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Abstract—Mobile edge computing (MEC) has been considered
as a promising technology to provide seamless integration of
multiple application services. Federated learning (FL) is carried
out at edge clients in MEC for privacy-preserving training of
data processing models. Despite that the edge clients with small
data payloads consume less energy on FL training, the small data
payload gives rise to a low learning accuracy due to insufficient
input to the FL training. Inadequate selection of the edge clients
can result in a large energy consumption at the edge clients,
or a low learning accuracy of the FL training. In this paper,
a new FL-based client selection optimization is proposed to
balance the trade-off between energy consumption of the edge
clients and the learning accuracy of FL. We first show that
this optimization problem is NP-complete. Next, we propose
a FL-based energy-accuracy balancing heuristic algorithm to
approximate the optimal client selection in polynomial time. The
numerical results show the advantage of our proposed algorithm.

Index Terms—client selection, mobile edge computing, feder-
ated learning, heuristic algorithm

I. INTRODUCTION

Mobile edge computing (MEC) has been considered as
a promising technology to enable mobile cloud computing,
network control and storage [1]. In MEC, an edge server pro-
vides data processing services for computation-intensive and
latency-critical applications of edge clients, such as augmented
reality [2], unmanned aerial vehicles [3], and healthcare [4]
etc. Fig. 1 presents a typical MEC system, where the edge
clients collect patient physiological information, e.g., pulse
rate, body temperature, and blood pressure. The data are sent
to the server in the cloud for health analysis and reporting.
Federated learning (FL) [5] is developed to train a shared MEC
model at the central server without collecting the edge clients’
data, thereby preserving data privacy of the clients. FL, as an
emerging distributed machine learning method, is used by the
edge clients in MEC to analyze the data. Specifically, a local
model of FL is trained at the edge clients to classify the patient
physiological information. The FL server aggregates the local
models of the edge clients to train a shared global model of
FL, while keeping data localized at the edge clients. Next, the
global model is broadcasted to the edge clients who train and
update the global model by using their local data. The new
local models will be uploaded to the server for generating
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the updated global model in the next iteration. The process
is iterated until the MEC achieves a desirable classification
accuracy of the patient physiological analysis.

Fig. 1. Federated learning in MEC systems, where the selected clients upload
their local models to the server.

Due to time-varying data quantity and channels, the energy
consumption of the edge clients [6], [7] on data training
and transmission can be greatly different from each other.
Although scheduling the edge clients with a large dataset
improves the learning accuracy of FL, analyzing large datasets
rises energy consumption at the edge clients. Moreover,
scheduling the edge clients with poor channel condition [8]
to transmit requires a high transmit power at the client due to
packet retransmissions. Therefore, client selection for balanc-
ing the energy consumption and the learning accuracy of FL
is crucial in MEC.

In this paper, a client selection optimization is proposed to
minimize the ratio of energy consumption and learning accu-
racy of FL in MEC. The optimization problem is formulated by
nonlinear integer programming, with consideration of training
time and required learning accuracy of FL. The contributions
of this paper are as follows:
• To the best of our knowledge, this is the first attempt

to investigate the client selection optimization in MEC
to balance the tradeoff between the energy consumption
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and learning accuracy of FL. We first demonstrate that
the optimization problem is NP-complete.

• An energy-accuracy balancing heuristic algorithm, fead-
rated learning for accuracy-energy based client selec-
tion (FedAECS) is proposed to approximate the optimal
solutions in polynomial time. In particular, FedAECS
prioritizes the edge clients according to the learning time,
data size, and channel quality. Furthermore, FedAECS
recursively traverses the priority list and selects the edge
clients, which minimizes the ratio of energy consumption
and learning accuracy of FL.

The rest of this paper is organized as follows. Section II
presents an overview of related works. The system model is
studied in Section III. The proposed client selection optimiza-
tion is formulated in Section IV. The FedAECS algorithm is
developed in Section V. Numerical results are given in Section
VI. Finally, the paper is concluded in Section VII.

