Digital Geometry
 - Shape Matching

Junjie Cao @ DLUT
Spring 2018
http://jicao.github.io/DigitalGeometry/

Last Time

- Surface Registration

- Pairwise ICP \& Variants
- Point-to-point/plane metric
- BSP closes point search
- Stability Analysis
- Global Registration

Shape Matching for Model Alignment

- Goal
- Given two partially overlapping scans, compute transformation that aligns the two.
- No assumption about rough initial alignment

Shape Matching for Model Alignment

- Approach
- Find feature points on the two scans
- Establish correspondences

Partially Overlapping Scans

Shape Matching for Model Alignment

- Approach

1. Find feature points on the two scans
2. Establish correspondences
3. Compute the alignment

Partially Overlapping Scans
Aligned Scans

Outline

- Global Shape Correspondence
- Shape Descriptors
- Alignment
- Partial Shape Correspondence
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors
- Registration
- Closed Form Solutions
- Branch \& Bound
- Random Sample Consensus (RANSAC)

Correspondence

- Goal
- Identify when two points on different scans represent the same feature

Local Correspondence

- Goal
- Identify when two points on different scans represent the same feature
- Are the surrounding regions similar?

Global Correspondence

- More Generally:
- Given two models, determine if they represent the same/similar shapes
- models can have different representations, tesselations, topologies, etc.

Global Correspondence

- Approach:
- Represent each model by a shape descriptor:
- A structured abstraction of a 3D model
- that captures salient shape information

Global Correspondence

- Approach:
- Represent each model by a shape descriptor
- Compare shapes by comparing their shape descriptors

Shape Descriptors: Examples

- Shape descriptor stores a histogram of how much surface area resides within different concentric shells in space

Represents a 3D model by a 1D (radial) array of values

Shape Descriptors: Examples

- Shape descriptor stores a histogram of how much surface area resides within different sectors in space

[Ankerst et al. 1999]

Shape Descriptors: Examples

- Shape descriptor stores a histogram of how much surface area resides within different shells and sectors in space

Represents a 3D model by a 3D
(spherical x radial) array of values
[Ankerst et al. 1999]

Shape Descriptors: Challenge

- The shape of a model does not change when a rigid body transformation is applied to the model

Shape Descriptors: Challenge

- To compare two models, we need them at their optimal alignment

Shape Descriptors: Alignment

- Three general methods:
- Exhaustive Search
- Normalization
- Invariance

Shape Descriptors: Alignment

- Exhaustive Search:
- Compare at all alignments

Exhaustive search for optimal rotation

Shape Descriptors: Alignment

- Exhaustive Search:
- Compare at all alignments
- Correspondence is determined by the alignment at which the models are closest

Exhaustive search for optimal rotation

Shape Descriptors: Alignment

- Exhaustive Search:

- Compare at all alignments
- Correspondence is determined by the alignment at which the models are closest

- Properties:

- Gives the correct answer (w.r.t. the metric)
- While slow on a single processor, it can be parallelized (Clusters? MultiThreading? GPU?)

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation

Initial Models

Translation-Aligned Models

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation: PCA alignment

Initial Models

Translation-Aligned Models

Coarse alignment - PCA

- Use PCA to place models into a canonical coordinate frame

Covariance
matrix computation

Principal axis computation

- Given a collection of points $\{p i\}$, form the co-variance matrix:

$$
\begin{gathered}
\mathbf{c}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{p}_{i} \\
C=\frac{1}{N} \sum_{i=1}^{N} \mathbf{p}_{i} \mathbf{p}_{i}^{T}-\mathbf{c c}^{T}
\end{gathered}
$$

- Compute eigenvectors of matrix C

Issues with PCA

- Principal axes are not oriented

- Axes are unstable when principal values are similar

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation: PCA alignment
- Properties:
- Efficient
- Not always robust
- Not suitable for local feature matching

Shape Descriptors: Alignment

- Invariance:

- Represent a model by a shape descriptor that is independent of the pose.

Shape Descriptors: Alignment

- Example: Ankerst's Shells
- A histogram of the radial distribution of surface area

Shape Descriptors: Alignment

- Invariance
- Power spectrum representation
- Fourier transform for translations
- Spherical harmonic transform for rotations

Circular Power Spectrum

Spherical Power Spectrum
storing only the amplitudes of the different frequency components, discarding phase.

