
C++ Program Design
-- Introduction

Junjie Cao @ DLUT
Summer 2019

http://jjcao.github.io/cPlusPlus

http://jjcao.github.io/cPlusPlus/

Coding is important

• 生活、工作在数字时代：网络+人工智能
• 许多工作岗位即将或已经正在逐步的被机
器所替代的时代。

• 一切过程都需要被程序化
• 别人编程，我享用？

• When human beings acquired language, we learned not just how to
listen but how to speak.

• When we gained literacy, we learned not just how to read but how to
write.

• And as we move into an increasingly digital reality, we must learn
not just how to use programs but to make them.

• In the emerging, highly programmed landscape ahead, you will either create the software or you
will be the software. It's really that simple: Program, or be programmed.

• Choose the former, and you gain access to the control panel of civilization. Choose the latter, and
it could be the last real choice you get to make.

-- Douglas Rushkoff, in Program or Be Programmed: Ten Commands for a Digital Age (2010)

本学期的目标

给定数据+问题描述，独立写程序解决这个问题

Is Matlab/Python the final weapon
for us?

Why teaching C++

C
Rulez!

Dennis Ritchie
1969 -- 1973 at Bell Labs
C89, …, C99, C11, C18

C++
Rulez!

Bjarne Stroustrup: Why I Created C++ - YouTube

1979--1983 at Bell Labs
C++11, C++14, C++17, C++20

https://en.wikipedia.org/wiki/Bell_Labs
https://www.youtube.com/watch?v=JBjjnqG0BP8
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/C++17
https://en.wikipedia.org/wiki/C++20

Language evolution
• Machine Language

• The very limited set of instructions that a CPU natively understands is called
machine code (or machine language or an instruction set)

• each instruction is composed of a number of binary digits, each of which can only be
a 0 or a 1. These binary numbers are often called bits (short for binary digit)

• an example x86 machine language instruction: 10110000 01100001
• each set of binary digits is translated by the CPU into an instruction that tells it to

do a very specific job
• compare these two numbers
• put this number in that memory location.

• Different types of CPUs will typically have different instruction sets, so instructions
that would run on a Pentium 4 would not run on a Macintosh PowerPC based
computer.

• Back when computers were first invented, programmers had to write programs
directly in machine language, which was a very difficult and time consuming thing
to do.

• Assembly Language
• High-level Languages

Language evolution
• Machine Language

• an example x86 machine language instruction: 10110000 01100001
• Assembly Language

• each instruction is identified by a short name (rather than a set of bits), and
variables can be identified by names rather than numbers

• must be translated into machine language by using an assembler.
• Assembly languages tend to be very fast, and assembly is still used today

when speed is critical.
• However, the reason assembly language is so fast is because assembly

language is tailored to a particular CPU. Assembly programs written for one
CPU will not run on another CPU.

• Furthermore, assembly languages still require a lot of instructions to do even
simple tasks, and are not very human readable.

• the same instruction as above in assembly language: mov al, 061h

• High-level Languages

Language evolution
• Machine Language

• an example x86 machine language instruction: 10110000 01100001
• Assembly Language

• the same instruction as above in assembly language: mov al, 061h
• High-level Languages

• C++: more abstract, easy:
• Conciseness: 1 = many
• Maintainability: easier to modify
• Portability: suitable for different types of processor

• C++ is a high-level language, compiled language, strong types, case
sensitive.

int main(){
return 0;

}

编程语言和思想
• Assembly language
• Computation: Fortran 1954
• System programming: C 1969, C++ 1979, C# 1999, Objective-C
• Application: Java 1995, Java script, PHP
• Unix shell to everything: Perl, Python, Ruby
• Computation: Matlab, Mathematics, Mapple, R
• The "concept“ of "programming languages“ are quite "similar"

Language is the dress of thought.
~Samuel Johnson

But if thought corrupts language, language can
also corrupt thought.

~George Orwell

C++称霸的领域

•游戏
• HPC（高性能计算）

• 人工智能底层
•编译器
•金融财务领域：高频交易平台
•等等

Why teaching C++
• Versatile

• Python >= C++ > Matlab
•易于掌握

• Python (free) > Matlab (commercial)
•性能

• C++。是Matlab和Pythong的必要补充。

• Prerequisites
• Proficiency in Python, high-level familiarity in C/C++

• All class assignments will be in Python, but some of the deep learning libraries we may look
at later in the class are written in C++.

• If you have a lot of programming experience but in a different language (e.g.
C/C++/Matlab/Javascript) you will probably be fine.

CS231n: Convolutional Neural Networks for Visual Recognition, @ Stanford, Spring 2019

Why teaching C++
• Versatile

• Python >= C++ > Matlab
•易于掌握

• Python (free) > Matlab (commercial)
•性能

• C++。是Matlab和Pythong的必要补充。

• Java, Matlab & Python 不适合学习数据结构和算法
• The most of libraries for science computation are still implemented in

C++.
•其它语言不够 hard, C++可以用来区分great programmers and mediocre

programmers.

