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1 Summary

The soft threshold approach seems to work very well. Conditional on getting bounds,

the results are always optimal.

The times we do not get bounds is when we use a quadratic loss function for the crite-

rion. Gurobi minimizes the criterion without issue. However, when the criterion is in-

cluded into the objective function as a soft constraint, Gurobi (incorrectly) determines

that the quadratic matrix is not PSD. Gurobi thus complains that the optimization

problem is nonconvex and requests the user set the option nonconvex = 2. This

problem has to do with the quadratic penalty being scaled by criterion.tol,

When criterion.tol gets large, the scaled quadratic matrix violates some kind

of tolerance when being checked for PSD-ness.

But why is there still an error when estimating the bounds when criterion.tol

= 1, even though the criterion minimization problem can be solved (e.g., see test

case 4)? This is because I actually scale the quadratic matrix by the sample size N

as well. That is, the quadratic constraint is scaled by

N× criterion.tol.

Recall that the quadratic constraint is originally scaled by by N−1 (this was discussed

in Issue 208). We did this so that the criterion would not grow with sample size. So

when I construct the soft penalty, I undo this scaling. If I do not undo this scaling, we

need enormous values of criterion.tol (e.g., 50,000) before we see the bounds

shrink.
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2 Simulation results

2.1 Case 1
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Note: The bars display the average lower and upper bounds for simulations where

both bounds were optimal. The number above each bar indicates the fraction of the

200 simulations for which the both bounds were optimal.

2



Joshua Shea University of Illinois Urbana Champaign

2.2 Case 2
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Note: The bars display the average lower and upper bounds for simulations where

both bounds were optimal. The number above each bar indicates the fraction of the

200 simulations for which the both bounds were optimal.
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2.3 Case 3
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Note: The bars display the average lower and upper bounds for simulations where

both bounds were optimal. The number above each bar indicates the fraction of the

200 simulations for which the both bounds were optimal.
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2.4 Case 4
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Note: The bars display the average lower and upper bounds for simulations where

both bounds were optimal. The number above each bar indicates the fraction of the

200 simulations for which the both bounds were optimal.
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