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1 Motivation

Strange numerical warnings and errors from Gurobi are a recurring problem in ivmte. They

almost certainly result from the optimization problem being poorly scaled, a point that is

supported by the scaling statistics reported by Gurobi. This note contains a proposal that

should systematically improve scaling.

I will focus on the “direct” procedure for now, since it is easier. After we check that all

of this works for the direct procedure, we can try to apply a similar strategy to the original

case with IV–like estimands.

2 Problem Setup

• Assume that the MTRs have the following form:

E[Y (d)|U = u,X = x] ≡ m(d|u, x) =
K∑
k=1

θkbk(d|u, x), (1)

where θ ≡ [θ1, . . . , θK ]′ are unknown coefficients and bk are known basis functions.

• Assume that θ ∈ Θ can be represented as rlb ≤ Rθ ≤ rub for some known constraint

matrix R and vector r. (In practice, R and r change on each iteration of the audit

procedure, but I will ignore this in the notation.)

• Let p(x, z) ≡ P[D = 1|X = x, Z = z] and P ≡ p(X,Z) as usual.
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• As we know, the basis representation implies that

E[Y |D,X, P ] =
K∑
k=1

θk

(
D

P
Bk(1|P,X) +

(1−D)

1− P
Bk(0|P,X)

)
≡

K∑
k=1

θkBk, (2)

where

Bk(0|p, x) ≡ 1

1− p

∫ 1

p

bk(0|u, x) du, Bk(1|p, x) ≡ 1

p

∫ p

0

bk(1|u, x) du (3)

and Bk ≡ Bk(D|P,X) = DBk(1|P,X) + (1−D)Bk(0|P,X). (4)

• Denote the least squares criterion by

Q̂(θ) =
n∑
i=1

(
Yi −

K∑
k=1

θkBki

)2

≡
n∑
i=1

(Yi −B′
iθ)

2
= ‖Y −Bθ‖2, (5)

using the usual linear model notation.

3 Rescaling the Least Squares Objective

• The general problem is that Q̂(θ) is a poorly scaled quadratic form. That is, the matrix

B′B has elements (not counting zeros) that are of dramatically different orders.

• This problem is sort of inherent to the MTR problem, because some of the columns

of B will be columns for the “u” portions of the MTR, which live between [0, 1], and

might be squared, cubed, etc., while other columns of B are for the “x” portions, and

might be something like year of birth in the AE data, which could be on a dramatically

different scale. Relying on the user to fix this problem by scaling their x’s is annoying

for the user. But more importantly, it doesn’t solve the problem for the u portion, and

the user cannot get direct access to this portion.

• The idea is to simply rescale each column of B to lie in [0, 1] by defining:

B̃ki ≡
Bki − lbk

(ubk − lbk)
, (6)

where lbk and ubk are the minimum and maximum of {Bki}ni=1.

• Is it possible for Bk to be constant, so that ubk = lbk and B̃k does not exist? I don’t
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think it is, because of the way m(0|u, x) and m(1|u, x) are specified separately in ivmte.

So for example if we have a constant term in the MTR for d = 1, then bk(d|u, x) = d,

so that Bk = D. If we also have a constant in the MTR for d = 0, this shows up as

Bk′ = (1−D) for some other index k′ 6= k.

• Substituting into (5), we can write it as

Q̂(θ) =
n∑
i=1

(
Yi −

(
K∑
k=1

θk(ubk − lbk)
(Bki − lbk)

(ubk − lbk)
+ θklbk

))2

(7)

=
n∑
i=1

(
Yi −

(
K∑
k=1

θklbk

)
−

(
K∑
k=1

θk(ubk − lbk)B̃ki

))2

(8)

≡
n∑
i=1

(
Yi − ξ0 −

K∑
k=1

ξkB̃ki

)2

≡ Q̃(ξ). (9)

where

ξ0 ≡
K∑
k=1

θklbk and ξk = θk(ubk − lbk) for all k = 1, . . . , K. (10)

• In (9) we now have a least squares criterion where the quadratic form is going to be

well-behaved, as all columns of B̃ lie in [0, 1]. The cost is that we have a constant term

now, and that the coefficients ξk are rescaled versions of the parameters we actually

want. The first cost is negligible. The second cost means we need to keep track of the

difference between ξk and θk. Essentially the idea is to load all of the scale differences

onto the variables of optimization and away from the fixed inputs of the optimization

problem.

• We have not had any numerical stability problems in the point identified case because

we use lm, which works by solving the normal equation after a QR decomposition and

is much more stable numerically. So it’s probably unnecessary to use the rescaled form

(9) for the point identified case. However, it couldn’t hurt, and—more immediately

useful for our purposes—it is an excellent way to debug any issues with rescaling.
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4 Optimization

• In the partially identified case, we first want to solve for:

Q̂? ≡ min
θ∈Rdθ

Q̂(θ) s.t. rlb ≤ Rθ ≤ rub. (11)

• Now we just want to change variables from θ to ξ. Note that the jth row of Rθ can

be written as

[Rθ]j ≡
K∑
k=1

Rjkθk = 0× ξ0 +
K∑
k=1

(
Rjk

ubk − lbk

)
ξk ≡

K∑
k=0

R̃jkξk ≡ [R̃ξ]j. (12)

Hopefully R̃ is also scaled better, or at least not dramatically worse than R.

• Then instead of (11), we solve

Q̃? = min
ξ∈Rdθ+1

Q̃(ξ) s.t. rlb ≤ R̃ξ ≤ r, (13)

and we should have Q̃? = Q̂?.

• In the second step we want to solve for

t̂lb ≡ min
θ∈Rdθ

τ̂ ′θ s.t. rlb ≤ Rθ ≤ rub, and Q̂(θ) ≤ Q̂?(1 + κ). (14)

• So we need to apply our scaling to the objective here as well:

τ̂ ′θ ≡
K∑
k=1

τ̂kθk = 0× ξ0 +
K∑
k=1

(
τ̂k

ubk − lbk

)
ξk ≡

K∑
k=0

τ̃kξk ≡ τ̃ ′ξ. (15)

• Then instead of (11) we solve

t̃lb ≡ min
ξ∈Rdθ+1

τ̃ ′ξ s.t. rlb ≤ R̃ξ ≤ rub, and Q̃(ξ) ≤ Q̂?(1 + κ), (16)

and we should have t̃lb = t̂lb.
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