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1 Asymptotic Results (Observed Rank)

We consider θ0 = E[F−1
Y (U)] and the estimator

θ̂n = 1
n

n∑
j=1

F̂−1
Y (Uj), (1)

where F̂−1
Y is the empirical quantile function obtained from (Yi)i=1,...,n.

Assumption 1 (Sampling) Assume: (i) (Yi)i=1,...,n are independent draws from the dis-

tribution FY and (Uj)j=1,...,n are independent draws from the distribution FU . (ii) Uj is

independent of Yi for any i and j. (iii) Supp(Ui) ⊆ [0, 1]. (iv) FY and FU are absolutely

continuous with respect to the Lebesgue measure.

Notice that (1) is a L-statistics (Shorack and Wellner, 1986, Chapter 19), i.e. θ̂n =

n−1∑n
i=1 cniY(i), where Y(1) < ... < Y(n) is the order statistics and cni = #{Uj : Uj ∈

((i − 1)/n, i/n]}. However, contrary to the textbook case, the weights cni are random

variables,

(cn1, ..., cnn) ∼M(n, FU(1/n)− FU(0/n), ..., FU(n/n)− FU((n− 1)/n)).

In order to study its asymptotic behavior, let us decompose it into two parts, each only

depending at the first order on the random sample (Yi)i=1,...,n or (Ui)i=1,...,n but not both.

Notice that θ0 can be written as

θ0 =
∫ 1

0
F−1
Y dFU .

Let ξi := FY (Yi) ∼ U [0, 1], Gn denote the empirical cumulative distribution function

obtained from (ξi)i=1,...,n. Also, for any function F : [0, 1] −→ [0, 1], we let F−1 denote its

left-continuous generalized inverse:

F−1(y) := inf{x ∈ [0, 1] : y ≤ F (x)} ∀y ∈ [0, 1].

Thus, G−1
n (τ) is the usual empirical quantile of order τ .
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The estimator (1) can be expressed as1

θ̂n =
∫ 1

0
F−1
Y ◦G−1

n dF̂U ,

where F̂U is the empirical cumulative distribution function obtained from (Ui)i=1,...,n. We

show that
√
n(θ̂n − θ0) = 1√

n

n∑
i=1

εi + 1√
n

n∑
i=1

ζi + oP (1),

where εi = −
∫ 1

0 [1{Ui ≤ t}−FU(t)] dF−1
Y (t) and ζi = −

∫ 1
0 [1{FY (Yi) ≤ t}− t]fU(t) dF−1

Y (t)

are independent, square-integrable, random variables, allowing to apply a standard CLT.

Assumption 2 (Regularity Conditions on Densities)

(i) There exist b1, b2 > 0 and CU > 0 such that for all t ∈ (0, 1):

fU(t) ≤ CU t
−b1(1− t)−b2 .

(ii) There exist d1, d2 > 0 and CY > 0 such that for all t ∈ (0, 1):

|F−1
Y (t)| ≤ CY t

−d1(1− t)−d2 .

(iii) b1 + d1 < 1/2 and b2 + d2 < 1/2.

Point 2 of Assumption 2 holds under the following moment condition on Y.

Lemma 1 (Lower-Level Conditions on Y ) Assume E[|Y |p] < ∞ for p > 1, then As-

sumption 2(ii) is verified with d1 = d2 = 1/p.

Theorem 1 (Asymptotic Normality) Under Assumptions 1 and 2, as n→∞,
√
n(θ̂n − θ0) d−→ N (0, σ2),

with

σ2 =
∫ 1

0

∫ 1

0
[FU(s ∧ t)− FU(s)FU(t) + [s ∧ t− st]fU(s)fU(t)] dF−1

Y (s) dF−1
Y (t).

All proofs are gathered in the appendix.
1Letting dae be the least integer greater than or equal to a, notice that G−1

n (x) = ξ(dnxe) = FY (Y(dnxe))
and FY absolutely continuous with respect to the Lebesgue measure imply F−1

Y ◦ G−1
n (x) = F−1

Y ◦
FY (Y(dnxe)) = Y(dnxe) = F̂−1

Y (x).
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2 Asymptotic Results (Estimated Rank)

In many applications, the random variable Ui has a known form Ui = FZ(Xi) for some

observed random variable Xi and a unknown cumulative distribution function FZ . As a

consequence, we do not directly observe the random variables (Ui)i=1,...,n, instead we are

left with estimated quantities (Ûi)i=1,...,n. In these cases, Ûi is the image of some observed

random variable Xi through an empirical cumulative distribution function that comes from

another independent sample (Zi)i=1,...,n, i.e. Ûi = F̂Z(Xi).

Assumption 3 (Pooled Independent Samples) (i) (Yi)i=1,...,n (resp. (Zi)i=1,...,n and

(Xi)i=1,...,n) are independent draws from the distribution FY (resp. FZ and FX). (ii)

(Yi, Zj, Xk) are mutually independent for any value of i,j and k. (iii) FY , FZ and FX are

absolutely continuous with respect to the Lebesgue measure.

Notice that U is distributed with cdf FU = FX ◦ F−1
Z and density

fU(t) = fX(F−1
Z (t))

fZ(F−1
Z (t))

1{t ∈ [0, 1]}.

