐮 − 𝐝𝐢𝐯 𝐅𝐮𝐱, 𝐅𝐮𝐲 + ∆ 𝐅𝐮𝐱𝐱, 𝐅𝐮𝐲𝐲 = 0
多元多标量函数

Multi multivariable (scalar) 
function

E u, v = � F x, y, u, u�, u�, v, v�, v� dxdy
�

�
𝐅𝐮 − 𝐝𝐢𝐯 𝐅𝐮𝐱, 𝐅𝐮𝐲 = 0

𝐅𝐯 − 𝐝𝐢𝐯 𝐅𝐯𝐱, 𝐅𝐯𝐲 = 0



Operators on a mesh



Operators on a mesh M={V,E,F}

• Definition 2.3 (Linear operator A)
• A linear operator is defined as
• And operate on a function as follow

• Definition2. 4 (Local operator)
• A local operator 𝑊 ∈ 𝑅P∗Psatisfies 𝑤M = 0, 𝑖𝑓	 𝑖, 𝑗 ∉ 𝐸 if , that is 

( , )
( )i ij j

i j E
f w f

Î

= åW

In most applications, we restrict our attention to local operators that 
can be conveniently stored as sparse matrices.



Gradient operator – for edges

which is exactly the finite difference discretization of a directional derivative.



Gradient operator – for vertices



Gradient operator – for faces
• f 𝒖 = ∑ BW 𝒖 fW�

W

linear basis functions for barycentric interpolation on a triangle

x i

x j

xk
u = (u, v)

gradient of linear 
function

partition of unity



Direction of the Gradient

f (v):= B1(v)



Magnitude of the gradient



𝛁𝑩𝒊(𝒖) =
(xF − x¥)¦

2𝐴§
• 𝑩𝒊(𝒖) =

i(�,�¨,�©)
i(�ª,�¨,�©)

• 𝛁𝑩𝒊(𝒖) =
𝛁i(�,�¨,�©)
i(�ª,�¨,�©)

• 𝛁A x, x4, xF =
(�©5�«)¬

J

• Area∆PAB = F P = 6
J
AB PH

• 𝛻F = 6
J
AB 𝛻 PH = 6

J
AB °±

±°
=6
J
AB²�

𝛻 PH = °±
±°

: Unit vector in HP direction



𝛻 PH =
HP
PH

• Proof:
• P(x,y), v6 =

i³
i³

=
x6
y6 , vJ = v6¦ =

−y6
x6 ,

• H = v6 vJ 1 0
0 0

v6 vJ ´ x
y = x6J x6y6

x6y6 y6J
x
y

• PH = H − P = x6J − 1 x6y6
x6y6 y6J − 1

x
y = −y6J x6y6

x6y6 −x6J
x
y = x6y6y − y6Jx

x6y6x − x6Jy

• PH = x6y6y − y6Jx J + x6y6x − x6Jy J�

• � ±°
��

= 5 �G�G�5�GI� �GIH �G�G�5�GI� �G�G
�G�G�5�GI� IH �G�G�5�GI� I� = �G�G IH �G�G I �5 �G�G �G IH�G�G �G I �

±°

• = �GI�5�G�G�
±°

= °±µ
±°

• 𝛻 PH = °±
±°

• END.



Gradients



Laplacian Operators



Simple Curvature Discretization

∆ S x = divS ∇S x = −2H nLaplace-Beltrami

mean 
curvature

How to discretize?

gradient
operator



Laplace-Beltrami Operator
Functional basis on a surface
• Invariant to isometric deformations
• Has physics interpretation

• Low-frequency to high-frequency

2019/5/11 70



Laplace Operator on Meshes
• Extend finite differences to meshes?

• What weights per vertex/edge?

½ ½-1
¼ ¼

¼

¼

2D grid

-1

? ?

?

??

? ?

1D grid 2D/3D grid



Uniform Laplace
• Intuition for uniform discretization

∆ S x =−2H n



Uniform Laplace



Discrete Laplacians

2019/5/11 74

=L v d

n

duniform : wij = 1

dcotangent : wij = cot aij + cot bij

Dmean curvature : wij =cot aij + cot bij 
J#(¶·)
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Î
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δ x x

• For nearly equal edge lengths Uniform ≈ Cotangent
• While simple and efficient to compute, the resulting 

vector can be non-zero even for a planar 
configuration of vertices. However, in such a setting 
we would expect a zero Laplacian since the mean 
curvature over the entire mesh region is zero.



Discrete Laplacian by integration of Laplacian 
• a mixed finite element/finite volume method [Meyer et al. 03]
• 2010_Polygon Mesh Processing



Discrete Laplace-Beltrami
• Cotangent formula

• Problems
• Potentially negative weights
• Depends on geometry



Gauss' theorem (divergence theorem) for a vector-valued function F

Discrete Laplacians – Cotangent formula

Gradient is constant in T &
Normal of point (x,y,z) of the surface g(x,y,z)=0 is the gradient of g.
Gradient field is Conservative vector field
Integral of a conservative field over a closed path is zero.