Shape Descriptors: Alignment

- Invariance:
- Represent a model by a shape descriptor that is independent of the pose
- Properties:
- Compact representation
- Not always discriminating

Outline

- Global Shape Correspondence
- Shape Descriptors
- Alignment
- Partial Shape Correspondence
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors
- Registration
- Closed Form Solutions
- Branch \& Bound
- Random Sample Consensus (RANSAC)

From Global to Local

- To characterize the surface about a point p, take global descriptor and:
- center it about p (instead of center of mass), and
- restrict the extent to a small region about p

Shape histograms as local shape descriptors

From Global to Local

- Given scans of a model:

From Global to Local

- Identify the features
- Computer a local descriptor for each feature

From Global to Local

- Identify the features
- Computer a local descriptor for each feature
- Feature correspond \rightarrow descriptors are similar

Pose Normalization

- From Global to Local

- Translation: Accounted for by centering the descriptor at the point of interest.
- Rotation: We still need to be able to match descriptors across different rotations.

Pose Normalization

- Challenge

- Since only parts of the models are given, we cannot use global normalization to align the local descriptors

- Solutions

Normalize using local information?

Local Descriptors: Examples

- Variations of Shape Histograms

- For each feature, represent its local geometry in cylindrical coordinates about the normal

Since the surface normal is consistent across corresponding feature points, the height and radius are in normalized coordinates. However, there is no normalization for the angle about the normal,

Local Descriptors: Examples

- Variations of Shape Histograms
- For each feature, represent its local geometry in cylindrical coordinates about the normal
- Spin Images (1997): Store energy in each normal ring

Spin images

- average of some geometry info, such as surface area, number of vertex, by intersecting the local geometry with rings => 2D histogram

Feature
point

42

Outline

- Global Shape Correspondence
- Shape Descriptors
- Alignment
- Partial Shape Correspondence
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors
- Registration
- Closed Form Solutions
- Branch \& Bound
- Random Sample Consensus (RANSAC)

Registration - Ideal Case

- Every feature point on one scan has a single corresponding feature on the other.
- Solve for optimal transformation T

Registration - Challenge

- Even with good descriptors, symmetries in the model and the locality of descriptors can result in multiple and incorrect correspondences

Registration - Exhaustive Search

- Compute alignment error at each permutation of correspondences and use the optimal one

$$
\text { Error }=\underset{\pi \in \Psi}{\operatorname{argmin}}\left(\underset{T \in F^{3}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|p_{i}-T\left(\pi\left(p_{i}\right)\right)\right\|^{2}\right)
$$

$\Psi=$ Set of possible correspondence
$E^{3}=$ Group of rigid body transformations

Registration - Exhaustive Search

- Compute alignment error at each permutation of correspondences and use the optimal one

$$
\text { Error }=\underset{\pi \in \Psi}{\operatorname{argmin}}\left(\underset{T \in F^{3}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|p_{i}-T\left(\pi\left(p_{i}\right)\right)\right\|^{2}\right)
$$

$\Psi=$ Set of possible correspondence
$E^{3}=$ Group of rigid body transformations
Given points $\left\{p_{1}, \ldots, p_{n}\right\}$ on the query, if p_{i} matches m_{i} different target points:

$$
|\Psi|=\prod_{i=1}^{n} m_{i}
$$

$|\Psi|=4^{4}=256$ possible permutations

Registration - Branch \& Bound (Decision tree)

- Try all permutations but terminate early if the alignment can be predicted to be bad

By performing two comparisons, it was possible to eliminate 16 different possibilities

Tree-based search Branch \& Bound

Cgf08-Deformation-Driven Shape Correspondence

(a) Source (left), target shapes, and curve-sheet abstractions

(b) Search tree

(c) Final correspondence result

Siga15-Deformation-Driven Topology-Varying 3D Shape Correspondence

Tree-based search Branch \& Bound

Registration - Goal

- Need to be able to determine if the alignment will be good without knowing all of the correspondences

How to evaluate the alignment by using no more correspondences, i.e. just the two?

Registration - Goal

- Need to be able to determine if the alignment will be good without knowing all of the correspondences
- Observation
- Alignment needs to preserve the lengths between points in a single scan

These distances depend only on the correspondences and not on the alignment

An alternative approach - RANdom SAmple Consensus

- Observation:
- In 3D only three pairs of corresponding points are needed to define a transformation.

RANdom SAmple Consensus

- Algorithm (iterate 100 times)
- Randomly choose 3 points on source
- For all possible correspondences on target:
- Compute T
- For every other source p:
- find closest correspondence T(p)
- Compute alignment error

Summary

Global Shape Correspondences

- Shape Descriptors
- Shells (1D)
- Sectors (2D)
- Sectors \& Shells (3D)
- Alignment
- Exhaustive Search
- Normalization
- Invariance

Summary

Partial-Shape/Point Correspondences

- From Global to Local
- Center at feature
- Restrict extent
- Pose Normalization
- Normal-based alignment
- Partial Shape Descriptors
- Normalization/invariance
- Normalization/exhaustive-search

Summary

Registration

- Closed Form Solutions
- Global symmetry
- Local self similarity
- Branch \& Bound
- Inter-feature distances for early termination
- RANdom SAmple Consensus
- Efficient transformation computation

Thanks