Notice that Ûi = Hn(Ui), where Hn is the empirical cdf obtained from (FZ(Zj))j=1,...,n with

FZ(Zj) ∼ U [0, 1]. We consider the estimator:

θ̌n := 1
n

n∑
j=1

F̂−1
Y (Ûj) = 1

n

n∑
j=1

F̂−1
Y (Hn(Uj)).

Note: we can also use a smooothed version of F̂Z . Following Shorack and Wellner (1986),

we let F̂Z(Z(i)) = i/(n + 1) for i = 1...n, F̂Z(·) linear between Z(i) and Z(i+1) for i < n.

For z < Z(1) and z > Z(n), we extrapolate linearly until reaching 0 and 1 respectively.

One can show that this extrapolation is equivalent to defining Z(0) = 2Z(1) − Z(2) and

Z(n+1) = 2Z(n) − Z(n−1) instead of 0 and 1 as in Shorack and Wellner (1986). With this

estimator, Hn(·) is defined as

Hn(u) = 1
n+ 1

(
i+ F−1

Z (u)− Z(i)

Z(i+1) − Z(i)

)
if Z(i) ≤ F−1

Z (u) ≤ Z(i+1)
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for i = 0, ..., n. Finally, Hn is constant and equal to 0 on [0, FZ(Z(0))] and constant, equal

to 1 on [FZ(Z(n+1)), 1]. (these two sets may or may not be empty). Similarly as before, θ̌n
can be expressed as:

θ̌n =
∫ 1

0
F−1
Y ◦G−1

n ◦Hn dF̂U .

We show that the estimator can be decomposed into three independent parts:
√
n(θ̌n − θ0) = 1√

n

n∑
i=1

εi + 1√
n

n∑
i=1

ζi + 1√
n

n∑
i=1

ϕi + oP (1),

where εi = −
∫ 1

0 [1{FZ(Xi) ≤ t} − FX(F−1
Z (t))] dF−1

Y (t), ζi = −
∫ 1

0 [1{FY (Yi) ≤ t} −

t]fU(t) dF−1
Y (t) and ϕi :=

∫ 1
0 [1{FZ(Zi) ≤ t} − t] fU(t) dF−1

Y (t) are independent, square-

integrable, random variables, allowing to apply a standard CLT.

Theorem 2 (Asymptotic Normality) Under Assumptions 2-3, as n→∞,
√
n(θ̌n − θ0) d−→ N (0, σ2),

with

σ2 =
∫ 1

0

∫ 1

0

[
FX(F−1

Z (s ∧ t))− FX(F−1
Z (s))FX(F−1

Z (t))
]
dF−1

Y (s) dF−1
Y (t)

+ 2
∫ 1

0

∫ 1

0
[s ∧ t− st] fX(F−1

Z (s))
fZ(F−1

Z (s))
fX(F−1

Z (t))
fZ(F−1

Z (t))
dF−1

Y (s) dF−1
Y (t).

The proof is long and technical. Describe the main steps and ingredients:

1. Decompose into three terms. Two are the same as in Theorem 1, the third is new.

We decompose it further into several terms: remainder terms plus a L-statistic.

2. For some remainder term, similar technique as in Theorem 1 but a bit more complex.

Use in particular the fact that (i) order statistic of uniforms and uniform spacings

are distributed as beta; (ii) mean absolute deviation of beta distributions.

3. For another remainder term, use convergence of the supremum of the weighted em-

pirical quantile process (see in particular Csorgo et al., 1986, Corollary 4.3.1).

4. For the L−statistic, results in Shorack and Wellner (1986) do not apply here. Instead,

we use the necessary and sufficient condition for its asymptotic normality in Hecker

(1976).
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3 Application to Change-in-Change

Faire une revue de litérature sur le Change-in-Change et sur d’autres possibles estima-
teurs rentrant dans notre cadre.

We study the Change-in-Change estimator of Athey and Imbens (2006). Let Ygt,i the

outcome at time t for individual i in group g. The Change-in-Change estimand of the

Average Treatment Effect (ATE) is

τCIC = E[Y11]− E[F−1
Y01(FY00(Y10))].

The idea is to estimate the counterfactual by averaging the quantile the treated population

would have had, had they been in the untreated group at the initial date and kept the

same rank in the second period. In our more simplistic framework, we have U = FY,00(Y10),

with Y10 ∼ FY,10. Assume that all the cdf are absolutely continuous with respect to the

Lebesgue measure, then FU = FY,10 ◦ F−1
Y,00 and its density is:

fU(t) =
fY,10(F−1

Y,00(t))
fY,00(F−1

Y,00(t))
1{t ∈ [0, 1]}.

Clearly, if the outcome distribution is the same for the treated and the untreated at the

initial date (fY,10 = fY,00) then U is uniformly distributed. Athey and Imbens (2006)

require the density of Ygt for each g and t to be bounded from below and bounded from

above on a compact support (see Assumption 5 therein). This assumption yields that fU
will also be bounded. In general, fU will be bounded if and only if the ratio fY,10/fY,00 is

bounded, which may not be the case for many usual distributions typically encountered

with economic data. Our method of proof does not require any constant bound on fU ,

thus extending the cases where the Change-in-Change is a relevant tool.

