
Emacs + org-mode + python in reproducible research

John Kitchin

Department of Chemical Engineering,
Carnegie Mellon University

Pittsburgh, PA

2013-06-27 Thu

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 1 / 17

Problem to solve #1

Computational research workflow

1 Setup a lot of calculations
(perovskite.py)

2 Run calculations (run.py) a. Fix
a few problem calculations by
hand (nawo3.py)

3 Analyze calculations
(analysis.py, plot*.py,. . .)

4 . . . (scripts4-8, miscellaneous
command line work)

5 Try to teach student steps 1-4

6 Or, try to repeat steps 1-4
myself. . .

Lots of scripts

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 2 / 17

Problem to solve #2

Integrating derivation of
methods with illustrative code
examples

Writing math in comments is
tedious
Pasting code and results into
text is tedious
Tedious = error-prone
Or in my case: not likely to
happen

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 3 / 17

Problem to solve #3

The issue

How did I make this
figure?

Where is the script?
Where is the data?
How did I make the
data?

Or how do I include the
data in this figure from
another paper in my
current paper?

Data and methods tend to
get lost over time as students
leave, old computers die, . . .

A figure from a manuscript

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 4 / 17

These problems have related solutions

Problem 1 (documenting computational workflow)

Solved if we can do all that work in single document and keep a record
of the results of each step

Problem 2 (integrating mathematics with code)

Solved if text, data and code can be easily interspersed, and code can
be run and output readily captured

Problem 3 (how did I make the figure)

Solved if we can keep everything together and export what we want in
the form we need

The solution is an editor that can knows code, data and text and can
interact with the system, a markup language that separates code,
data and text, and a convenient programming language

I will present the combination of these that works best for me:

Emacs + org-mode + Python

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 5 / 17

Emacs in a nutshell

Emacs is an extensible editor
Extensible in Emacs-Lisp, a full programming language

Users can customize every aspect of the editor
You can add any functionality you want
Like a ”browser” for text

Operates in ”modes” that provide features

Every major language has a mode: Python, C/C++, Fortran, Shell,
LATEX, markdown, restructured Text, etc. . .
provides editing functions, syntax highlighting, etc. . .

Provides complete integration with the operating system

This enables system commands to be run, and the output captured

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 6 / 17

Org-mode (http://orgmode.org/)

”Org mode is for keeping notes, maintaining TODO lists, planning
projects, and authoring documents with a fast and effective plain-text
system.” - founded in 2003. Very active community.

Org-mode is written in Emacs-Lisp

Outline mode that enables document organization

Amazing task management capability

Lightweight markup language that differentiates text, data and code

You can embed arbitrary LATEX, HTML, tables, etc. . . in it

Code is executable in the editor, and the results are captured in the
editor

Enables navigatable ”links” to files, commands, locations, urls,

Export engine that converts selected content to PDF, LATEX, HTML,

ascii, etc. . . (e.g. this presentation!)

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 7 / 17

#+TITLE: Emacs + org-mode + python in reproducible research

#+AUTHOR: John Kitchin

#+DATE: 2013-06-27 Thu

#+OPTIONS: H:1 texht:t

#+BEAMER_COLOR_THEME:

#+BEAMER_FONT_THEME:

#+BEAMER_HEADER:

#+BEAMER_INNER_THEME:

#+BEAMER_OUTER_THEME:

#+BEAMER_THEME: default

#+LATEX_CLASS: beamer

#+LATEX_CLASS_OPTIONS:

#+LATEX_HEADER: \institute{Department of Chemical Engineering, \\Carnegie Mellon University\\Pittsburgh, PA}

#+LATEX_HEADER_EXTRA: \titlegraphic{\includegraphics[width=\textwidth]{header}}

#+OPTIONS: toc:nil

#+latex_header: \mode<beamer>{\usetheme{Madrid}}

* Problem to solve #1

** Computational research workflow

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

 :END:

1. Setup a lot of calculations (perovskite.py)

2. Run calculations (run.py)

 a. Fix a few problem calculations by hand (nawo3.py)

3. Analyze calculations (analysis.py, plot*.py,...)

4. ...(scripts4-8, miscellaneous command line work)

5. Try to teach student steps 1-4

6. Or, try to repeat steps 1-4 myself...

** Lots of scripts

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

 :END:

[[./ls.png]]

* Problem to solve #2

**

:PROPERTIES:

 :BEAMER_env: block

 :BEAMER_col: 0.5

 :END:

- Integrating derivation of methods with illustrative code examples

 + Writing math in comments is tedious

 + Pasting code and results into text is tedious

 + Tedious = error-prone

 + Or in my case: not likely to happen

** 							 :BMCOL:B_example:

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

:END:

							 [[./blog.png]]

* Problem to solve #3

** The issue					 :B_ignoreheading:BMCOL:

:PROPERTIES:

 :BEAMER_col: 0.4

 :BEAMER_env: block

 :END:

- How did I make this figure?