II. RELATED WORK

This section presents the literature on client selection for
FL in MEC framework. Federated Averaging (FedAvg) is
studied in [5] to average the learning weights of the local
models, where FL is used to reduce privacy and security risks.
Since the client equiments are assumed to be homogeneous,
FedAvg applies a random selection of the edge clients in
MEC. In [9], FL-based client selection is developed to improve
resource usage in MEC. Historical system dynamics and
training outcomes are also used to analyze the convergence of
the FL. It is difficult obtain the accurate resource information
for all clients before the FL process is conducted, a multi-
armed bandit-based client selection method is designed to
to improve the trade-off between exploration an exploitation
in the FL [10]. In [11], the central server is deployed to
serve the edge clients, which transmit the training model of
FL over shared channels. Since exchanging the channel state
information results in large overheads, a multi-armed bandit-
based framework is studied to schedule the edge clients to
reduce the FL delay without the channel state information. In
[12], federated edge learning coordinates global model training
at the server and local model training at the edge clients
over wireless links in MEC. Bandwidth allocation strategies
are studied to reduce energy consumption of clients while
improving learning efficiency of the FL.

A stateful FL heuristic is studied to schedule Internet-of-
Things (IoT) devices to improve target accuracy of the FL [13].
The authors in [14] analyze the convergence rate of biased
client selection. Based on the analysis results that biasing
client selection towards clients with higher local loss achieves
faster error convergence, an energy-efficient client selection
framework is developed to flexibly span the trade-off between
convergence speed and solution bias. Due to the differential
computation capabilities of the clients’ equipments, computa-
tion time of the local FL model can be highly different. [15]
focuses on the training synchronization of the FL, where the
length of each training iteration depends on the client with the
longest training delay. FedCS selects the edge clients which

can complete FL in one training iteration. In contrast, we
focus on a new client selection optimization, which balances
the tradeoff between the energy consumption and the learning
accuracy of FL in MEC. We propose an energy-accuracy
heuristic algorithm with FL to approximate the optimal client
selection in polynomial time. In addition, FedCS and FedAvg
are added as benchmarks in this paper for the performance
evaluation of our proposed FedAECS. Details will be studied
in Section VI.

III. SYSTEM MODEL

We consider a MEC system that consists of one server
and K number of clients, as shown in Fig. 1. Each client
k has a local dataset with Di,k samples in epoch i, where
i ∈ {1, · · · , I}. In epoch i, the edge clients firstly downloads
the global model from the server. The client trains the local
FL model with the updated parameters in the global model.

A. Energy Consumption Model
Let ck denote the number of CPU cycles which is used

by client k to train the local model in one iteration. Given
Di,k data samples in one iteration, the number of CPU cycles
required for client k to run one local iteration is ckDi,k in
every epoch i. Let fk denote the CPU frequency of client
k. The energy consumption of client k on the local model
computation is:

Ecmpi,k = Ui,kζkckDi,kf
2
k (1)

where Ui,k is the lower bound of the local iterations for achiev-
ing the training accuracy [16]. ζk is the effective capacitance
coefficient of computing chipset for client k.

All selected clients upload their local FL parameters to the
server once the training of the local model is completed. The
transmission rate of client k in epoch i can be given by:

Ri,k = bi,k log2

(
1 +

Pi,kGk
N0bi,k

)
(2)

where bi,k is the bandwidth allocated to client k. Pi,k denotes
the transmission power consumption of client k in epoch i.
Gk is the channel gain between client k and the server, and
N0 is the power spectral density of the Gaussian noise.

The data size that each client needs to upload is denoted by
Sk, the transmit time tupi,k can be given by:

tupi,k =
Sk
Ri,k

(3)

By substituting (2) to (3) and multiplies transmission power,
the energy consumption of client k on the transmission in
epoch i is:

Eupi,k =
Pi,kSk

bi,k log2

(
1 +

Pi,kGk

N0bi,k

) (4)

Therefore, the total energy consumption Ei,k of client that
participating in FL process in epoch i:

Ei,k = Vi,k(Ecmpi,k + Eupi,k) (5)

where Vi,k is the number of global iteration of client k in
epoch i, which is depicted in section III-B equation (7).
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B. Traning Time of FL

We denote ttraini,k as the data processing time of client k in
epoch i, which is:

ttraini,k = Ui,k
ckDi,k

fk
(6)

The total completion time Ti,k of client k in each epoch i can
be given by:

Ti,k = Vi,k(ttraini,k + tupi,k) (7)

where Vi,k is the number of global iteration of client k in
epoch i increases with the local accuracy and guarantees the
FL algorithm converge [16]. Note that the training time at the
server is neglected since the server typically supports more
powerful CPUs than the clients.

