-
Notifications
You must be signed in to change notification settings - Fork 0
/
embedded_list.h
879 lines (761 loc) · 24.9 KB
/
embedded_list.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/* THOR - THOR Template Library
* Joshua M. Kriegshauser
*
* embedded_list.h
*
* This file defines an STL-like linked list container. This container is
* an embedded container, which means that the stored object must contain
* an embedded_list_link member. This embedded_list_link member contains
* the embedded list node data.
*
* This container does not own its members. Therefore, remove will return the
* member. Also, the stored objects are not created by the containter; they
* must be created before using push_back(), push_front() or insert().
*
* Embedded containers are ideal for storage of items that may be included in
* several containers. Typically one container will be non-embedded and will
* "own" the item; other containers will be embedded containers and do not
* own the item. This prevents several small nodes from being created to
* represent containers storing pointers to items.
*
* Writing to the end() node can be very dangerous since this node doesn't
* actually exist. The end() node actually overlaps the container object so
* that end().[link node] aligns with embedded_list::m_head. Therefore, any
* writes to the end() node will overwrite memory. Debug builds have several
* asserts to try and prevent this from happening.
*
* Since this container is not defined by the STL specification, it generally
* follows the list container. Differences are called out here:
* - push_front(), push_back() and insert() take pointers to the contained type
* instead of construction parameters. This is because items must already
* be constructed before inserting.
* - pop_front() and pop_back() return the item that is popped. This is because
* the embedded_list container does not have ownership of the item. It is
* then up to the caller to destroy the item. For convenience,
* pop_front_delete() and pop_back_delete() exist to delete the item.
* - erase() is not a member since the embedded_list does not have ownership of
* the contained items. Instead, the remove() function exists to remove the
* item from the embedded_list and return to the caller. It is then up to the
* caller to delete the item. For convenience, remove_delete() exists which
* deletes the item after removing. Also, remove functions exist that take
* a range of items and/or a Predicate. It is safe to delete objects inside
* the Predicate.
* - Similarly, clear() no longer exists. Instead, remove_all() and delete_all()
* exist to remove all items and delete all items, respectively. Also,
* a version of remove_all() exists that executes a Predicate on each item.
* It is safe to delete objects inside the Predicate.
*/
#ifndef THOR_LIST_H
#define THOR_LIST_H
#pragma once
#ifndef THOR_BASETYPES_H
#include "basetypes.h"
#endif
#ifndef THOR_TYPETRAITS_H
#include "typetraits.h"
#endif
#ifndef THOR_ITERATOR_H
#include "iterator.h"
#endif
#ifndef THOR_FUNCTION_H
#include "function.h"
#endif
#ifndef THOR_ALGORITHM_H
#include "algorithm.h"
#endif
#ifndef THOR_FREELIST_H
#include "freelist.h"
#endif
#ifndef THOR_MEMORY_H
#include "memory.h"
#endif
namespace thor
{
//
// Prototypes
//
template <class T> class embedded_list_link;
template <class T, embedded_list_link<T> T::*U> class embedded_list;
//
// embedded_list_link definition
//
template <class T> class embedded_list_link
{
// No copy
embedded_list_link(const embedded_list_link&);
embedded_list_link& operator = (const embedded_list_link&);
public:
embedded_list_link() : next(0), prev(0) { set_owner(0); }
~embedded_list_link()
{
verify_free();
}
bool is_contained() const
{
return next != 0;
}
#if 0
protected:
template<class T, embedded_list_link<T> T::*LINK> friend class embedded_list;
#endif
#ifdef THOR_DEBUG
void* owner;
void set_owner(void* o) { owner = o; }
void verify_owner(void* o) const
{
THOR_DEBUG_ASSERT(owner == o);
THOR_DEBUG_ASSERT(is_contained());
}
#else
