Digital Geometry - Surface Parameterization

Junjie Cao @ DLUT
Spring 2019

Outline

- Definition \& Motivation
- Angle Preservation
- Discrete Harmonic Maps
- Discrete Conformal Maps
- Angle Based Flattening
- Reducing Area Distortion
- Alternative Domains

Surface Parameterization

Molweide Frojection

Fele's Prajekion

Seniliectro limghtungupropition

Langentreue Aximuthalapelition

Foblinum Puphtion

Fisctentreue kegelprotiotion

Ssereog aphlische Propestion

nsone Ctbave Meraso Pophsicn

- me MacticriArsidion

Achrown-Propection

Sifuccisale Pouetbin

CosviniScediren Prowhion

Motivation

- Texture mapping

Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002

Motivation

- Texture mapping

Base skin texture

Artist paints in some highlights \& make-up.
See details of texture creation: https://software.intel.com/en-us/articles/creating-textures-for-characters-in-autodesk-maya

Texture Mapping

- Unfold/flatten/unwrap/ parameterize a surface mesh in 3D to 2D plane.
- Pull back whatever structure you need: texture, vector field, grid pattern, etc.
- Here we pull back color for texture mapping application.

Motivation

- Normal mapping

Motivation

- Many operations are simpler on planar domain

Lévy: Dual Domain Exrapolation, SIGGRAPH 2003

Apps for spherical parameterization

Correspondence:

Morphing:

Motivation

Mesh Parameterization

- Find coordinates (ui,vi) associated to each vertex i.

Surface Parameterization

Surface Parameterization

$$
\begin{aligned}
& \|d \boldsymbol{X}\|^{2}=d \boldsymbol{U} \underbrace{\boldsymbol{J} \boldsymbol{T} \boldsymbol{J}} d \boldsymbol{U} \quad \text { First Fundamental Form } \\
& \mathbf{I}=\left(\begin{array}{ll}
x_{u} x_{u} & x_{u} x_{v} \\
x_{u} x_{v} & x_{v} x_{v}
\end{array}\right)
\end{aligned}
$$

Characterization of Mappings

- By first fundamental form \boldsymbol{I}
- Eigenvalues $\lambda_{1,2}$ of I

- Singular values $\sigma_{1,2}$ of $J\left(\sigma_{i}^{2}=\lambda_{i}\right)$
- Isometric
- $I=I d$,

$$
\lambda_{1}=\lambda_{2}=1 \quad L
$$

- Conformal
- $I=\mu I d, \quad \lambda_{1} / \lambda_{2}=1$

angle preserving
- Equiareal
$-\operatorname{det} \boldsymbol{I}=1, \quad \lambda_{1} \lambda_{2}=1$

Piecewise Linear Maps

- Mapping = 2D mesh with same connectivity

Objectives

- Isometric maps are rare
- Minimize distortion w.r.t. a certain measure
- Validity (bijective map)

triangle flip
- Boundary
- Domain

fixed / free?
e.g.,spherical
- Numerical solution

Parameterization Bijectivity

Local overlap.
(normal of the highlighted flipped triangle is inverted w.r.t. the other triangle normals).

No local overlap.

Local overlap.

No local overlap.

Discrete Harmonic Maps

- f is harmonic if $\Delta f=0$
- Solve Laplace equation

Discrete Harmonic Maps

- f is harmonic if $\Delta f=0$
- Solve Laplace equation

- Yields linear system (again)

$$
L\left(p_{i}\right)=\sum_{j \in N_{i}} w_{i j}\left(p_{j}-p_{i}\right)=0 \quad \text { vertices } 1 \leq i \leq n
$$

- Convex combination maps
- Normalization

$$
\begin{aligned}
\sum_{j \in N_{i}} w_{i j} & =1 \\
w_{i j} & >0
\end{aligned}
$$

- Positivity

Discrete Harmonic Maps

$$
B=\text { Boundary vertices }
$$

Fix 2D boundary to convex polygon.
Define drawing as a solution of

$$
W x=b_{x} \quad W_{i j}=\left\{\begin{array}{cl}
>0 & (i, j) \in E \quad i \notin B \\
-\sum_{j \neq i} w_{i j} & (i, i), i \notin B \\
1 & (i, i), i \in B \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
W \text { is symmetric: } w_{i j}=w_{j i}
$$

Weights $w_{i j}$ control triangle shapes

Discrete Harmonic Maps

$$
w_{i j}=1
$$

Laplacian Matrix

$$
W=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 5 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & -5 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & -5
\end{array}\right)
$$

Convex Combination Maps

- Every (interior) planar vertex is a convex combination of its neighbors
- Based on Tutte's barycentric mapping theorem from graph theory [Tutte60]