C. FL Accuracy

According to [17]–[19], the training accuracy of FL depends
on the data size of the client.

Γ(
K∑
k=1

βi,kDi,k) = log(1 +
K∑
k=1

µβi,kDi,k) ∀i ∈ I (8)

where, βi,k is a binary indicator, βi,k = 1 indicates that client
k is selected for participating in the model training process in
epoch i. Otherwise, βi,k = 0. µ > 0 is the system parameter.

IV. PROBLEM FORMULATION

In this section, we formulate the optimization of balancing
overall energy consumption of the edge clients and learning
accuracy of FL:

min
βi,k

I∑
i=1

∑K
k=1 βi,kEi,k

Γ(
∑K
k=1 βi,kDi,k)

(9)

s.t. 1 ≤
K∑
k=1

βi,k ≤ K ∀i ∈ [1, I] (10)

βi,kTi,k ≤ Tmax ∀i ∈ [1, I], ∀k ∈ [1,K] (11)

K∑
k=1

βi,kbi,k ≤ B ∀i ∈ [1, I] (12)

Γ(
K∑
k=1

βi,kDi,k) ≥ εo ∀i ∈ [1, I], ∀k ∈ [1,K] (13)

Pmink ≤ Pi,k ≤ Pmaxk ∀i ∈ [1, I], ∀k ∈ [1,K] (14)

fmink ≤ fk ≤ fmaxk ∀k ∈ [1,K] (15)

0 ≤ εo ≤ 1 (16)

var. βi,k ∈ {0, 1} (17)

Constraint (10) ensures that the number of clients selected
for the FL training is smaller than K, while at least one
client is selected in each epoch. Constraint (11) defines that
the total training time of FL in epoch i has to be shorter
than the length of the epoch Tmax. Constraint (12) guarantees
that the total bandwidth of the selected clients should be
within the bandwidth capacity B. Constraint (13) indicates that
the selected clients enable the model accuracy of the server
satisfies the lower bound value, which ranges in accuracy from
0 to 1. Moreover, the constraints of client’s transmission power
and CPU frequency are given in (14) and (15) , respectively.

V. CLIENT SELECTION BASED ON HEURISTIC ALGORITHM

The proposed optimization problem in (9) — (17) is
a typical 0-1 Multidimensional Knapsack Problem (MKP)
[20]. Specifically, the items to be put in knapsacks are the
clientswith energy consumption Ei,k, data size Di,k, and
bandwidth bi,k. The capacity of the knapsack is equal to
total bandwidth, the variable βi,k is an binary indicator of
item(client) k, βi,k is set to 1 indicates that item k is selected.
Otherwise, βi,k is set to 0. The total weight of the knapsack
has a lower bound which is equal to the minimum requirement
of accuracy constraint (13). In addition, it is note worthy that
every item to be put into the backpack must obey the time
constraint (11). Our goal is to select which clients for the
training of FL to minimize the ratio of the energy consumption
and learning the accuracy of the FL. Therefore, the proposed
optimization is NP-complete.

For each epoch i, let Φi(βi) =
∑K

k=1 βi,kEi,k

Γ(
∑K

k=1 βi,kDi,k)
, where

βi is a vector of clients selection. To balance the energy
consumption and learning accuracy, a heuristic, named FL for
accuracy-energy based client selection(FedAECS) algorithm is
proposed, which is presented in Algorithm 1. Specifically, the
clients that fulfill time constraint (11) and accuracy constraint
(13) are selected and sorted into a list ηi ascendingly according
to the ratio of the energy consumption and the FL accuracy.
The unselected clients are saved into a vector β

′

i. FedAECS
algorithm returns once a client can satisfy the accuracy con-
straint (13) of the optimization. Otherwise, FedAECS contin-
ues to traverses the list ηi until the client βi,m satisfies the
accuracy constraint (13). The corresponding objective func-
tion value Φi(β

p
i ) will be determined; meanwhile, FedAECS

further explore the possible combinations of the client βi,m to
find the optimal combination β̂i, the corresponding objective
function value Φi(β̂i) will be calculated, finally, the optimal
objective function value Φi(β

∗
i ) will be chosen from Φi(β

p
i )

and Φi(β̂i).