Examples: In the following examples we study the tail behavior of fU with respect to

the underlying distribution of the treated and untreated outcomes at the initial date. We

show that under many standard distributions, Assumption 2 (i) is verified.

1. Exponential Distribution. Assume that Yg0 ∼ E(λg), in that case

fU(t) = λ1

λ0
(1− t)λ1/λ0−11{t ∈ [0, 1]},
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and U ∼ Beta(1, λ1/λ0).

2. Pareto Distribution. Assume that Yg0 has cdf 1− (βg/x)αg , in that case

fU(t) = α1

α0

(
β1

β0

)α1

(1− t)α1/α0−11{1− (β0/β1)α0 < t < 1},

which is a “truncated” Beta distribution.

3. Normal Distribution. Assume that Yg0 ∼ N (µg, σ2
g), in that case

fU(t) = σ0

σ1
exp

[
− 1

2σ2
1

(
(σ0 + σ1)Φ−1(t) + µ0 − µ1

) (
(σ0 − σ1)Φ−1(t) + µ0 − µ1

)]
1{t ∈ [0, 1]}.

Consider the special case: µ1 = µ0 and σ1 > σ0. For t ∈ (1/2, 1), using the inequality

Φ−1(t) ≤
√
−2 ln(2(1− t)) yields fU(t) ≤ (σ0/σ1)(2(1 − t))σ2

0/σ
2
1−1. Symmetrically,

for t ∈ (0, 1/2), Φ−1(t) ≥ −
√
−2 ln(2t) yields fU(t) ≤ (σ0/σ1)(2t)σ2

0/σ
2
1−1.

4. Logistic Distribution. Assume that Yg0 has cdf 1/(1 + exp(−(t − µg)/βg)), in that

case

fU(t) = β0

β1

(1/t− 1)β0/β1−1 e(µ1−µ0)/β1

t2
(
1 + (1/t− 1)β0/β1 e(µ1−µ0)/β1

)21{t ∈ [0, 1]}.

5. Gumbel Distribution. Assume that Yg0 has cdf e−(t−µg)/βg exp
(
−e−(t−µg)/βg

)
/βg, in

that case

fU(t) = β0

β1
e(µ1−µ0)/β1 ln(t)β0/β1−1 exp

(
− ln(t)β0/β1e(µ1−µ0)/β1

)
1{t ∈ [0, 1]}.

If β1 = β0 = 1 and µ0 > µ1, U ∼ Beta(1− eµ1−µ0 , 1). �

We never observe Ui directly, instead F00 is replaced by its empirical counterpart F̂00

and we have Ûi = F̂00(Yi,10). Notice that:

Ûi = 1
n

n∑
j=1

1{Y00,j ≤ Y10,i}

= 1
n

n∑
j=1

1{F00(Y00,j) ≤ Ui}

= Hn(Ui),

where Hn is the empirical cdf of F00(Y00,j) ∼ U [0, 1].
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4 Theorem 2 generalizes Theorem 5.1 in Athey and Imbens (2006).

By several changes of variables, one may easily verify that

ζi = −
∫ F−1

Z (1)

F−1
Z (0)

[1{FY (Yi) ≤ FZ(x)} − FZ(x)] 1
fY
(
F−1
Y (FZ(x))

) × fX(x) dx, (2)

ϕi =
∫ F−1

Z (1)

F−1
Z (0)

[1{Zi ≤ x} − FZ(x)] 1
fY
(
F−1
Y (FZ(x))

) × fX(x) dx. (3)

Athey and Imbens (2006) impose Supp(Y10) ⊂ Supp(Y00), which is equivalent to Supp(X) ⊂

Supp(Z) in our notation. Under this assumption, we have

E(ζ2
i ) = V q,

E(ϕ2
i ) = V p,

where V q and V p are defined in Theorem 5.1 in Athey and Imbens (2006). Now, it remains

to analyze the last variance term V r. We have:

V r := V
(
F−1
Y01 (FY00(Y10)))

)
= V

(
F−1
Y (FZ(X))

)

=
∫
Supp(X)

(
F−1
Y (FZ (x))

)2
fX(x) dx−


∫
Supp(X)

F−1
Y (FZ (x)) fX(x) dx︸ ︷︷ ︸

=:θ0


2

.

Also, by an integration by part

E(ε2
i ) :=

∫ 1

0

∫ 1

0

[
FX(F−1

Z (s ∧ t))− FX(F−1
Z (s))FX(F−1

Z (t))
]
dF−1

Y (s) dF−1
Y (t)

=
∫ 1

0

{[
F−1
Y (s)

(
FX(F−1

Z (s ∧ t))− FX(F−1
Z (s))FX(F−1

Z (t))
)]s=1

s=0

−
∫ 1

0
F−1
Y (s)

[fX(F−1
Z (s ∧ t))

fZ(F−1
Z (s ∧ t))

1{s ≤ t} − fX(F−1
Z (s))FX(F−1

Z (t))
fZ(F−1

Z (s))
]
ds
}
dF−1

Y (t)

= −
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s ∧ t))
fZ(F−1

Z (s ∧ t))
1{s ≤ t} ds

)
dF−1

Y (t)

+
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s))FX(F−1
Z (t))

fZ(F−1
Z (s))

ds

)
dF−1

Y (t). (4)
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The third equality follows because Supp(X) ⊂ Supp(Y ) implies

[F−1
Y (s)

(
FX(F−1

Z (s ∧ t))− FX(F−1
Z (s))FX(F−1

Z (t))
)]s=1

s=0
= 0.

