Converting QCQPs to SOCPs

January 19, 2021

This document outlines how to write a quadratically constrained quadratic programming (QCQP) problem into a second order cone programming (SOCP) problem. However, the SOCP formulation is not compatible with free SOCP solvers in R. The reason is that these R packages only permit non-rotated cones, whereas the reformulation utilizes rotated cones. The only solver that seems to allow for rotated cones is Mosek, which offers free academic licenses.

Reformulating QCQPs as SOCPs

We want to solve a QCQP problem of the form

$$\begin{array}{rcl}
\max_{x} & c'x \\
\text{s.t.} & A_{1}x &= b_{1} \\
& & A_{2}x &\leq b_{2} \\
& & x'Qx + q'x &\leq s, \quad \text{or } S_{2} \quad (\text{vot soft}) \quad \text{five} \\
\end{array}$$
(1)

where $x \in \mathbb{R}^n$, and $Q \in \mathbb{R}^{n \times n}$ is a positive semidefinite symmetric matrix. To keep things simple, let A_1 and A_2 be row vectors, i.e. there is one linear equality constraint, one linear inequality constraint, and one quadratic inequality constraint.

A conic constraint may generally be written as

$$||Bx+d||_2 \le e'x+f,$$

where $B \in \mathbb{R}^{m \times n}$, $d \in \mathbb{R}^m$, $e \in \mathbb{R}^n$, $f \in \mathbb{R}$, and $\|\cdot\|_2$ denotes the Euclidean norm.¹ However, the R packages in scs and CLSOCP only allow cones to be declared in the form of $\|(x_2, \ldots, x_n)\|_2 \leq x_1$, i.e., a non-rotated quadratic cone. As shown below, this is problematic as (4) cannot be reformulated as an SOCP problem with a non-rotated quadratic cone (to the best of my knowledge).

The problem stems from the quadratic constraint, which may be written as

$$\int M_{z_1}^{\mathbf{c}} + q'x = s \tag{2}$$

¹ A constraint on the square root of the sum of squared residuals from a linear regression may be written in this form by setting B equal to the design matrix, d equal to the dependent variable, e equal to 0, and fequal to the upper bound.

$$x'Qx \le z_1,\tag{3}$$

where z_1 is a new variable in the problem. since Q is positive semidefinite and symmetric, SL bet investible unless Q= $\tilde{c}^{2}\tilde{x}$, otherwise $Q^{2} = (SL)^{2}SL$ we can write it as $Q = \Omega'\Omega$. Define $\tilde{x} \equiv \Omega x$ so that (3) defines a *rotated* quadratic cone

$$\|\widetilde{x}\|_2^2 = x'\Omega'\Omega x \le z_1 z_2,$$

where
$$z_2 = 1$$
.

All that remains is to rewrite the (4) in terms of \tilde{x} .

• The objective may be redefined as

$$c'x = (c'\Omega^{-1}) \Omega x) = \widetilde{c}'\widetilde{x},$$

where $\widetilde{c} \equiv (\Omega^{-1})'c$.

• The linear equality constraint may be redefined as

$$A_1 x = \left(A_1 \Omega^{-1}\right)(\Omega x) = \widetilde{A}_1 \widetilde{x} = b_1,$$

where $\widetilde{A}_1 \equiv A_1 \Omega^{-1}$.

• The linear inequality constraint may be redefined as

$$A_2 x = \left(A_2 \Omega^{-1}\right) \left(\Omega x\right) = \widetilde{A}_2 \widetilde{x} \le b_2,$$

where $\widetilde{A}_2 \equiv A_2 \Omega^{-1}$.

• The quadratic inequality constraint has been replaced by the equality constraint (2), ~ 2 · a'x? which may be written as

$$z_1 + q'x = z_1 + (q'\Omega^{-1})(\Omega x) = \tilde{q}'\tilde{x} = s,$$

where $\widetilde{q} \equiv (\Omega^{-1})' q$.

Then (4) may be expressed as the following SOCP problem,

$$\max_{\widetilde{x}, z_1, z_2} \widetilde{c}' \widetilde{x}$$
s.t.
$$\widetilde{A}_1 \widetilde{x} = b_1$$

$$\widetilde{A}_2 \widetilde{x} \leq b_2$$

$$z_1 + q' x = s$$

$$\widetilde{x}' \widetilde{x} \leq z_1 z_2$$

$$z_2 = 1.$$

$$(4)$$

The value x can be recovered by $x = \Omega^{-1} \widetilde{x}$.

The problem with SOCP solvers

SOCP solvers in R such as scs and CLSOCP only allow the user to define quadratic cones, i.e., for $x \in \mathbb{R}^n$, the *n*-dimensional quadratic cone is

$$Q^{n} \equiv \left\{ x \in \mathbb{R}^{n} : x_{1} \ge \sqrt{x_{2}^{2} + x_{3}^{2} + \dots + x_{n}^{2}} \right\}.$$

A rotated second order cone is instead defined as

$$Q_r^n \equiv \{x \in \mathbb{R}^n : 2x_1x_2 \ge x_3^2 + x_4^2 + \dots + x_n^2\}.$$

The conic constraint

$$\begin{aligned} \|\widetilde{x}\|_2^2 &= \widetilde{x}'\widetilde{x} \\ &= \widetilde{x}_1^2 + \widetilde{x}_2^2 + \dots + \widetilde{x}_n^2 \\ &\leq z_1 z_2 \end{aligned}$$

is thus a rotated quadratic cone. Quadratic cones and rotated quadratic cones are isomorphic to each other, so writing the conic constraint in either form is fine.

However, a problem arises when inputting the SOCP problem into R, which only permits non-rotated quadratic cones. The problem stems from the new variable z_1 , which appears when converting the quadratic constraint into a conic constraint. Since the software only permits non-rotated cones, it is only possible to define a new variable \tilde{z}_1 satisfying

$$\sqrt{\widetilde{x}_1^2 + \widetilde{x}_2^2 + \dots + \widetilde{x}_n^2} \le \widetilde{z}_1$$

The equality constraint (2) in the SOCP formulation must then be written as

$$\widetilde{z}_1^2 + q'x = s,$$

so that it reverts to a quadratic constraint. Trying to introducing another variable to rewrite \tilde{z}_1^2 as a conic constraint leads to the same problem.

Our publics: max
$$c'\theta$$

s.d. $||A\theta - y||_{1}^{2} \leq Q^{*}$ for pet about
linear contraint-
linear contraint-
linear contraint-
rear analysis shows
here to hardle them
to analysis shows
here to hardle them
here to hardle them
to analysis shows
here to hardle them
here to