bouldr README
The bouldr
package is a toolkit for running Receiver Operator Characteristic (ROC) Curve analyses using a simple, formula interface. It also allows for intuitive visualization and statistical comparison of the curves. The statistical core of the package is pROC
, a package developed by Xavier Robin and colleagues (see citation below).
Many ROC packages focus on machine learning and classification use-cases. However, ROC is useful in psychology as well -- particularly in developing and evaluating assessment instruments. A continuous score on a test can be ROC-ed against a target diagnosis to test the diagnostic efficiency of the test. This is similar to diagnostic accuracy, but ROC is the preferred approach because it assesses sensativity and specificity across the range of the scale, and can be used to identify optimal cut-scores. This package relies on pROC
to perform the computation.
Requirements
R
version 3.5.0 or greatertidyr
dplyr
magrittr
ggplot2
pROC
RcppAlgos
broom
stats
Installation
bouldr
is not currently on CRAN, so you'll need devtools
to install:
devtools::install_github('jlangaa/bouldr')
Examples
Use ?bouldr
and ?generate_data
to see examples.
References
Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-Charles Sanchez and Markus Müller (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, p. 77. DOI:10.1186/1471-2105-12-77 http://www.biomedcentral.com/1471-2105/12/77/