Focus on the second term in (4). By the change of variable x = F−1
Z (s), we obtain∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s))FX(F−1
Z (t))

fZ(F−1
Z (s))

ds

)
dF−1

Y (t)

=
(∫ 1

0
F−1
Y (s)fX(F−1

Z (s))
fZ(F−1

Z (s))
ds

)(∫ 1

0
FX(F−1

Z (t)) dF−1
Y (t)

)

=
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)(∫ 1

0
FX(F−1

Z (t)) dF−1
Y (t)

)

=
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)(
[F−1
Y (t)FX(F−1

Z (t))]t=1
t=0 −

∫ F−1
Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)

= −
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)2

+
(∫ F−1

Z (1)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)
F−1
Y (1)

= −θ2
0 + θ0F

−1
Y (1), (5)

where we obtain the third equality by an integration by part followed by the same change

of variable than before, and the last two equalities holds because Supp(X) ⊂ Supp(Z).

Now, focus on the first term in (4). By the same change of variable again, we have

−
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s ∧ t))
fZ(F−1

Z (s ∧ t))
1{s ≤ t} ds

)
dF−1

Y (t)

= −
∫ 1

0

(∫ F−1
Z (t)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)
dF−1

Y (t). (6)

By Leibniz’s derivation rule for integrals, we have
d
dt

(∫ F−1
Z (t)

F−1
Z (0)

F−1
Y (FZ(x))fX(x) dx

)
= 1
fZ(F−1

Z (t))
F−1
Y (FZ(F−1

Z (t)))fX(F−1
Z (t))

= fX(F−1
Z (t))

fZ(F−1
Z (t))

F−1
Y (t).

Hence, an integration by part of (6) yields

−
∫ 1

0

(∫ 1

0
F−1
Y (s)fX(F−1

Z (s ∧ t))
fZ(F−1

Z (s ∧ t))
1{s ≤ t} ds

)
dF−1

Y (t)

= −θ0F
−1
Y (1) +

∫ 1

0
F−1
Y (t)2fX(F−1

Z (t))
fZ(F−1

Z (t))
dt

= −θ0F
−1
Y (1) +

∫ F−1
Z (1)

F−1
Z (0)

(
F−1
Y (FZ(x))

)2
fX(x) dx, (7)
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where we used the change of variable x = F−1
Z (t) to obtain the last equality. Now, by

combining (5) and (7) and noting that∫ F−1
Z (1)

F−1
Z (0)

(
F−1
Y (FZ(x))

)2
fX(x) dx =

∫
Supp(X)

(
F−1
Y (FZ(x))

)2
fX(x) dx,

we obtain

E(ε2
i ) = −F−1

Y (1)θ0 +
∫
Supp(X)

(
F−1
Y (FZ(x))

)2
fX(x) dx− θ2

0 + θ0F
−1
Y (1)

=
∫
Supp(X)

(
F−1
Y (FZ(x))

)2
fX(x) dx−

(∫
Supp(X)

F−1
Y (FZ(x))fX(x) dx

)2

= V r.

Notice that we can also write ζi, ϕi and εi as:

ζi = −EU

(1{FY (Yi) ≤ U} − U) 1
fY
(
F−1
Y (U)

)


ϕi = EU

(1{FZ(Zi) ≤ U} − U) 1
fY
(
F−1
Y (U)

)
 ,

′′ε′′i = −(F−1
Y (Ui)− EU

[
F−1
Y (U)

]
) = θ0 − F−1

Y (Ui),

where the expectation is taken over the distribution of U only.

4.1 Variance estimation

Notice that the asymptotic variance in Theorem 2 can be rewritten as E [ζ2
i + ϕ2

i + ε2i ]. So,

we need to estimate the following three terms:

ζi = −EU

(1{FY (Yi) ≤ U} − U) 1
fY
(
F−1
Y (U)

)


ϕi = EU

(1{FZ(Zi) ≤ U} − U) 1
fY
(
F−1
Y (U)

)
 ,

εi = −(F−1
Y (Ui)− EU

[
F−1
Y (U)

]
) = θ0 − F−1

Y (Ui),
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The three terms above are straightforward to estimate except for their dependence on

the density of Y . Non-parametric estimation of the density of Y requires the use of a

kernel and a choice of bandwith. To overcome this difficulty, we instead draw inspiration

from Lewbel and Schennach (2007) and notice that the function x → 1/fY (F−1
Y (x)) is

the derivative of the quantile function of Y , F−1
Y (x). Let us define the empirical quantile

function of Y , for x ∈ (0, 1):

F̂−1
Y (x) := inf

{
y s.t. 1

n

n∑
i=1

1{Yi ≤ y} ≥ x

}
.

Let us also use the estimated ranks as defined in Section 2: Ûi = F̂Z(Xi), and denote Û(i)

the i-th value in the ordered sample Û(1) ≤ Û(2) ≤ . . . ≤ Û(n). We can approximate the

value of the function x→ 1/fY (F−1
Y (x)) evaluated at

(
Û(i+1) + Û(i)

)
/2 by:

F̂−1
Y (Û(i+1))− F̂−1

Y (Û(i))
Û(i+1) − Û(i)

.

