
Joshua Shea University of Chicago

Converting QCQPs to SOCPs
January 23, 2021

This document outlines how to write a quadratically constrained quadratic programming

(QCQP) problem into a second order cone programming (SOCP) problem so that it may

be solved using the R package scs.

Cone constraints

This document involves three types of cones. The first type is the zero cone,

K0 ≡ {x ∈ Rn : x = 0} .

The second type is the positive orthant,

K1 ≡ {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n} .

The third type is the second order cone and it comes in two forms,

K2 ≡
{
x ∈ Rn : x1 ≥

√
x22 + · · ·+ x2n

}
,

Krot
2 ≡

{
x ∈ Rn : 2x1x2 ≥ x23 + · · ·+ x2n

}
,

where K2 is a quadratic cone and Krot
2 is its rotated counterpart. That is, Krot

2 is obtained

by rotating K2 around the last n− 2 axes in Rn so that, for x ∈ K2 and x̃ ∈ Krot
2 , we have

xi = x̃i for i = 3, . . . , n.

The mapping from K2 to Krot
2 is conveniently characterized by the rotation matrix T ,

T ≡

[
T1 02×(n−2)

0(n−2)×2 T2

]
(1)

T1 ≡

 1√
2

1√
2

1√
2
− 1√

2


T2 ≡ In−2,

where 0n×m denotes an n ×m matrix of zeroes, and In denotes an n × n identity matrix.

Since T is a symmetric rotation matrix, we have that T = T ′ = T−1. So for x ∈ K2, we

have Tx ∈ Krot
2 . Likewise, for x̃ ∈ Krot

2 we have T x̃ ∈ K2.
1

1 This page by Mosek has more details on rotating cones and conic quadratic optimization.

1

https://docs.mosek.com/modeling-cookbook/cqo.html


Joshua Shea University of Chicago

Reformulating QCQP problems as SOCP problems with rotated cone con-

straints

We want to solve a QCQP problem of the form

max
x

c′x

s.t. A1x = b1

A2x ≤ b2

x′Qx + q′x ≤ b3,

(2)

where x ∈ Rn, and Q ∈ Rn×n is a positive definite symmetric matrix. Let A1 be an h1 × n

matrix A2 be an h2 × n matrix. In total, there are there are h1 linear equality constraints,

h2 linear inequality constraints, and one quadratic constraint.

A second order cone constraint may generally be written as

‖Bx + d‖2 ≤ e′x + f, (3)

where B ∈ Rm×n, d ∈ Rm, e ∈ Rn, f ∈ R, and ‖ · ‖2 denotes the Euclidean norm. Since

a quadratic constraint can be rewritten in this form, the QCQP problem in (2) may be

treated as an SOCP problem.2 However, the R package scs will not allow cones to be

passed in the general form of (3). So this document outlines how all the constraints may

be reformulated in a different way to be compatible with scs.

Begin by introducing the slack variable z1 into the quadratic constraint,

z1 + q′x = b3 (4)

x′Qx ≤ z1. (5)

Since Q is positive definite and symmetric, we can write it as Q = Ω′Ω. Define x̃ ≡ Ωx so

that (5) defines a rotated quadratic cone

x′Ω′Ωx = x̃21 + · · ·+ x̃2n ≤ 2z1z2,

where z2 = 1
2 .

What remains is to rewrite all the other components of (2) in terms of x̃.

2 A constraint on the square root of the sum of squared residuals from a linear regression may be written

in this form by setting B equal to the design matrix, d equal to the dependent variable, e equal to 0, and f

equal to the upper bound.

2



Joshua Shea University of Chicago

• The objective may be redefined as

c′x =
(
c′Ω−1

)
(Ωx) = c̃′x̃,

where c̃ ≡ (Ω−1)′c.

• The linear equality constraints may be redefined as

A1x =
(
A1Ω

−1) (Ωx) = Ã1x̃ = b1,

where Ã1 ≡ A1Ω
−1.

• The linear inequality constraints may be redefined as

A2x =
(
A2Ω

−1) (Ωx) = Ã2x̃ ≤ b2,

where Ã2 ≡ A2Ω
−1.

• The quadratic inequality constraint has been replaced by the equality constraint (4),

which may be written as

z1 + q′x = z1 +
(
q′Ω−1

)
(Ωx) = z1 + q̃′x̃ = b3,

where q̃ ≡ (Ω−1)′q.

Define x̂ ≡ (z1, z2, x̃
′)′. Then (2) may be expressed as the following SOCP problem with a

rotated cone constraint,

max
x̂

ĉ′x̂

s.t. Â1x̂ = b1

Â2x̂ ≤ b2

Â3x̂ = b3

Â4x̂ = 1
2

x̂23 + · · ·+ x̂2n+2 ≤ 2x̂1x̂2,

(6)

where

Â1 ≡
[

0h1×2 Ã1

]
Â2 ≡

[
0h2×2 Ã2

]
Â3 ≡

[
1 0 q̃′

]
3



Joshua Shea University of Chicago

Â4 ≡ e′2,

and ei is the ith standard basis vector in Rn+2. The value x can be recovered by

x = Ω−1


x̂3
...

x̂n+2

 .

