From 223a979a542fde0f9bbdc855f8dc3bfab9a6f5d2 Mon Sep 17 00:00:00 2001 From: John Lapeyre Date: Thu, 2 Aug 2018 13:11:24 +0200 Subject: [PATCH] add notebook and update doc --- .gitignore | 3 + Notebooks/DeepConvert.ipynb | 323 ++++++++++++++++++++++++++++++++++++ README.md | 10 +- 3 files changed, 331 insertions(+), 5 deletions(-) create mode 100644 Notebooks/DeepConvert.ipynb diff --git a/.gitignore b/.gitignore index b25c15b..d3311d4 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,4 @@ *~ +Notebooks/.ipynb_checkpoints/ +.ipynb_checkpoints/ + diff --git a/Notebooks/DeepConvert.ipynb b/Notebooks/DeepConvert.ipynb new file mode 100644 index 0000000..321e065 --- /dev/null +++ b/Notebooks/DeepConvert.ipynb @@ -0,0 +1,323 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DeepConvert\n", + "\n", + "This package provides convenient literal construction of values of\n", + "large data types.\n", + "\n", + "It defines macros that define functions to convert all\n", + "numbers in an expression to a given numeric type and evaluate that\n", + "expression. (Like `deepcopy`, it traverses the entire expression tree.)\n", + "It is meant to allow a convenient way to input large\n", + "numbers without overflow.\n", + "\n", + "The macros `@bigfloat`, `@bigint`, and `@int128` convert numeric literals\n", + "in their argument to BigFloat, BigInt or Int128. See examples below.\n", + "\n", + "Two examples of non-standard AbstractString literals are exported,\n", + "`bf` and `bi`, which construct `BigFloat`s and\n", + "`BigInt`s from strings. Note that these are *not* the same as the string\n", + "literal `big` in Julia `Base`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trying to construct an array of `BigInt`s this way will not work " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Array{BigInt,1}:\n", + " -9223372036854775808\n", + " 0" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "BigInt[2^63, 2^64]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instead we have to do something like this" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Array{BigInt,1}:\n", + " 9223372036854775808\n", + " 18446744073709551616" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[big\"2\"^63, big\"2\"^64]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The string macro `bi` makes this easier." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Array{BigInt,1}:\n", + " 9223372036854775808\n", + " 18446744073709551616" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "using DeepConvert\n", + "\n", + "bi\"[2^63, 2^64]\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There is an equivalent macro `@bigint`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2-element Array{BigInt,1}:\n", + " 9223372036854775808\n", + " 18446744073709551616" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@bigint [2^63, 2^64]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following calculation overflows." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "ename": "LoadError", + "evalue": "OverflowError: binomial(100, 50) overflows", + "output_type": "error", + "traceback": [ + "OverflowError: binomial(100, 50) overflows", + "", + "Stacktrace:", + " [1] binomial(::Int64, ::Int64) at ./intfuncs.jl:903", + " [2] top-level scope at none:0" + ] + } + ], + "source": [ + "binomial(100, 50)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Int128` is big enough." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "100891344545564193334812497256" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "@int128 binomial(100, 50)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There is also a string macro `bf` for `BigFloat`s" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(bf\"((1 + 2e-50) - (1 + 1e-50)) / (1e-50)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here is another (contrived) example" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "@bigint function g(x)\n", + " return 2^64 * x\n", + " end;" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3.6893488147419103232e+19" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g(2.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "BigFloat" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "typeof(g(2.0))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Julia 0.7.0-beta2", + "language": "julia", + "name": "julia-0.7" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "0.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/README.md b/README.md index c372b86..b4fdd33 100644 --- a/README.md +++ b/README.md @@ -29,18 +29,18 @@ literal `big` in Julia `Base`. ```julia julia> BigInt[2^63, 2^64] -2-element Array{BigInt, 1}: # awesome, an array of BigInt's! +2-element Array{BigInt,1}: # awesome, an array of BigInt's! -9223372036854775808 0 julia> using DeepConvert julia> bi"[2^63, 2^64]" -2-element Array{BigInt, 1}: +2-element Array{BigInt,1}: 9223372036854775808 18446744073709551616 julia> @bigint [2^63, 2^64] -2-element Array{BigInt, 1}: +2-element Array{BigInt,1}: 9223372036854775808 18446744073709551616 ``` @@ -55,7 +55,7 @@ julia> @int128 binomial(100, 50) ```julia julia> round(bf"((1 + 2e-50) - (1 + 1e-50)) / (1e-50)") -1e+00 with 256 bits of precision +1.0 ``` `deepbigfloat` takes an expression or string as an argument and acts on literals @@ -123,7 +123,7 @@ Gives this, ```julia julia> g(2.0) -3.6893488147419103232e+19 with 256 bits of precision +3.6893488147419103232e+19 ``` To override the macro, you have to ask for the smaller type,