With that in mind, we propose the following estimators for the quantities above:

ζ̂i = − 1
n

n−1∑
j=1

(
1

{
i+ 1
n
≤
Û(j+1) + Û(j)

2

}
−
Û(j+1) + Û(j)

2

)
F̂−1
Y (Û(j+1))− F̂−1

Y (Û(j))
Û(j+1) − Û(j)

,

ϕ̂i = −ζ̂i,

ε̂i = θ̌ − F−1
Y (Ûi).

Finally, the estimator for σ2 is given by:

σ̂2 = 1
n

n∑
i=1

ζ̂2
i + ϕ̂2

i + ε̂2i .

(On a ϕ̂i = −ζ̂i dans le cas où l’on a autant de Zi que de Yi, ce qui n’est pas nécess-

sairement vrai dans le cas général. Notons bien que le terme i+1
n

sert d’estimateur à, par

exemple, F̂Z(Z(i))).
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A Proofs of the main results

Below, we use “.” to indicate an inequality up to universal constant. In most cases below,

this means a constant independent of x and n.

A.1 Proof of Lemma 1

Observe that E[|Y |] <∞ implies tSY (t)→ 0 and tFY (−t)→ 0 as t→∞. Thus E[|Y |p] <

∞ implies tpSY (t) → 0 and tpFY (−t) → 0 as t → ∞. The convergence to 0 of tpSY (t)

implies that there exists C > 0 and t1 such that for all t ≥ t1,

|t|p(1− FY (t)) ≤ C.

This implies that for all u ≥ FY (t1), |F−1
Y (u)|p(1− u) ≤ C or, equivalently,

|F−1
Y (u)| ≤ C(1− u)−1/p.

Hence, there exists C1 > 0 such that for u ≥ FY (t1),

|F−1
Y (u)| ≤ C1[u(1− u)]−1/p.

Using tpFY (−t) → 0 and a similar reasoning, there exists C2 and t2 ≤ t1 such that for

all u ≤ t2, |F−1
Y (u)| ≤ C2[u(1 − u)]−1/p. The result follows since |F−1

Y (u)[u(1 − u)]1/p| is

bounded on [t2, t1]. �

B Proof of Theorem 1

Consider the following decomposition:

θ̂n − θ0 =
∫ 1

0
F−1
Y ◦G−1

n dFU −
∫ 1

0
F−1
Y dFU︸ ︷︷ ︸

:=T1n

+
∫ 1

0
F−1
Y ◦G−1

n dF̂U −
∫ 1

0
F−1
Y ◦G−1

n dFU︸ ︷︷ ︸
:=T2n

.

The proof proceeds in three steps. In the first step, we prove that T1n is linear up to a

negligible remainder term. In the second step, we prove the same result for T2n. The last

step concludes.
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First step: linearization of T1n. By Lemma 2 followed by an integration by part,

√
nT1n =

√
n
[∫ 1

0
F−1
Y dFU ◦Gn −

∫ 1

0
F−1
Y dFU

]
=
√
n

{∫ ξ(n)

ξ(1)

F−1
Y d [FU ◦Gn − FU ]−

∫ ξ(1)

0
F−1
Y dFU −

∫ 1

ξ(n)

F−1
Y dFU

}

= −
√
n

{∫ ξ(n)

ξ(1)

[FU ◦Gn − FU ] dF−1
Y −

∫ ξ(1)

0
F−1
Y dFU −

∫ 1

ξ(n)

F−1
Y dFU

}
,

where the last equality relies on Assumption 2, d1 + b1 < 1 and d2 + b2 < 1. Next, using

Assumption 2 again,∣∣∣∣∣
∫ ξ(1)

0
F−1
Y dFU

∣∣∣∣∣ . 1
{
ξ(1) ≥ 1/2

} ∣∣∣∣∫ 1

0
F−1
Y dFU

∣∣∣∣+ 1
{
ξ(1) < 1/2

} ∫ ξ(1)

0
t−b1−d1dt

. 1
{
ξ(1) ≥ 1/2

}
+ ξ1−b1−d1

(1) .

Thus, because ξ(1) = Op(1/n) and b1 + d1 < 1/2,
√
n
∫ ξ(1)

0 F−1
Y dFU = op(1). Similarly,

√
n
∫ 1
ξ(n)

F−1
Y dFU = op(1). Hence,

√
nT1n = −

√
n
∫ ξ(n)

ξ(1)

[Gn − I]dΛ +Rn + op(1),

where Λ is the measure defined by dΛ/dF−1
Y = fU and

Rn :=
√
n

(∫ ξ(n)

ξ(1)

[Gn − I]fU dF−1
Y −

∫ ξ(n)

ξ(1)

[FU ◦Gn − FU ] dF−1
Y

)
.

We show below that Rn = op(1), which further proves that

√
nT1n = 1√

n

n∑
i=1

ηi + op(1), (8)

with ηi := −
∫ 1

0 [1{FY (Yi) ≤ t} − t]dΛ(t). MODIFY THIS...