void set_owner(void*) {}
void verify_owner(void*) const {}
#endif
void verify_free() const
{
THOR_ASSERT(!is_contained());
THOR_DEBUG_ASSERT(owner == 0);
}
void clear()
{
next = 0;
prev = 0;
set_owner(0);
}
T* next;
T* prev;
};
//
// embedded_list definition
//
template <class T, embedded_list_link<T> T::*LINK> class embedded_list
{
// No copy
embedded_list(const embedded_list&);
embedded_list& operator = (const embedded_list&);
public:
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef const T* const_pointer;
typedef const T& const_reference;
typedef thor_size_type size_type;
typedef thor_diff_type difference_type;
// iterator definitions
struct iterator_base : public iterator_type<bidirectional_iterator_tag, T>
{
T* m_element;
#ifdef THOR_DEBUG
const embedded_list* m_list;
iterator_base(T* n, const embedded_list* o) : m_element(n), m_list(o) {}
#else
iterator_base(T* n, const embedded_list*) : m_element(n) {}
#endif
void verify_not_end() const { THOR_DEBUG_ASSERT(m_list->end().m_element != m_element); }
void decr() { m_element = (m_element->*LINK).prev; }
void incr() { m_element = (m_element->*LINK).next; }
bool operator == (const iterator_base& i) const { THOR_DEBUG_ASSERT(m_list == i.m_list); return m_element == i.m_element; }
bool operator != (const iterator_base& i) const { THOR_DEBUG_ASSERT(m_list == i.m_list); return m_element != i.m_element; }
};
template<class Traits> class fwd_iterator : public iterator_base
{
public:
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef fwd_iterator<nonconst_traits<T> > nonconst_iterator;
typedef fwd_iterator<Traits> selftype;
fwd_iterator() : iterator_base(0, 0) {}
fwd_iterator(T* n, const embedded_list* l) : iterator_base(n, l) {}
fwd_iterator(const nonconst_iterator& i) : iterator_base(i) {}
selftype& operator = (const nonconst_iterator& i) { iterator_base::operator = (i); return *this; }
reference operator * () const { verify_not_end(); THOR_DEBUG_ASSERT(m_element != 0); return *m_element; }
pointer operator -> () const { verify_not_end(); return &(operator*()); }
selftype& operator -- () /* --iterator */ { decr(); return *this; }
selftype operator -- (int) /* iterator-- */ { selftype n(*this); decr(); return n; }
selftype& operator ++ () /* ++iterator */ { verify_not_end(); incr(); return *this; }
selftype operator ++ (int) /* iterator++ */ { verify_not_end(); selftype n(*this); incr(); return n; }
};
template<class Traits> class rev_iterator : public iterator_base
{
public:
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef rev_iterator<nonconst_traits<T> > nonconst_iterator;
typedef rev_iterator<Traits> selftype;
rev_iterator() : iterator_base(0, 0) {}
rev_iterator(T* n, const embedded_list* l) : iterator_base(n, l) {}
rev_iterator(const nonconst_iterator& i) : iterator_base(i) {}
selftype& operator = (const nonconst_iterator& i) { iterator_base::operator = (i); return *this; }
reference operator * () const { verify_not_end(); THOR_DEBUG_ASSERT(m_element != 0); return *m_element; }
pointer operator -> () const { verify_not_end(); return &(operator*()); }
selftype& operator -- () /* --iterator */ { incr(); return *this; }
selftype operator -- (int) /* iterator-- */ { selftype n(*this); incr(); return n; }
selftype& operator ++ () /* ++iterator */ { verify_not_end(); decr(); return *this; }
selftype operator ++ (int) /* iterator++ */ { verify_not_end(); selftype n(*this); decr(); return n; }
};
typedef fwd_iterator<nonconst_traits<T> > iterator;
typedef fwd_iterator<const_traits<T> > const_iterator;
typedef rev_iterator<nonconst_traits<T> > reverse_iterator;
typedef rev_iterator<const_traits<T> > const_reverse_iterator;
// Constructors
embedded_list()
: m_size(0)
{
m_head.next = terminator();
m_head.prev = terminator();
}
template <class InputIterator> embedded_list(InputIterator first, InputIterator last)
: m_size(0)
{
m_head.next = terminator();
m_head.prev = terminator();
insert(end(), first, last);
}
~embedded_list()
{
// List should be empty at destruction time
THOR_DEBUG_ASSERT(empty());
remove_all();