Given a triangulated surface homeomorphic to a disk, if the (u, v) coordinates at the boundary vertices lie on a convex polygon, and if the coordinates of the internal vertices are a convex combination of their neighbors, then the (u, v) coordinates form

- Weights a valid parameterization (without self-intersections).
- Uniform (barycentric mapping)
- Shape preserving [Floater 1997] (Reproduction of planar meshes)

$$
w_{i j}=\frac{\tan \left(\gamma_{i j} / 2\right)+\tan \left(\delta_{i j} / 2\right)}{2\left\|v_{i}-v_{j}\right\|}
$$

- Mean Value Coordinates [Floater 2003]
- Use mean value property of harmonic functions

Methods compared

Conformal Maps

- Planar conformal mappings $f(x, y)=\binom{u(x, y)}{v(x, y)}^{\dot{j}}$ satisfy the Cauchy-Riemann conditions

$$
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x}
$$

- Differentiating once more by x and y yields

$$
\begin{array}{r}
u_{x x}=v_{x y} \text { and } u_{y y}=-v_{x y} \Rightarrow u_{x x}+u_{y y}=\Delta u=0 \\
\text { and similar } \Delta v=0
\end{array}
$$

- conformal \Rightarrow harmonic

Discrete Conformal Maps

- Planar conformal mappings $f(x, y)=\left(\begin{array}{l}u(x, y) \\ v(x, y))^{\dot{j}}\end{array}\right.$ satisfy the Cauchy-Riemann conditions

$$
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x}
$$

- Conformal energy (per triangle T)

$$
E_{T}=\left(u_{x}-v_{y}\right)^{2}+\left(u_{y}+v_{x}\right)^{2}
$$

- Minimize

$$
\sum_{T \in T} E_{T} A_{T} \rightarrow \min
$$

Gradient in a Triangle

$$
\begin{aligned}
\mathbf{X} & =\frac{\mathbf{x}_{j}-\mathbf{x}_{i}}{\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|} \\
\mathbf{n} & =\frac{\mathbf{X} \times\left(\mathbf{x}_{k}-\mathbf{x}_{i}\right)}{\left\|\mathbf{X} \times\left(\mathbf{x}_{k}-\mathbf{x}_{i}\right)\right\|} \\
\mathbf{Y} & =\mathbf{n} \times \mathbf{X}
\end{aligned}
$$

X, Y: orthonormal basis of the triangle
$\mathrm{x}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}, \mathrm{x}_{\mathrm{k}}$: vertex coordinates in the XY basis

Study the inverse of parameterization: maps (X, Y) of the triangle to a point (u, v)

$$
\nabla u=\left[\begin{array}{l}
\partial u / \partial X \\
\partial u / \partial Y
\end{array}\right]=\underbrace{\frac{1}{2 A_{T}}\left[\begin{array}{ccc}
Y_{j}-Y_{k} & Y_{k}-Y_{i} & Y_{i}-Y_{j} \\
X_{k}-X_{j} & X_{i}-X_{k} & X_{j}-X_{i}
\end{array}\right]}_{=\mathbf{M}_{T}}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)
$$

∇u intersects the iso-u lines; ∇v intersects the iso-v line

Conformality condition iso-u lines \perp iso-v lines

III

Figure 4.5: Iso-u,v curves and associated gradients.

Least Square Conformal Map

$$
\begin{gathered}
\nabla v=\mathbf{n} \times \nabla u \Rightarrow \quad \nabla v=(\nabla u)^{\perp}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \nabla u \\
\mathbf{M}_{T}\left(\begin{array}{l}
v_{i} \\
v_{j} \\
v_{k}
\end{array}\right)-\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{M}_{T}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)=\binom{0}{0}
\end{gathered}
$$

$$
E_{\mathrm{LSCM}}=\sum_{T=(i, j, k)} A_{T}\left\|\mathbf{M}_{T}\left(\begin{array}{c}
v_{i} \\
v_{j} \\
v_{k}
\end{array}\right)-\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \mathbf{M}_{T}\left(\begin{array}{l}
u_{i} \\
u_{j} \\
u_{k}
\end{array}\right)\right\|^{2}
$$

- $\mathrm{E}_{\text {LScm }}$ is invariant to translation and rotation in the parametric space. To have a unique minimizer, it is required to fixed at least two vertices.
- From [Levy et al.2002], if the pinned vertices are chosen on the boundary, all the triangles are consistently oriented (no flips).