By the mean value theorem, there exists Tn(t) ∈ (Gn(t), t) such that

Rn =
√
n
∫ ξ(n)

ξ(1)

[fU − fU ◦ Tn]︸ ︷︷ ︸
:=An

[Gn − I] dF−1
Y .

By Assumption 2, there exists δ > 0 such that bj + dj < 1/2 − δ. Further, let δj > 0 be

such that

bj + dj < 1/2− δ − δj. (9)
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Then let q(t) = t1/2−δ1(1− t)1/2−δ2 . From what precedes, we have

|Rn| ≤ sup
t∈(0,1)

∣∣∣∣∣
√
n(Gn(t)− t)

q(t)

∣∣∣∣∣
∫ ξ(n)

ξ(1)

|An(t)|q(t) dF−1
Y (t). (10)

We now show that the second term tends to 0 almost surely. First, by convergence of Gn(t)

to t, we have, for all t ∈ (0, 1), Tn(t) a.s.−→ t. Then, by continuity of fU , An(t) a.s.−→ 0 for all

t ∈ (0, 1). Fix ε > 0. By Theorem 10.6.1 in Shorack and Wellner (1986), we have, for all

t ≥ ξ(1) and all n large enough,

Gn(t) ≤ (1 + ε)t1−δ/2 ≤ (1 + ε)t1−δ.

Now, let B(t) := CU t
−b1(1 − t)−b2 . Then, by Assumption 2 and because B is a convex

function, we obtain, for all t ∈ [ξ(1), ξ(n)],

|An(t)| ≤ [B (Gn(t)) ∨B (t)] +B(t)

. t−b1−δ(1− t)−b2−δ, a.s.

Therefore,

|An(t)|1
{
t ∈ [ξ(1), ξ(n)]

}
q(t) . t1/2−b1−δ−δ1(1− t)1/2−b2−δ−δ2 .

Moreover, by (9) and Lemma 3,
∫ 1

0
t1/2−b1−δ−δ1(1− t)1/2−b2−δ−δ2 dF−1

Y (t) <∞.

Then, by the dominated convergence theorem,
∫ ξ(n)

ξ(1)

|An(t)|q(t) dF−1
Y (t) a.s.−→ 0. (11)

Next, by Equation (2) in Chapter 2, Section 7 (page 141) in Shorack and Wellner

(1986), we have

sup
t∈(0,1)

∣∣∣∣∣
√
n(Gn(t)− t)

q(t)

∣∣∣∣∣ = op(1).

This, together with (10) and (11), implies that Rn = op(1).
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Second step: linearization of T2n. By Lemma 2 followed by an integration by part,
√
nT2n =

√
n
∫ 1

0
F−1
Y d

[
F̂U ◦Gn − FU ◦Gn

]
=
[
F−1
Y (t)

(
F̂U(Gn(t))− FU(Gn(t))

)]1
0
−
√
n
∫ 1

0

[
F̂U ◦Gn − FU ◦Gn

]
dF−1

Y (12)

= −
√
n
∫ 1

0

[
F̂U ◦Gn − FU ◦Gn

]
dF−1

Y , (13)

since for t ∈ (0, ξ(1)), Gn(t) = 0 and F̂U(0) = FU(0) = 0 because (Ui)i=1,...,n is an iid sample

of random variables absolutely continuous with respect to the Lebesgue measure on [0, 1].

Symmetrically, for t ∈ (ξ(n), 1), Gn(t) = 1 and F̂U(1) = FU(1) = 1. We now prove that

−
√
n
∫ 1

0

[
F̂U ◦Gn − FU ◦Gn

]
dF−1

Y = −
√
n
∫ 1

0

[
F̂U − FU

]
dF−1

Y + op(1). (14)

Let Vn =
√
n(F̂U ◦ F−1

U − I) denote the empirical process associated with the uniform

variables (FU(Ui))i=1,...,n and define

Rn =
∫ 1

0
(Vn ◦ FU ◦Gn − Vn ◦ FU) dF−1

Y .

Equation (14) is equivalent to Rn = op(1). We actually prove the stronger result that

E[|Rn|] → 0. For that purpose, let In(x) = (x,Gn(x)] if Gn(x) > x, In(x) = [Gn(x), x) if

Gn(x) < x and ∅ otherwise. Finally, let Sn(x) = sgn(Gn(x)− x). Observe first that

Vn ◦ FU ◦Gn(x)− Vn ◦ FU(x) = Sn(x)Zn(x), (15)

with

Zn(x) = 1√
n

n∑
i=1

[1 {Ui ∈ In(x)} − PU(In(x))] ,

where PU([a, b]) = PU((a, b]) = PU([a, b)) = PU((a, b)) = FU(a) − FU(b) for all (a, b) ∈

[0, 1], a ≤ b. Then,

E [|Rn| |(ξi)i] ≤ E

[∫ 1

0
|Vn ◦ FU ◦Gn − Vn ◦ FU | dF−1

Y

∣∣∣∣∣(ξi)i
]

=
∫ 1

0
E [|Vn ◦ FU ◦Gn − Vn ◦ FU | |(ξi)i] dF−1

Y

≤
∫ 1

0
E
[
Zn(x)2|(ξi)i

]1/2
dF−1

Y (x)

=
∫ 1

0
V [1 {U1 ∈ In(x)} |(ξi)i]1/2 dF−1

Y (x)