m_head.clear();
}
// Forward iteration
iterator begin()
{
return iterator(m_head.next, this);
}
const_iterator begin() const
{
return const_iterator(m_head.next, this);
}
iterator end()
{
return iterator(terminator(), this);
}
const_iterator end() const
{
return const_iterator(terminator(), this);
}
// Reverse iteration
reverse_iterator rbegin()
{
return reverse_iterator(m_head.prev, this);
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(m_head.prev, this);
}
reverse_iterator rend()
{
return reverse_iterator(terminator(), this);
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(terminator(), this);
}
// Size
size_type size() const
{
return m_size;
}
size_type max_size() const
{
return size_type(-1);
}
bool empty() const
{
return m_size == 0;
}
// Accessing elements
T& front()
{
THOR_ASSERT(!empty());
T* obj = !empty() ? m_head.next : 0;
return *obj;
}
const T& front() const
{
THOR_ASSERT(!empty());
const T* obj = !empty() ? m_head.next : 0;
return *obj;
}
T& back()
{
THOR_ASSERT(!empty());
T* obj = !empty() ? m_head.prev : 0;
return *obj;
}
const T& back() const
{
THOR_ASSERT(!empty());
const T* obj = !empty() ? m_head.prev : 0;
return *obj;
}
// Adding elements to the front of the list
T& push_front(T* p)
{
THOR_DEBUG_ASSERT(p != 0);
link(p).verify_free();
link(p).set_owner(this);
link(p).next = m_head.next;
link(p).prev = terminator();
link(m_head.next).prev = p;
m_head.next = p;
++m_size;
return *p;
}
// Adding elements to the back of the list
T& push_back(T* p)
{
THOR_DEBUG_ASSERT(p != 0);
link(p).verify_free();
link(p).set_owner(this);
link(p).next = terminator();
link(p).prev = m_head.prev;
link(m_head.prev).next = p;
m_head.prev = p;
++m_size;
return *p;
}
/*gift*/ T* pop_front()
{
THOR_DEBUG_ASSERT(!empty());
if (!empty())
{
pointer p = m_head.next;
m_head.next = link(p).next;
link(m_head.next).prev = terminator();
link(p).clear();
--m_size;
return p;
}
return 0;
}
// Like pop_front(), only deletes the front value as well. Only valid
// for pointer types.
void pop_front_delete()
{
delete pop_front();
}
/*gift*/ T* pop_back()
{
THOR_DEBUG_ASSERT(!empty());
if (!empty())
{
pointer p = m_head.prev;
m_head.prev = link(p).prev;
link(m_head.prev).next = terminator();
link(p).clear();
--m_size;
return p;
}
return 0;
}
// Like pop_back(), only deletes the back value as well. Only valid
// for pointer types.
void pop_back_delete()
{
delete pop_back();
}
void swap(embedded_list& L)
{
THOR_ASSERT(this != &L);
// must fix up terminators first
// also note that pointers must be assigned simultaneously (i.e. m_head.prev->next = m_head.next->prev = terminator() doesn't work)
T *&Rhead = link(m_head.next).prev, *&Rtail = link(m_head.prev).next;
T *&Lhead = link(L.m_head.next).prev, *&Ltail = link(L.m_head.prev).next;
Rhead = Rtail = L.terminator();
Lhead = Ltail = terminator();
T* temp;
{ temp = m_head.prev; m_head.prev = L.m_head.prev; L.m_head.prev = temp; }
{ temp = m_head.next; m_head.next = L.m_head.next; L.m_head.next = temp; }
thor::swap(m_size, L.m_size);
// Update ownership
set_owner(this);
L.set_owner(&L);
}
iterator insert(iterator pos, T* p)
{
THOR_DEBUG_ASSERT(p != 0);
verify_iterator(pos);
link(p).verify_free();
link(p).prev = link(pos.m_element).prev;
link(link(p).prev).next = p;
link(p).next = pos.m_element;
link(pos.m_element).prev = p;
link(p).set_owner(this);
++m_size;
return iterator(p, this);
}
template <class InputIterator> void insert(iterator pos, InputIterator first, InputIterator last)
{
while (first != last)
{
insert(pos, &(*(first++)));
}
}
T* remove(iterator pos)
{
verify_iterator(pos);
pos.verify_not_end();
remove(pos.m_element);
return pos.m_element;
}
T* remove(T* pos)
{
THOR_DEBUG_ASSERT(pos != 0);
THOR_DEBUG_ASSERT(pos != terminator());
link(pos).verify_owner(this);
link(link(pos).next).prev = link(pos).prev;
link(link(pos).prev).next = link(pos).next;
link(pos).next = link(pos).prev = 0;
link(pos).clear();
--m_size;
return pos;
}
void remove_delete(iterator pos)
{
delete remove(pos);
}
void remove_delete(T* pos)
{