Least Square with Reduced D.O.F.

$$
\begin{aligned}
x=\left[x_{f} \mid x_{l}\right] . & \text { Free parameters } x_{f}=\left[\begin{array}{lll}
x_{1} & \text { ? } & x_{n f}
\end{array}\right] \\
& \text { Lock parameters } x_{l}=\left[\begin{array}{lll}
x_{n f+1} & \text { ? } & x_{n}
\end{array}\right] \\
& F\left(x_{f}\right)=\|A x-b\|^{2}=\left\|\left[\begin{array}{ll}
A_{f} \mid & \left.A_{l}\right]
\end{array}\right]\left[\begin{array}{c}
x_{f} \\
x_{l}
\end{array}\right]-b\right\|^{2} \\
& F\left(x_{f}\right)=\left\|A_{f} x_{f}+A_{l} x_{l}-b\right\|^{2} \\
& b^{\prime}=A_{l} x_{l}-b \\
& A_{f}^{t} A_{f} x_{f}=A_{f}^{t} b^{\prime} \quad \text { or } \quad A_{f}^{t} A_{f} x_{f}=A_{f}^{t} b-A_{f}^{t} A_{l} x_{l}
\end{aligned}
$$

$E_{\mathrm{LSCM}}=\sum_{T=(i, j, k)} A_{T} A\left\|\mathrm{M}_{T}\left(\begin{array}{c}v_{i} \\ v_{j} \\ v_{k}\end{array}\right)-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \mathbf{M}_{T}\left(\begin{array}{l}u_{i} \\ u_{j} \\ u_{k}\end{array}\right)\right\|^{2}$

$$
E_{L S C M}=A_{a}\left\|M_{a}\left(\begin{array}{l}
v_{0} \\
v_{1} \\
v_{2}
\end{array}\right)-R M_{a}\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right)\right\|+A_{b}\left\|M_{b}\left(\begin{array}{l}
v_{0} \\
v_{2} \\
v_{3}
\end{array}\right)-R M_{b}\left(\begin{array}{l}
u_{0} \\
u_{2} \\
u_{3}
\end{array}\right)\right\|^{2}+A_{c}\left\|M_{c}\left(\begin{array}{l}
v_{0} \\
v_{3} \\
v_{1}
\end{array}\right)-R M_{c}\left(\begin{array}{l}
u_{0} \\
u_{3} \\
u_{1}
\end{array}\right)\right\|^{2}
$$

$\mathrm{E}_{\mathrm{LSCM}}$ is invariant to translation and rotation in the parametric space. To have a unique minimizer, it is required to fixed at least two vertices.

Figure 5.10. For surlacte that have a high Gaussian curvature, conformal methods may generate highly distorted results, different from what the user might expect (left). 'I'he ABF' methed and its variants better balnnee the distortions and give better results (right). (Image taken from [Hormann et al. 07]. © 2007 ACM , Inc. Included here by permission.)

Angle-Based Flattening (ABF) [Sheffer \& de Sturler 2000]

 unknown 2D angles α_{k}^{T}the "optimal" angles β_{k}^{T} measured on the 3D mesh

$$
E_{\mathrm{ABF}}(\boldsymbol{\alpha})=\sum_{T \in \mathcal{F}} \sum_{k=1}^{3}\left(\frac{\alpha_{k}^{T}-\beta_{k}^{T}}{\beta_{k}^{T}}\right)^{2}
$$

Constraints:

$$
\begin{array}{lc}
\forall T \in \mathcal{F}: \quad \alpha_{1}^{T}+\alpha_{2}^{T}+\alpha_{3}^{T}=\pi \\
\forall v \in \mathcal{V}_{\text {int }}: \quad \sum_{(T, k) \in v^{*}} \alpha_{k}^{T}=2 \pi \\
\forall v \in \mathcal{V}_{\text {int }}: \quad \prod_{(T, k) \in v^{*}} \sin \alpha_{k \oplus 1}^{T}=\prod_{(T, k) \in v^{*}}^{\begin{array}{c}
\text { optimize } \\
\text { constrai } \\
\text { Nonline }
\end{array}} \sin \alpha_{k \ominus 1}^{T}
\end{array}
$$

Constrained quadratic optimization with equality constraints Nonlinear optimization

Finding (ui,vi) coordinates, in terms of angles, α Stable (ui,vi) to ai conversion

Wheel Consistency

$$
\begin{aligned}
& \sin \beta_{1} \sin \beta_{2} \sin \beta_{3}-\sin \gamma_{1} \sin \gamma_{2} \sin \gamma_{3}=0 \\
& \sin \beta_{1} \sin \beta_{2} \sin \beta_{3}=\sin \gamma_{1} \sin \gamma_{2} \sin \gamma_{3} \\
& \frac{\sin \beta_{1}}{\sin \gamma_{1}} \cdot \frac{\sin \beta_{2}}{\sin \gamma_{2}} \cdot \frac{\sin \beta_{3}}{\sin \gamma_{3}}=1
\end{aligned}
$$

Sine law : $\frac{a}{\sin \gamma_{1}}=\frac{b}{\sin \beta_{1}}$

$$
\frac{\sin \beta_{1}}{\sin \gamma_{1}}=\frac{b}{a}
$$

$$
\frac{\sin \beta_{1}}{\sin \gamma_{1}} \cdot \frac{\sin \beta_{2}}{\sin \gamma_{2}} \cdot \frac{\sin \beta_{3}}{\sin \gamma_{3}}=\frac{b}{a} \cdot \frac{c}{b} \cdot \frac{a}{c}=1
$$

Angle Based Flattening

- Free boundary
- Validity: no local self-intersections
- Non-linear optimization

And how about area distortion?