Evolution of Programming Languages

http://web.cs.hacettepe.edu.tr/~bbm101

•其实这么多年我看着各
种库的起起落落，还有
一种感慨是研究者不能
始终抱着一个大腿，要
与时俱进。但是时代的
潮流在哪里也不是随时
都能看出来的，也没法
时刻保持自己在前沿，
但好在掌握了一个库之
后再换另一个库并不是
很费劲。

• --CMU LTI博士研究生
王赟

课程相关

•教师
• Junjie Cao, http://jjcao.github.io
• jjcao@dlut.edu.cn

•主页: http://jjcao.github.io/cPlusPlus/

../../../jjcao_paper/jjcao_papers-introduction.pptx
http://jjcao.github.io/

Variable &
function Class

Inside C++

Memory

Standard

Algorithm Software
Engine

Design

Version
Control

Test

P&F

Platform

Web

Android

Mac

framework

OpenGL

QT

STL

Template

考核

item ratio
签到、日常测试、作业 30%
Exam 70%

How to Succeed?
• 56 hours (32 talks + 24 practices) in 4 weeks
•每个人都可以

• Work hard
• 精英日课2:正确的学习方法只有一种风格
• 多做编程练习胜过多看书
• “少想多做”，落实到editor内；
• 增量开发，确保每一步可运行:

• void main() first
• Function 1
• Function 2
• …

• Debug your code
• 英文搜索错误信息, Google!!!
• Learn by good example: follow open source projects
• 代码行数约等于编程能力 对数学的学生而言;

进阶要求

Video
• The birth of the computer, George Dyson
• SageMath – Open source is ready to compete with Mathematica for

use in the classroom, William Stein

http://www.ted.com/talks/george_dyson_at_the_birth_of_the_computer
SageMath%20--%20Open%20source%20is%20ready%20to%20compete%20with%20Mathematica%20for%20use%20in%20the%20classroom.mp4

程序员 vs 程序猿

控制台程序(Console programs)

远比图形接口程序容易实现和迁移到
不同的操作系统

Hello World

// A Hello World program
include <iostream>
int main()
{

std::cout << "Hello, world!\n";
return 0;

}

Line-By-Line Explanation

• // 注释comment
indicates that everything following it until the end of the line is a
comment: it is ignored by the compiler.
• /* and */

• (e.g. x = 1 + /*sneaky comment here*/ 1;
• multiple lines;

• Usages
• Comments exist to explain non-obvious things going on in the code. Use

them: document your code well!

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

• # preprocessor commands
• 用#开始的行是预处理命令(preprocessor commands), which usually change

what code is actually being compiled.
• #include tells the preprocessor to dump in the contents of another file, here

the iostream file, which defines the procedures for input/output.

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

• int main()
• main 函数名
•跟随mian的()说明它是一个函数
• main()之前的int表明该函数返回一个整数值
•当程序被执行（载入内存），main()是第一个被执行的函数（程序的
入口）

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

•大括号{}表明main()的函数体
• {}把多个命令组成一组命令：multiple commands =》a block代码块
•每一个命令/声明（command/statement）必须分号结尾
• More about this syntax in the next few lectures.

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

• cout <<
• This is the syntax for outputting some piece of text to the

screen.

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

• std是一个名称空间Namespaces
• 作用域解析操作符scope resolution operator ::
• 通知编译器要调用std中的cout，而不是别处jjcao::cout

using namespace std;
• This line tells the compiler that it should look in the std namespace for any

identifier we haven’t defined.
• If we do this, we can omit the std:: prefix when writing cout.

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

•字符串String
• Hello, world
• 像这样显示指定的字符串，叫string literal.字符串字面量

• \n
• The \n indicates a newline character.
• 转义序列（Escape sequences）: It is an example of an escape sequence – a

symbol used to represent a special character in a text literal.

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

• return 0
• 通知OS，本程序成功执行完毕。
• 是main block的 后一行

•注意
• 每一个声明需要分号结束（预处理命令和{}除外（如果是定义class的时候，{}也
要跟着分号））

• 忘记分号，是新手常犯错误

// A Hello World program
include <iostream>
int main() {

std::cout << "Hello, world!\n";
return 0;

}

The Compilation Process
Our language v.s. binary language the computer used
C++ is like natural language
Compiler: make computer understand C++

The Compilation Process
Compiler: make computer understand C++

Integrated Development Environment
集成开发环境IDE
• Visual C++: Windows
• Code::Blocks: Linux
• Xcode, Eclipse: Mac

• CodeChef: Web based
• Web-based compilers are fine for dabbling and simple exercises. However, they are generally

quite limited in functionality -- many won’t allow you to save projects, create executables, or
effectively debug your programs. You’ll want to migrate to a full IDE when you can.

• Installing an Integrated Development Environment (IDE)

http://www.learncpp.com/cpp-tutorial/05-installing-an-integrated-development-environment-ide/

编译你的第一个程序

• lab01_IDE_VC_Win32ConsoleApplication.pptx
• LearnCpp.com

lab01_IDE_VC_Win32ConsoleApplication.pptx
http://www.learncpp.com/cpp-tutorial/06-writing-your-first-program/

C and C++’s philosophy能力与责任
• Underlying design philosophy: “trust the programmer”

• Wonderful
• compiler will not stand in your way if you try to do something unorthodox that

makes sense,
• Dangerous

• compiler will not stand in your way if you try to do something that could
produce unexpected results.

• That is one of the primary reasons why knowing what you shouldn’t do in
C/C++ is almost as important as knowing what you should do -- because
there are quite a few pitfalls that new programmers are likely to fall into if
caught unaware.

Reference Courses
• cpp for school

• simpler and with assignments, projects, quiz and papers.
• LearnCpp.com

• more detail explanations than cpp for school

http://www.cppforschool.com/
http://www.learncpp.com/

Reference Books

1.C++ Primer
2. The C++ Programming Language. (more advance than 1)
3. The C++ Standard Library – A Tutorial and Reference
4. Teach Yourself C++ in One Hour a Day

5. Code complete 2nd
6. Clean Code A Handbook of Agile Software Craftsmanship

Useful Links
• http://www.cplusplus.com

http://www.cplusplus.com/

Academic Integrity
• Honest work is required of a scientist or engineer.
• Integrity is the key for everything!!!

• Discussion is permitted.
• Everything you turn in must be your own work.
• Cite your sources, explain any unconventional action.

• If you have a question, ask.