delete remove(pos);
}
template <class Pred> void remove(iterator pos, Pred pred)
{
pred(remove(pos));
}
void remove(iterator first, iterator last)
{
verify_iterator(first);
verify_iterator(last);
while (first != last)
{
remove(first++);
}
}
template <class Pred> void remove(iterator first, iterator last, Pred pred)
{
verify_iterator(first);
verify_iterator(last);
while (first != last)
{
pred(remove(first++));
}
}
void remove_all()
{
T* node = m_head.next;
T* last = m_head.next = m_head.prev = terminator();
m_size = 0;
while (node != last)
{
T* next = link(node).next;
link(node).clear();
node = next;
}
}
template <class Pred> void remove_all(Pred pred)
{
T* node = m_head.next;
T* last = m_head.next = m_head.prev = terminator();
m_size = 0;
while (node != last)
{
T* next = link(node).next;
link(node).clear();
pred(node);
node = next;
}
}
void delete_all()
{
T* node = m_head.next;
T* last = m_head.next = m_head.prev = terminator();
m_size = 0;
while (node != last)
{
T* next = link(node).next;
link(node).clear();
delete node;
node = next;
}
}
void splice(iterator pos, embedded_list& L)
{
THOR_ASSERT(this != &L);
verify_iterator(pos);
if(!L.empty() && this != &L)
{
// Steal list_nodes from L
L.set_owner(this);
link(link(pos.m_element).prev).next = L.m_head.next;
link(L.m_head.next).prev = link(pos.m_element).prev;
link(pos.m_element).prev = L.m_head.prev;
link(L.m_head.prev).next = pos.m_element;
m_size += L.m_size;
// Reset L
L.m_head.prev = L.m_head.next = L.terminator();
L.m_size = 0;
}
}
void splice(iterator pos, embedded_list& L, iterator i)
{
THOR_ASSERT(this != &L);
verify_iterator(pos);
L.verify_iterator(i);
i.verify_not_end();
if (this != &L && L.end() != i)
{
// Remove i from L
link(link(i.m_element).prev).next = link(i.m_element).next;
link(link(i.m_element).next).prev = link(i.m_element).prev;
--L.m_size;
// Add i to this at pos
link(link(pos.m_element).prev).next = i.m_element;
link(i.m_element).prev = link(pos.m_element).prev;
link(pos.m_element).prev = i.m_element;
link(i.m_element).next = pos.m_element;
link(i.m_element).set_owner(this);
++m_size;
}
}
void splice(iterator pos, embedded_list& L, iterator first, iterator last)
{
while (first != last)
{
splice(pos, L, first++);
}
}
// list must be sorted in order to use this.
// The iterator returned is the new end, similar to how thor::unique works.
iterator unique()
{
return iterator(unique_internal(equal_to<T>()), this);
}
// list must be sorted in order to use this.
// The iterator returned is the new end, similar to how thor::unique works.
template <class BinaryPredicate> iterator unique(BinaryPredicate pred)
{
return iterator(unique_internal(pred), this);
}
void merge(embedded_list& L)
{
merge_internal(L, less<T>());
}
template <class StrictWeakOrdering> void merge(embedded_list& L, StrictWeakOrdering comp)
{
merge_internal(L, comp);
}
void sort()
{
sort_internal(less<T>());
}
template <class Compare> void sort(Compare comp)
{
sort_internal(comp);
}
// extensions
bool validate() const
{
#define THOR_ASSERT_RETURN(expr) THOR_ASSERT(expr); if (!(expr)) return false
THOR_ASSERT_RETURN(link(m_head.next).prev == terminator());
THOR_ASSERT_RETURN(link(m_head.prev).next == terminator());
size_type localcount = 0;
T* n = m_head.next;
while (n != terminator())
{
link(n).verify_owner();
THOR_ASSERT_RETURN(link(link(n).next).prev == n);
THOR_ASSERT_RETURN(link(link(n).prev).next == n);
++localcount;
n = link(n).next;
}
THOR_ASSERT_RETURN(localcount == m_size);
return true;
#undef THOR_ASSERT_RETURN
}
// Moves the item at 'which' to before 'pos'
void move(iterator which, iterator pos)
{
verify_iterator(which);
verify_iterator(pos);
which.verify_not_end();
if (which != pos && which.m_element != terminator() && link(which.m_element).next != pos.m_element)
{
// Remove from current
link(link(which.m_element).prev).next = link(which.m_element).next;
link(link(which.m_element).next).prev = link(which.m_element).prev;
// Insert at pos
link(which.m_element).prev = link(pos.m_element).prev;
link(which.m_element).next = pos.m_element;