VI. NUMERICAL RESULTS

In this section, we evaluate the proposed FedAECS algo-
rithm. We compare the performance with the optimal solution
as well as the existing solutions in the literature. We also study
the impact of the number of clients and Tmax on the runtime
of FedAECS.
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Algorithm 1: FedAECS—Federated Learning for
Accuracy-energy Based Client Selection Algorithm

Input: fk, Di,k, Pi,k, bi,k ;
Initialization;
for (each client k) do

if ((11) and (12) hold) then
Calculate Ei,k according to (5);
Calculate Γ(

∑K
k=1 βi,kDi,k) according to (8);

Calculate { Ei,k

Γ(
∑K

k=1 βi,kDi,k)
} and store it into

ηi one by one;
else

Store client k into β
′

i;
end

end
ηi are sorted in descending order and m = 1;
while (m ≤ |ηi|) do

if ((13) holds for client m ) then
β∗
i = (βi,m = 1,

⋃
j∈|ηi|\m

βi,j = 0)
⋃
β

′

i;

Φi(β
∗
i ) = ηi,m;

Break;
else

if (m <= |ηi| − 1) then
m = m+ 1 ;
while (m ≥ 2 and m ≤ |ηi|) do

if (Client m satisfies (13) ) then
βpi = (βi,m = 1,

⋃
j∈|ηi|\m

βi,j = 0);

Φi(β
p
i ) = ηi,m;

if ( (βi,1, · · · , βi,m−1, βi,m ≡ 1)
satisfy (13) and (12) ) then

β̂i =
arg min Φi(βi,1, · · · , βi,m−1, βi,m ≡
1);

else
Break;

end
Φi(β

∗
i ) = min{Φi(βpi ),Φi(β̂i)};

if Φi(β
∗
i ) = Φi(β

p
i ),

β∗
i = βpi

⋃
β

′

i; otherwise,
β∗
i = β̂i

⋃
β

′

i.
else

m = m+ 1;
end

end
end

end
Output: β∗

i , Φi(β
∗
i );

end

A. Simulation Configuration
For our simulations, we set I = 1000. The number of

clients K = {20, 40, 60, 80, 100}, correspondingly, the total
bandwidth B = {1, 3, 5, 7, 9} MHz. For each client, Di,k, bk,
fk, Pi,k, ck are uniformly distributed in [2, 10] MB, [50, 150]
KHz, [2, 4] Hz, [4, 10] dBm, [1, 3] cycles/bit respectively. A
transmit data size Sk = 100 kbits. The number of local
iterations Ui,k = 10 and global iterations Vi,k = 4. In addition,
the noise power spectral density is N0 = −174 dBm/Hz.
The effective switched capacitance in local computation is
ζk = 10−28 and the the system parameter µ = 1.7 × 10−8.
The proposed FedAECS is implemented in MATLAB R2015a,
running on 3.0 GHz Intel core processor with 24 GB of
memory.

We compare FedAECS with the following four client se-
lection schemes, i.e., FedAvg [5], FedCS [15], Dataset-based
and Energy-based policies.

FedAvg: the clients are randomly selected participating in
FL training, while satisfying the bandwidth constraint.

FedCS: the FL server selects the clients as long as the
bandwidth capacity constraint holds.

Energy-based client selection: the clients are prioritized
by energy consumption, FL server selects a few number of
clients while satisfying the bandwidth constraint.

Data-based client selection: the clients are prioritized by
data size, FL server selects a few number of clients while
satisfying the bandwidth constraint.

B. Simulation Results and Analysis
Comparing to optimal client selections. Table I summa-

rizes running time, the ratio value of Φi(βi) and Error(=
|Φi of FedAECS − Φi of CPLEX|

Φi of CPLEX × 100%). We assess the ratio
value of FedAECS when the number of clients are increased
from 2 to 10. Meanwhile, we conducted in ILOG CPLEX
12.10, and obtained optimal results, which are compared
with the results that obtained by FedAECS. It is found that
the optimal solution have the maximum difference which is
58.699% when K = 10. On average, FedAECS guarantees
exactly the client scheduling schemes as optimal schedules.
Moreover, FedAECS is much more efficient than CPLEX on
runtime.

TABLE I
COMPARISON RESULTS WITH CPLEX.