Undoing the rotation of the cone constraint

Unfortunately, the function scs does not permit rotated quadratic cones. Nevertheless, we

can undo the rotation of the cone constraint in (6) using the rotation matrix T defined in

(1).

In order for x̂ to satisfy the rotated cone constraint in (6), it must be that T−1x̂ = T x̂

satisfies a non-rotated cone constraint. So rewrite (6) in terms of ẋ ≡ T x̂,

max
ẋ

ċ′ẋ

s.t. Ȧ1ẋ = b1

Ȧ2ẋ ≤ b2

Ȧ3ẋ = b3

Ȧ4ẋ = 1
2√

ẋ22 + ẋ23 + · · ·+ ẋ2n+2 ≤ ẋ1,

(7)

where

Ȧ1 ≡ Â1T = Â1

Ȧ2 ≡ Â2T = Â2

Ȧ3 ≡ Â3T

Ȧ4 ≡ Â4T,

with the equalities in the first two lines following from the fact that T is a rotation around

the axes for ẋ3, . . . , ẋn+2, i.e. the non-zero columns in Â1 and Â2 correspond to T2 in T ,

which is the identity matrix.

Now we have written the QCQP problem in (2) in the form of a SOCP problem with a

4



Joshua Shea University of Chicago

non-rotated cone constraint. We can recover x from

x = Ω−1


(T ẋ)3

...

(T ẋ)n+2

 = Ω−1


ẋ3
...

ẋn+2

 ,

with the second equality again following from the fact that T is a rotation around the axes

for ẋ3, . . . , ẋn+2.

Passing the SOCP problem into the R function scs

The function scs only admits problems of the form

max
x

c′x

s.t. Ax + s = b

s ∈ K,

(8)

where K is a Cartesian product of cones. The set K includes zero cones, the positive orthant,

and second order cones.3 The user may declare which components of s constitute a cone,

and of what type. The number of equality constraints must equal the dimension of s, with

each equality constraint containing only one component of s.

To adhere to this form, it is actually easier to rewrite (7) in terms of x̃ and slack variables s

(as opposed to combining x̃ and the slack variables into a single vector, as previously done

with x̂ and ẋ). Let Kj
i denote a cone Ki ⊂ Rj . Let s1 ∈ Kh1

0 ⊂ Rh1 . Then s1 may be used

to write the equality constraints defined by Ã1 that do not involve conic variables,

Ã1x̃ + s1 = b1.

To write the inequality constraints defined by Ã2, introduce the vector of slack variables

s2 ∈ Kh2
1 ,

Ã2x̃ + s2 = b2.

The non-rotated quadratic constraint is characterized by the final three constraints in (7).

The first two of the constraints imply the following,

Ȧ3ẋ =b3 ⇒ z1=b3 − q̃′x̃,

3 It may include several other types of cones that will not be useful for our purpose.

5



Joshua Shea University of Chicago

Ȧ4ẋ =
1

2
⇒ z2=

1

2
.

The rotation matrix T only affects z1 and z2 through T1, and does not affect x̃. So the

effect it has on the SOCP problem is restricted to how T1 transforms z1 and z2,

T1

[
z1

z2

]
= T1

[
b3 − q̃′x̃

1
2

]

=

 1√
2
(b3 − q̃′x̃) + 1

2
√
2

1√
2
(b3 − q̃′x̃)− 1

2
√
2

 .

Then by defining the slack variables s3, s4 ∈ R as[
s3

s4

]
≡ T1

[
z1

z2

]
,

we have that

1√
2
q̃′x̃ + s3 =

1√
2
b3 +

1

2
√

2
,

1√
2
q̃′x̃ + s4 =

1√
2
b3 −

1

2
√

2
.

To complete the quadratic constraint, define the final vector of slack variables s5 ∈ Rn as

−In + s5 = 0.

The vector (s3, s4, s
′
5)
′ belongs to the non-rotated quadratic cone Kn+2

2 .

So all together, we have

max
x̃

c′x̃

s.t. Ã1x̃ + s1 = b1

Ã2x̃ + s2 = b2
1√
2
q̃′x̃ + s3 = 1√

2
b3 + 1

2
√
2

1√
2
q̃′x̃ + s4 = 1√

2
b3 − 1

2
√
2

−In + s5 = 0

s1 ∈ Kh1
0

s2 ∈ Kh2
1

(s3, s4, s
′
5)
′ ∈ Kn+2

2 .

(9)

The SOCP problem in (9) is equivalent to the QCQP problem in (2) and may be passed to

scs.

6