link(link(pos.m_element).prev).next = which.m_element;
link(pos.m_element).prev = which.m_element;
}
}
void move(T* which, iterator pos)
{
THOR_DEBUG_ASSERT(which != 0);
THOR_DEBUG_ASSERT(which != terminator());
link(which).verify_owner(this);
verify_iterator(pos);
if (which != pos.m_element && which != terminator() && link(which).next != pos.m_element)
{
// Remove from current
link(link(which).prev).next = link(which).next;
link(link(which).next).prev = link(which).prev;
// Insert at pos
link(which).prev = link(pos.m_element).prev;
link(which).next = pos.m_element;
link(link(pos.m_element).prev).next = which;
link(pos.m_element).prev = which;
}
}
protected:
embedded_list_link<T> m_head;
size_type m_size;
T* terminator() const
{
return (T*)((thor_byte*)&m_head - THOR_OFFSET_OF(T, *LINK));
}
static embedded_list_link<T>& link(T* p)
{
return p->*LINK;
}
static const embedded_list_link<T>& link(const T* p)
{
return p->*LINK;
}
void set_owner(void* owner)
{
THOR_UNUSED(owner);
#ifdef THOR_DEBUG
T* p = m_head.next;
while (p != terminator())
{
link(p).set_owner(owner);
p = link(p).next;
}
#endif
}
void verify_iterator(const iterator_base& i) const { THOR_UNUSED(i); THOR_ASSERT(i.m_list == this); }
// Helper functions
template <class BinaryPredicate> T* unique_internal(BinaryPredicate pred)
{
T* last = terminator();
if (size() > 1)
{
T* first = m_head.next;
for (;;)
{
T* prev = first;
first = link(first).next;
if (first == last)
{
break;
}
if (pred(*first, *prev))
{
move(prev, iterator(last, this));
last = prev;
}
}
}
return last;
}
template <class StrictWeakOrdering> void merge_internal(embedded_list& rhs, StrictWeakOrdering comp)
{
THOR_ASSERT(this != &rhs);
if (this != &rhs && !rhs.empty())
{
if (!empty())
{
T* write = m_head.next;
T* read = rhs.m_head.next;
for (;;)
{
if (comp(*read, *write))
{
T* readpos = read;
read = link(read).next;
splice(iterator(write, this), rhs, iterator(readpos, &rhs));
if (read == rhs.terminator())
{
break;
}
}
else
{
write = link(write).next;
if (write == terminator())
{
break;
}
}
}
}
// Add any remaining elements
splice(end(), rhs);
}
}
template <class StrictWeakOrdering> void sort_internal(StrictWeakOrdering order)
{
if (size() < 2)
{
return;
}
embedded_list carry;
embedded_list counter[64];
thor_size_type fill = 0, i;
while (!empty())
{
carry.splice(carry.begin(), *this, begin());
i = 0;
while (i < fill && !counter[i].empty())
{
counter[i].merge(carry, order);
carry.swap(counter[i++]);
}
carry.swap(counter[i]);
if (i == fill)
{
++fill;
}
}
for (i = 1; i < fill; ++i)
{
counter[i].merge(counter[i - 1], order);
}
swap(counter[fill - 1]);
}
};
// Swap specialization
template <class T, embedded_list_link<T> T::*U> void swap(thor::embedded_list<T,U>& lhs, thor::embedded_list<T,U>& rhs)
{
lhs.swap(rhs);
}
} // namespace thor
// Global operators
template <class T, thor::embedded_list_link<T> T::*U> bool operator == (const thor::embedded_list<T,U>& l1, const thor::embedded_list<T,U>& l2)
{
return l1.size() == l2.size() && thor::equal(l1.begin(), l1.end(), l2.begin());
}
template <class T, thor::embedded_list_link<T> T::*U> bool operator != (const thor::embedded_list<T,U>& l1, const thor::embedded_list<T,U>& l2)
{
return !(l1 == l2);
}
template <class T, thor::embedded_list_link<T> T::*U> bool operator < (const thor::embedded_list<T,U>& l1, const thor::embedded_list<T,U>& l2)
{
return thor::lexicographical_compare(l1.begin(), l1.end(), l2.begin(), l2.end());
}
template <class T, thor::embedded_list_link<T> T::*U> bool operator > (const thor::embedded_list<T,U>& l1, const thor::embedded_list<T,U>& l2)
{
return thor::lexicographical_compare(l1.begin(), l1.end(), l2.begin(), l2.end(), thor::greater<T>());
}
template <class T, thor::embedded_list_link<T> T::*U> bool operator <= (const thor::embedded_list<T,U>& l1, const thor::embedded_list<T,U>& l2)
{
return !(l1 > l2);
}
template <class T, thor::embedded_list_link<T> T::*U> bool operator >= (const thor::embedded_list<T,U>& l1, const thor::embedded_list<T,U>& l2)
{
return !(l1 < l2);
}
#endif