# Clients Cplex(Φi) Runtime FedAECS(Φi) Runtime Error
2 5.2786 W 19 s 5.3242 W 0.061026 s 0.864%
3 12.156 W 27 s 12.1782 W 0.034008 s 0.183%
4 14.478 W 44 s 14.5272 W 0.067833 s 0.340%
5 6.3921 W 21 s 8.8479 W 0.095634 s 38.419%
6 6.0202 W 27 s 6.0669 W 0.097590 s 0.776%
7 4.4662 W 19 s 4.4879 W 0.082551 s 0.486%
8 5.8882 W 21 s 5.9214 W 0.063147 s 0.564%
9 4.8528 W 21 s 4.9042 W 0.039516 s 1.059%

10 3.1643 W 33 s 5.0217 W 0.071169 s 58.699%

Fig. 2 demonstrates the advantage of FedAECS with respect
to the objective function value Φi(βi). Considering the case of
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twenty clients and a edge server. For wireless communication
model, the total bandwidth B = 1 MHZ, in addition, the
threshold value of delay Tmax = 5 s. As an illustration, it
is evident that Φi(βi) of FedAECS client selection scheme
keeps it to a minimum at all times with the change of epoch.
In particular, Φi(βi) of FedCS-based client selection is about
5-folds as compared with FedAECS. The principal reason is
that FedCS-based method can obtain more clients, whilst it
incurs a substantial of energy consumption.

Fig. 2. The objective function value Φi(βi) varying with epochs.

Fig. 3 shows that the objective function value Φi(βi) varies
with the total number of clients I = {20, 40, 60, 80, 100}, in
response, total bandwidth is also increasing with the number
of clients, that is B = {1, 3, 5, 7, 9} MHZ. We calculate the
mean value and standard deviation of ratio for 1000 epochs.
Obviously, Φi(βi) of FedAECS always keep the minimum,
while Φi(βi) of FedCS increasing with the more number of
participating clients and more energy consumption. Moreover,
with the participating clients increasing, the increasing of
energy consumption is more significant than the increasing
of FL model accuracy. In contrast, the ratio values of the
others client selection methods not significantly affected by
the number of clients.

Fig. 4 shows that the relationship among objective function
value Φi(βi), the number of clients and length of the epoch
Tmax. With the increasing of the total number of clients and
Tmax, the more potential clients will be selected to participate
in the process of model training. However, When Tmax in-
creases to 6 seconds, Φi(βi) will not change significantly with
the increase of the number of users. This is mainly because
the number of users available no longer changes significantly.

Fig. 5 shows that the relationship among objective function
value Φi(βi), Tmax and lower bound of accuracy ε0. It can
be clearly seen that Φi(βi) decreasing with the increasing of
Tmax and the decreasing of ε0. Note that when Tmax = 1 s
and ε0 = 0.07 or ε0 = 0.09 the ratio values of Φi(βi) are non-

Fig. 3. The objective function value Φi(βi) varying with the number of
clients.

Fig. 4. The relationship among objective function value Φi(βi), the number
of clients, and length of the epoch Tmax.

exist because the constraints are too strict to obtain available
clients.

Fig. 6 illustrates that the runtime changes with length of the
epoch Tmax and the number of clients changes. The runtime
is first decline and then moderate rise with the increase of
Tmax when the number of clients equal to 60, 80, 100. In
particular, when Tmax is greater than 3 seconds, for higher
Tmax, a longer run-time is required. On the other hand, the
number of clients equal to 20 and 40, the runtime increases
correspondingly from Tmax = 1 s to Tmax = 2 s in that more
available candidate clients, and afterwards follows the same
law as the number of clients equal to 60, 80, 100.

VII. CONCLUSION

In this paper, the FL-based client selection optimization is
formulated to balance the total energy consumption of edge
clients and learning accuracy of the FL. To solve the problem
in polynomial time, we propose the suboptimal heuristic,
FedAECS algorithm, which recursively assesses the potential
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Fig. 5. The relationship among objective function value Φi(βi), length of
the epoch Tmax, and model accuracy of lower bound value ε0.

Fig. 6. The relationship among runtime, length of the epoch Tmax, and the
number of clients.

clients in FL to balance the energy consumption and learn-
ing accuracy. The numerical results show that the proposed
FedAECS outperforms the existing solutions in the literature.
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