• F is a vector field
±¸�¹	Wº»¼½¼º»¼º¾¼	

F is a Gradient field of a scalar 
function f⇔F is a conservative Field=> F is cur-free: ∮ 𝐅 - d𝐫Â =
∬ 𝛻×𝐅 - 𝐤dAÄ = 0=> ∀p ∈ R, curl F = 0=>∀p ∈ R, curl 𝛻f = 0

• (f is called potential function of the vector field F)





Discrete Laplace-Beltrami



Discretizing the Laplacian
Since the Laplace-Beltrami operator is linear, to compute the
Laplacian of f it suffices to be able to compute the Laplacians of
Bi(p):

Df ( p) =å fiDBi ( p)
i



Discretizing the Laplacian on	vertex
Since	also want to represent the Laplacian of	f	just by prescribing
vertex values, we	will set the Laplacian of	f at vertex v to be the
average of	the Laplacian in a neighborhood around v:

vl

Ri
vi

vk vj

(DB ) =
j i R ò DBj (r)dr = òdiv(ÑBj (r))dr

Ri Rii

1

B	 (v )=1i i

vivk
Bi	(vk)=0 vj

Bi	(vj)=0



Discretizing the Laplacian on	vertex
vl

Ri
vi

vk vj

(DB ) =
j i R ò DBj (r)dr = òdiv(ÑBj (r))dr

Ri Rii

1

But by the definition of the	divergence, this
is	just the integral over	the boundary:

(DBj ) =
R ò

¶Ri

ÑBj (r),nr dr
i

i

1 ¶Ri

vl

vi
vk vj



Discretizing the Laplacian

Breaking up the Ri	per	triangle, we	get:
(DB ) =

j i R å ò ÑBj (r),nr dr
viÎT ¶RiÇTi

1

(DB ) =
j i R ò ÑBj (r),nr dr

¶Rii

1

vl

vi
vk vj



Discretizing the Laplacian

Computing the gradient of Bj	we	get:

for all p in triangle Tijk.

Note	that since	the gradient is	constant over	the
interior	of the triangle, the integral is	path	
independent.

ÑB (p)=
2Area(Tijk )
(vi - vk )

j

^

vl

vi0

ÑBj(p)vk vj

(DB ) =
j i R å ò ÑBj (r),nr dr

viÎT ¶RiÇTi

1

vl

vi

ÑBj(p)vk vj



for all p in triangle Tijk.
Computing the integral over	the new boundary gives:

vl

Discretizing the Laplacian

Computing the gradient of Bj	we	get:

ÑB (p)=
2Area(Tijk )
(vi - vk )

j

^

(DB ) = 1 ç (v j - vk ) ,(vk - vi ) (v - v )^ ,(v - v )^
l j i l ÷

÷

ö

çç

æ
+

^ ^

4Area(Tijl )Ri 4Area(Tikj )ij

(DB ) =
j i R

è ø

vk
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ÑBj(p) vj

å ò ÑBj (r),nr dr
viÎT ¶RiÇTi

1



Discretizing the Laplacian

With a little bit of trigonometric manipulation, this gives:

(DB ) = (cotg + cotg )
jki ilj

i
ij 2 R

1 vl

gilj

vi
gjkivk vj

(DB ) =
j

1 ç (v j - vk ) ,(vk - vi ) (v - v )^ ,(v - v )^
l j i l ÷

÷
ø

ö

R çç
è

æ
+

^ ^

4Area(T )4Area(T ) ijlikji
i



Links and literature

• Grinspun et al.: Computing discrete shape operators on 
general meshes, Eurographics 2006



The Taste of Mathematics
• Discrete Exterior Calculus_03_thesis
• Guoliang Xu, Convergent Discrete Laplace-Beltrami Operators over 

Triangular Surfaces 



Mesh Quality Measures



Mesh Quality

Visual inspection of “sensitive” attributes
• Specular shading

• Reflection lines

• Curvature
• Mean curvature, Gauss curvature



Reflection lines as an inspection tool

Shape optimization using reflection lines
E. Tosun, Y. I. Gingold, J. Reisman, D. Zorin
Symposium on Geometry Processing 2007
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Mesh Quality Criteria

• Smoothness
• continuous differentiability of a surface (Ck)

• Fairness 
• aesthetic measure of “well-shapedness”
• principle of simplest shape 
• fairness measures from physical models



Mesh Quality Criteria

Smoothness
• Low geometric noise

(a) 3% noise added along the normal
(b) Isotropic smoothing
(c) Anisotropic smoothing



Normal Noise Analysis



Mesh Quality Criteria

Smoothness
• Low geometric noise

Fairness

• Simplest shape

Adaptive tesselation

• Low complexity

Triangle shape

• Numerical Robustness



Triangle Shape Analysis



Summary

Invariants as overarching theme
• shape does not depend on Euclidean motions (no stretch)

• metric & curvatures

• smooth continuous notions to discrete notions

• generally only as averages

• different ways to derive same equations

• DEC: discrete exterior calculus, FEM, abstract measure theory.



Summary
• A systematic study of convergence conditions for discrete geometry 

properties is given in [Hildebrandt et al. 06].
• An alternative approach to estimating local surface properties uses a 

local higher-order reconstruction of the surface, followed by analytic 
evaluation of the desired properties on the reconstructed surface patch.

• [Wardetzky et al. 07]. They show that the discrete operators cannot 
simultaneously satisfy all of the identified properties of symmetry, 
locality, linear precision, and positivity. 

• For example, the cotangent formula of Equation (3.11) satisfies the first three 
properties, but not the fourth, since edge weights can assume negative values. 
The choice of discretization thus depends on the specific application.



Literature

• Book: Chapter 3

• Taubin: A signal processing approach to fair surface design, SIGGRAPH 1996

• Desbrun et al. : Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, 
SIGGRAPH 1999

• Meyer et al.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, 
VisMath 2002

• Wardetzky et al.: Discrete Laplace Operators: No free lunch, SGP 2007

[1] Gabriel, 2007, Course; Numerical Mesh Processing. 
[2] 2010_Polygon Mesh Processing



Reading
• Computing discrete shape operators on general meshes_eg06
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