 + Where is the script?

 + Where is the data?

 + How did I make the data?

- Or how do I include the data in this figure from another paper in my current paper?

Data and methods tend to get lost over time as students leave, old computers die, ...

** A figure from a manuscript 				 :BMCOL:B_example:

 :PROPERTIES:

 :BEAMER_col: 0.6

 :BEAMER_env: block

 :END:

[[./fig8.png]]

* Desired features in a solution				 :noexport:

1. Minimal use of new tools (corollary: maximal use of existing tools)

 - If a new tool is needed, it needs to be a long term benefit

 - If I have to build a tool, it needs to help my overall skills

2. Must be deeply integrated into /and/ improve my workflow

 - I like to work in one environment

 - I am not likely to break out of workflow to do something

 - I dislike switching tools (muscle memory)

3. These are reflections of MWODT (my way of doing things)

* These problems have related solutions

- Problem 1 (documenting computational workflow)

 + Solved if we can do all that work in single document and keep a record of the results of each step

- Problem 2 (integrating mathematics with code)

 + Solved if text, data and code can be easily interspersed, and code can be run and output readily captured

- Problem 3 (how did I make the figure)

 + Solved if we can keep everything together and export what we want in the form we need

- The solution is an *editor* that can knows code, data and text and can interact with the system, a *markup language* that separates code, data and text, and a convenient *programming language*

- I will present the combination of these that works best for me:

Emacs + org-mode + Python

* Emacs in a nutshell

- Emacs is an extensible editor

 + Extensible in Emacs-Lisp, a full programming language

 - Users can customize every aspect of the editor

 - You can add any functionality you want

 - Like a "browser" for text

 + Operates in "modes" that provide features

 - Every major language has a mode: Python, C/C++, Fortran, Shell, LaTeX, markdown, restructured Text, etc...

 - provides editing functions, syntax highlighting, etc...

 + Provides complete integration with the operating system

 - This enables system commands to be run, and the output captured

* Org-mode (http://orgmode.org/)

"/Org mode is for keeping notes, maintaining TODO lists, planning projects, and authoring documents with a fast and effective plain-text system./" - founded in 2003. Very active community.

- Org-mode is written in Emacs-Lisp

- Outline mode that enables document organization

- Amazing task management capability

- Lightweight markup language that differentiates text, data and code

- You can embed arbitrary LaTeX, HTML, tables, etc... in it

- Code is executable in the editor, and the results are captured in the editor

- Enables navigatable "links" to [[file:kitchin-emacs-orgmode-python.org][files]], [[shell:ls][commands]], [[Emacs in a nutshell][locations]], [[http://jkitchin.github.io][urls]],

- Export engine that converts selected content to PDF, LaTeX, HTML, ascii, etc... (e.g. this presentation!) \attachfile{kitchin-emacs-orgmode-python.org}

* Example - shell scripts

#+NAME: shell

#+BEGIN_SRC sh

ls | sort

#+END_SRC

#+RESULTS: shell

#+begin_example

archive

blog.png

dft-book-1.png

fe-ni-al.png

fig8.png

header.png

kitchin-emacs-orgmode-python.org

kitchin-emacs-orgmode-python.pdf

kitchin-emacs-orgmode-python.tex

ls.png

pycse-1.png

pycse-2.png

#+end_example

* Example with python code

#+BEGIN_SRC python

import os

files = os.listdir('.')

files.sort()

for f in files: print f

#+END_SRC

#+RESULTS:

#+begin_example

archive

blog.png

dft-book-1.png

fe-ni-al.png

fig8.png

header.png

kitchin-emacs-orgmode-python.org

kitchin-emacs-orgmode-python.pdf

kitchin-emacs-orgmode-python.tex

ls.png

pycse-1.png

pycse-2.png

#+end_example

* Example with emacs-lisp

#+BEGIN_SRC emacs-lisp

(mapcar (lambda (arg)

	 (princ (format "%s\n" arg)))

	(directory-files "."))

#+END_SRC

#+RESULTS:

#+begin_example

.