≤
∫ 1

0
|PU(In(x))|1/2 dF−1

Y (x). (16)
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The first equality follows by Fubini-Tonelli’s theorem, the second inequality uses (15) and

the Cauchy-Schwarz inequality and the second equality holds since conditional on the (ξi)i,

the variables 1 {Ui ∈ In(x)} − PU(In(x)) are i.i.d. with mean zero. As a result,

E [|Rn|] ≤
∫ 1

0
E
[
|PU(In(x)|1/2

]
dF−1

Y (x)

≤
∫ 1

0
E [|PU(In(x)|]1/2 dF−1

Y (x), (17)

where the first ineqality follows by (16) and Fubini-Tonelli’s theorem, whereas the second is

due to Jensen’s inequality. Now, by the law of large numbers and the continuous mapping

theorem, |FU(Gn(x))−FU(x)| P−→ 0 for all x ∈ [0, 1]. Moreover, |FU(Gn(x))−FU(x)| ≤ 1.

Hence, for all x ∈ [0, 1],

E [|FU(x)− FU(Gn(x))|]→ 0.

We now apply the dominated convergence theorem to prove that E[|Rn|] → 0. Because

x 7→ E[|PU(In(x))|]1/2 is bounded by 1 for all n, it is actually enough to bound this function

for x close to 0 and close to 1. Also, by symmetry, we can focus without loss of generality

on the neighborhood of 0. We prove that

E [|PU(In(x))|] . x1−b1 . (18)

Then the result follows by Lemma 3 combined with Assumption 2. To prove (18), we

apply Lemma 5 with Qn(x) := Gn(x) and δ < exp(−1)/2. If x ≥ 1/n, Cauchy-Schwarz

inequality yields

E [|Gn(x)− x|] ≤
[
x(1− x)

n

]1/2

≤ 2x, (19)

since n1/2 ≥ x−1/2. If x < 1/n, (19) holds as well by Theorem 1 in Berend and Kontorovich

(2013). Hence, (19) holds for all x ∈ (0, δ̄/2). Next, let n0 ∈ N, n0 ≥ 4/(1 − δ̄)2. By

Kiefer’s inequality (see, e.g. Van der Vaart and Wellner, 1996, Corollary A.6.3), we have,

for all x ∈ [0, δ] and all n ≥ n0,

Pr(Gn(x) > 1/2) ≤ (ex)n(1−δ̄)2/4 . x. (20)

Thus, we can apply Lemma 5, which yields (18).
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Hence, (14) holds. Combined with (13), this implies that

√
nT2n = 1√

n

n∑
i=1

εi + op(1), (21)

with εi = −
∫ 1
0 [1{Ui ≤ t} − FU(t)] dF−1

Y (t).

Third step: conclusion. By definition of ηi and εi, we haveE[ηi] = E[εi] = 0 and

E[η2
i ] =

∫ 1

0

∫ 1

0
(s ∧ t− st)fU(s)fU(t) dF−1

Y (s) dF−1
Y (t),

E[ε2
i ] =

∫ 1

0

∫ 1

0
(FU(s ∧ t)− FU(s)FU(t)) dF−1

Y (s) dF−1
Y (t).

Moreover, under Assumption 1, ηi and εi are independent. The result follows by the central

limit theorem. �

B.1 Proof of Theorem 2

We first decompose the difference θ̌n − θ0 into three parts that we study independently:

θ̌n − θ0 =
∫ 1

0
F−1
Y ◦G−1

n dFU −
∫ 1

0
F−1
Y dFU︸ ︷︷ ︸

=T1n

+
∫ 1

0
F−1
Y ◦G−1

n dF̂U −
∫ 1

0
F−1
Y ◦G−1

n dFU︸ ︷︷ ︸
=T2n

+
∫ 1

0
F−1
Y ◦G−1

n ◦Hn dF̂U −
∫ 1

0
F−1
Y ◦G−1

n dF̂U︸ ︷︷ ︸
:=T3n

.

This decomposition is convenient as T1n and T2n have already been analyzed in the proof

of Theorem 1. We then prove the result in eight steps. We first show that

√
nT3n = −

√
n
∫ 1

0

[
F̂U ◦H−1

n ◦Gn − F̂U ◦Gn

]
dF−1

Y . (22)

where Gn is defined below. Second, we show that

√
nT3n = −

√
n
∫ 1

0

[
FU ◦H−1

n ◦Gn − FU ◦Gn

]
dF−1

Y︸ ︷︷ ︸
:=J1n

+op(1). (23)
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Let us then write −
√
nJ1n =

√
nJ2n +R1n +R2n +R3n +R4n, with:

J2n := −
∫ 1−1/n

1/n

[
H−1
n (x)− E[H−1

n (x)]
]
fU(x) dF−1

Y (x), (24)

R1n := −
√
n

(
J1n −

∫ ξ(n)

ξ(1)

[
H−1
n ◦Gn −Gn

]
fU dF

−1
Y

)
, (25)

R2n := −
√
n

(∫ ξ(n)

ξ(1)

[
H−1
n ◦Gn −Gn

]
fU dF

−1
Y −

∫ ξ(n)

ξ(1)

[
H−1
n − I

]
fU dF

−1
Y

)
, (26)

R3n :=
∫ ξ(n)

ξ(1)

[
x− E[H−1

n (x)]
]
fU(x) dF−1

Y (x), (27)

R4n :=
∫ 1−1/n

1/n

[
H−1
n (x)− E[H−1

n (x)]
]
fU(x) dF−1

Y (x)

−
∫ ξ(n)

ξ(1)

[
H−1
n (x)− E[H−1

n (x)]
]
fU(x) dF−1

Y (x), . (28)

In the third to sixth steps, we prove that each of the four terms R1n − R4n tends to 0 in

probability. In the seventh step, we show that J2n tend to a normal distribution. The

eighth step concludes.