Reducing Area Distortion

- Energy minimization based on
- MIPS [Hormann \& Greiner 2000]

$$
\|J\|_{F}\left\|J^{-1}\right\|_{F}=\frac{\sigma_{1}}{\sigma_{2}}+\frac{\sigma_{2}}{\sigma_{1}}
$$

- modification [Degener et al. 2003]

$$
\operatorname{det} J+\frac{1}{\operatorname{det} J}=\sigma_{1} \sigma_{2}+\frac{1}{\sigma_{1} \sigma_{2}}
$$

- "Stretch" [Sander et al. 2001]

$$
\|J\|_{F}=\sqrt{\sigma_{1}+\sigma_{2}} \text { or }\|J\| \infty=\sigma_{1}
$$

- modification [Sorkine et al. 2002]

$$
\max \left\{\sigma_{1}, \frac{1}{\sigma_{2}}\right\}
$$

Examples

Stretch metric minimization
Using [Yoshizawa et. al 2004]

Other Issues

Fixing the Boundary vs free

- Choose a simple convex shape
- Triangle, square, circle
- Distribute points on boundary

- Use chord length parameterization
- Fixed boundary can create high distortion

Other Issues: Atlas -- Model Segmentation

- Planar parameterization is only applicable to surfaces with disk topology
- Closed surfaces and surfaces with genus greater than zero have to be cut prior to planar parameterization
- Cut to reduce complexity (to reduce distortion)
- Duplicate each vertex on the cut.
- Cut may lead to cross-discontinuii

Other Issues: Model Segmentation

- Cut to reduce complexity (to reduce distortion)
- Naïve Vs smart cut
- Two approaches
- Seam (introduce cuts into the surface but keep it as a single chart)
- Segmentation (partitior multiple charts: Atlas)

A basic method for cut/seam computation

- Minimum Spanning Tree computation on high-curvature parts.
- From the base to the cat's head, adding nodes on the ear tips as the extreme curvature points.
- Blue is a connected cut w/o loops (tree), which turns a closed surf into one disk topology surface that can be mapped to a single disk.

Advance cut/seam computation

- OptCuts: Joint Optimization of Surface Cuts and Parameterization
- Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping

MDS-based Parameterization \& Atlas

- Embedding of the mesh into $\mathrm{R}^{\mathrm{k}}, \mathrm{k}=2$ for planar parameterization
- pairwise dissimilarity values b / w points, e.g., geodesic distances are approximated by the Euclidean distances in the embed space.
- Here are 2 different MDS transformations from R3 to R3.

MDS-based Parameterization \& Atlas

- Classical method
- k leading eigenvectors of A define MDS coords in R^{k}.
- affinity matrix A saves pairwise dissimilarities
- used in texture Mapping Using Surface Faltening via Multidimensional scaling to get parameterizations that are OK for non-complex surfaces such as:

- Least-squares method
- minimize

$$
E(\mathbf{v})=\sum_{i<j}\left(\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|-g(i, j)\right)^{2}
$$

- using mass-spring system as described in Detail-resesving Mesh Unfolding for Nonrigid Shape Retrieval.

MDS-based Parameterization \& Atlas

- Classical method
- k leading eigenvectors of A define MDS coords in R^{k}.
- affinity matrix A saves pairwise dissimilarities
- can be accelerated: Sparse Multidimensional Scaling Using Landmark Points.
- Compute embedded landmark points first
- Then computes embedding coordinates for the remaining data points based on their distances from the landmark points.

MDS-based Parameterization \& Atlas

- Segment into charts, parameterize each chart with MDS

Non-Planar Domains

(b) [Haker ct al., 2000]

Constrained Parameterizations

Levy: Constraint Texture Mapping, SIGGRAPH 2001.

Literature

- Floater and Hormann: Surface Parameterization: a tutorial and survey, advances in multiresolution for geometric modeling, Springer 2005
- Hormann, Polthier, and Sheffer, Mesh Parameterization: Theory and Practice, SIGGRAPH Asia 2008 Course Notes

Thanks