..

archive

blog.png

dft-book-1.png

fe-ni-al.png

fig8.png

header.png

kitchin-emacs-orgmode-python.org

kitchin-emacs-orgmode-python.pdf

kitchin-emacs-orgmode-python.tex

ls.png

pycse-1.png

pycse-2.png

#+end_example

* Emacs + org-mode projects

- PYCSE - http://jkitchin.github.io/pycse

 + E-book on python calculations in science and engineering (~300 pages)

- Python blog - http://jkitchin.github.io

 + 169 posts on mostly python, created and published using org-mode and blogofile

- dft-book - http://jkitchin.github.io/dft-book

 + E-book on using python to drive quantum chemistry to compute material properties (~300 pages)

- Two scientific manuscripts submitted

 + "Simulating temperature programmed desorption of oxygen on Pt(111) using DFT derived coverage dependent desorption barriers" to Topics in Catalysis

 + "Effects of O_2 and SO_2 on the capture capacity of a primary-amine based polymeric CO_2 sorbent" to Industrial & Engineering Chemistry Research

 + Manuscripts and supporting information were generated in Emacs + org-mode, and exported to LaTeX for submission

* PYCSE - http://jkitchin.github.io/pycse

** Document overview

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

 :END:

[[./pycse-1.png]]

- Code is written and executed in the editor. Output captured.

- Exported to blog, HTML and PDF. Mobi and ePub are also possible.

** A subsection of the document

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

 :END:

[[./pycse-2.png]]

* dft-book - http://jkitchin.github.io/dft-book

** Embedded text, math, code and output.

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

 :END:

- 300+ pages of using python to run quantum chemical calculations

- might be 50+% code!

- Every example written and run in the book

 + no cut and paste code/results

 + It ran correctly /at least once/

**

:PROPERTIES:

 :BEAMER_col: 0.5

 :BEAMER_env: block

 :END:

[[./dft-book-1.png]]

* Org-mode in documenting computational/research workflow

**

:PROPERTIES:

 :BEAMER_col: 0.3

 :BEAMER_env: block

 :END:

- Separation of data generation and analysis promotes data reuse

- Easier to read scripts

**

:PROPERTIES:

 :BEAMER_col: 0.7

 :BEAMER_env: block

 :END:

[[./fe-ni-al.png]]

* Do some demos

* Challenges

- Org-mode is deeply integrated with Emacs

 + pro - You get all the power of Emacs

 + on the other hand - You have to learn Emacs and Emacs-Lisp

 + Other editors can mimic the capabilities

- Org-mode is markup /and/ functionality

 + restructured text + Sphinx is the closest in spirit

 + has extensibility (in Python!)

 + currently lacks editor integration even in Emacs

- Getting exported format perfect can be challenging

 + This is a general problem with converting formats

 + I actually prefer reading content in org-mode now

 + My students prefer to read HTML/pdf

* Conclusions

- Reproducible research needs new tools, new workflows

 + Users will probably need to customize tools for their needs

- Emacs + org-mode was a game changer in reproducible research for me. It enabled:

 + Authoring two books on using python in science and engineering

 + A python based blog

 + Scientific manuscripts with thorough documentation of data, methods, etc...

 + Documenting computational work

 + Managing the work-life of an engineering professor

- The key features that enabled this are

 + *Extensible editor*

 + *Extensible markup language*

 + *Scripting* (Python + others)

Thanks for your attention!

https://github.com/jkitchin/scipy2013

* Links to examples 						 :noexport:

#+BEGIN_SRC python

import sys

print sys.version

where the platform independent Python files are installed

print sys.prefix

#+END_SRC

** pycse

Outline folding, latex rendering, blog post

[[../../../pycse/pycse.org::6531]]

Rendered pdf

file:../../../pycse/pycse.pdf

** Blog lisp

275 lines of emacs-lisp creates blogofile (python-based static blog framework) posts

[[../../../.emacs.d/blogofile.el]]

http://jkitchin.github.io

** Manuscript example

clickable links

[[../../manuscripts/01-resubmitted-IER-SO2/IER-SO2.txt::20]]

Embed data files into document

file:~/Dropbox/CMU/manuscripts/01-resubmitted-IER-SO2/supporting-information.org::20

Embed data files, read data from scripts

file:~/Dropbox/CMU/manuscripts/01-resubmitted-IER-SO2/supporting-information.org::33

Tables of data inline. Use the data to make a figure.

file:~/Dropbox/CMU/manuscripts/01-resubmitted-IER-SO2/supporting-information.org::175

Build the output pdf

file:~/Dropbox/CMU/manuscripts/01-resubmitted-IER-SO2/supporting-information.org::455

Resulting pdf

[[../../manuscripts/01-resubmitted-IER-SO2/re-submitted/supporting-information.pdf]]

** dft-book

Example of integrated prose/code. Why you want deep integration with editor (menu TODO)

[[file:../../classes/06-640-Molecular-Simulations-Fall-2012/dft-book/dft.org::*Simple estimate of the adsorption energy]]

file:../../classes/06-640-Molecular-Simulations-Fall-2012/dft-book/dft.pdf

* build								 :noexport:

[[elisp:(org-beamer-export-to-pdf)]]

file:kitchin-emacs-orgmode-python.pdf

http://orgmode.org/
kitchin-emacs-orgmode-python.org
http://jkitchin.github.io

Example - shell scripts

1 ls | sort

archive

blog.png

dft-book-1.png

fe-ni-al.png

fig8.png

header.png

kitchin-emacs-orgmode-python.org

kitchin-emacs-orgmode-python.pdf

kitchin-emacs-orgmode-python.tex

ls.png

pycse-1.png

pycse-2.png

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 8 / 17

Example with python code

1 import os

2 files = os.listdir(’.’)

3 files.sort()

4 for f in files: print f

archive

blog.png

dft-book-1.png

fe-ni-al.png

fig8.png

header.png

kitchin-emacs-orgmode-python.org

kitchin-emacs-orgmode-python.pdf

kitchin-emacs-orgmode-python.tex

ls.png

pycse-1.png

pycse-2.png

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 9 / 17

Example with emacs-lisp

1 (mapcar (lambda (arg)

2 (princ (format "%s\n" arg)))

3 (directory-files "."))

.

..

archive

blog.png

dft-book-1.png

fe-ni-al.png

fig8.png

header.png

kitchin-emacs-orgmode-python.org

kitchin-emacs-orgmode-python.pdf

kitchin-emacs-orgmode-python.tex

ls.png

pycse-1.png

pycse-2.pngJohn Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 10 / 17

Emacs + org-mode projects

PYCSE - http://jkitchin.github.io/pycse
E-book on python calculations in science and engineering (˜300 pages)

Python blog - http://jkitchin.github.io
169 posts on mostly python, created and published using org-mode and
blogofile

dft-book - http://jkitchin.github.io/dft-book
E-book on using python to drive quantum chemistry to compute
material properties (˜300 pages)

Two scientific manuscripts submitted
”Simulating temperature programmed desorption of oxygen on Pt(111)
using DFT derived coverage dependent desorption barriers” to Topics
in Catalysis
”Effects of O2 and SO2 on the capture capacity of a primary-amine
based polymeric CO2 sorbent” to Industrial & Engineering Chemistry
Research
Manuscripts and supporting information were generated in Emacs +
org-mode, and exported to LATEX for submission

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 11 / 17

http://jkitchin.github.io/pycse
http://jkitchin.github.io
http://jkitchin.github.io/dft-book

PYCSE - http://jkitchin.github.io/pycse

Document overview

Code is written and executed in
the editor. Output captured.

Exported to blog, HTML and
PDF. Mobi and ePub are also
possible.

A subsection of the document

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 12 / 17

http://jkitchin.github.io/pycse

dft-book - http://jkitchin.github.io/dft-book

Embedded text, math, code and
output.

300+ pages of using python to
run quantum chemical
calculations

might be 50+% code!

Every example written and run
in the book

no cut and paste code/results
It ran correctly at least once

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 13 / 17

http://jkitchin.github.io/dft-book

Org-mode in documenting computational/research
workflow

Separation of
data generation
and analysis
promotes data
reuse

Easier to read
scripts

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 14 / 17

Do some demos

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 15 / 17

Challenges

Org-mode is deeply integrated with Emacs

pro - You get all the power of Emacs
on the other hand - You have to learn Emacs and Emacs-Lisp
Other editors can mimic the capabilities

Org-mode is markup and functionality

restructured text + Sphinx is the closest in spirit
has extensibility (in Python!)
currently lacks editor integration even in Emacs

Getting exported format perfect can be challenging

This is a general problem with converting formats
I actually prefer reading content in org-mode now
My students prefer to read HTML/pdf

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 16 / 17

Conclusions

Reproducible research needs new tools, new workflows

Users will probably need to customize tools for their needs

Emacs + org-mode was a game changer in reproducible research for
me. It enabled:

Authoring two books on using python in science and engineering
A python based blog
Scientific manuscripts with thorough documentation of data, methods,
etc. . .
Documenting computational work
Managing the work-life of an engineering professor

The key features that enabled this are

Extensible editor
Extensible markup language
Scripting (Python + others)

Thanks for your attention!
https://github.com/jkitchin/scipy2013

John Kitchin (Department of Chemical Engineering, Carnegie Mellon UniversityPittsburgh, PA)Emacs + org-mode + python in reproducible research 2013-06-27 Thu 17 / 17

https://github.com/jkitchin/scipy2013