First step: Equation (22) holds. Let ζj = FZ(Zj), X0
n := [0, ζ(1)] and X1

n := [ζ(n), 1].

For all t ∈ [0, 1], let us also define

Gn(t) = 1
n

n∑
i=1

1{ξi ≤ t}+ 1
n

n−1∑
i=1

1{ξi < t < ξi+1}

= Gn(t) + 1
n

n−1∑
i=1

1{ξi < t < ξi+1}.

Then, remark that G−1
n ◦Hn is the generalized inverse of H−1

n ◦Gn. Then, by splitting the

first integral in
√
nT3n and applying Lemma 2, we obtain

√
nT3n =

√
n

(∫
(X0

n∪X1
n)c
F−1
Y ◦G−1

n ◦Hn dF̂U −
∫ 1

0
F−1
Y ◦G−1

n dF̂U

+
∫
X0

n∪X1
n

F−1
Y ◦G−1

n ◦Hn dF̂U

)

=
√
n

(∫ ξ(n)

ξ(1)

F−1
Y d

[
F̂U ◦H−1

n ◦Gn

]
−
∫ 1

0
F−1
Y d

[
F̂U ◦Gn

]
+
∫
X0

n∪X1
n

F−1
Y ◦G−1

n ◦Hn dF̂U

)

=
√
n
∫ ξ(n)

ξ(1)

F−1
Y d

[
F̂U ◦H−1

n ◦Gn − F̂U ◦Gn

]
+
∫
X0

n∪X1
n

F−1
Y ◦G−1

n ◦Hn dF̂U , (29)
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where we used the fact that F̂U ◦ Gn is constant on the two segments [0, ξ(1)] and [ξ(n), 1]

to obtain the third equality. Remark that
√
n
[
F−1
Y (t)

(
F̂U ◦H−1

n ◦Gn(t)− F̂U ◦Gn(t)
)]t=ξ(n)

t=ξ(1)

=
√
n
[
1
{
ζ(n) < U(n)

}
F−1
Y (ξ(n))

(
F̂U(ζ(n))− 1

)
− 1

{
ζ(1) ≥ U(1)

}
F−1
Y (ξ(1))F̂U(ζ(1))

]
.

Also, since Hn is constant on the two segments X0
n and X1

n, we have
√
n
∫
X0

n∪X1
n

F−1
Y ◦G−1

n ◦Hn dF̂U

=
√
n
[
F̂U(1)− F̂U(ζ(n))

]
F−1
Y (ξ(n)) +

√
n
[
F̂U(ζ(1))− F̂U(0)

]
F−1
Y (ξ(1))

=
√
n
[
1
{
ζ(1) ≥ U(1)

}
F−1
Y (ξ(1))F̂U(ζ(1))− 1

{
ζ(n) < U(n)

}
F−1
Y (ξ(n))

(
F̂U(ζ(n))− 1

)]
.

Thus, an integration by part of the first term in (29) yields (22).

Second step: Equation (23) holds. From (22), we have
√
nT3n =−

√
n
∫ 1

0

[
FU ◦H−1

n ◦Gn − FU ◦Gn

]
dF−1

Y︸ ︷︷ ︸
=:J1n

−
√
n
∫ 1

0

[
F̂U ◦H−1

n ◦Gn − FU ◦H−1
n ◦Gn

]
dF−1

Y

−
√
n
∫ 1

0

[
FU ◦Gn − F̂U ◦Gn

]
dF−1

Y .

We show below that
√
n
∫ 1

0

[
F̂U ◦H−1

n ◦Gn − FU ◦H−1
n ◦Gn

]
dF−1

Y =
√
n
∫ 1

0

[
F̂U − FU

]
dF−1

Y + op(1). (30)

Once combined with (14), this proves (23). To prove (30), we follow closely the proof of

(14). Let Vn =
√
n(F̂U ◦ F−1

U − I),

Rn =
∫ 1

0

(
Vn ◦ FU ◦H−1

n ◦Gn − Vn ◦ FU
)
dF−1

Y ,

and Īn(x) = (x,H−1
n ◦Gn(x)] if H−1

n ◦Gn(x) > x, Īn(x) = [H−1
n ◦Gn(x), x) if H−1

n ◦Gn(x) < x

and ∅ otherwise. We prove that E[|Rn|]→ 0. Reasoning as to obtain (17) (but conditioning

first on (ξi, ζi)i instead of just on (ξi)i), we get

E [|Rn|] ≤
∫ 1

0
E
[
|FU(x)− FU(H−1

n ◦Gn(x))|
]1/2

dF−1
Y (x).
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Because Gn(x) P−→ x, by uniform convergence of H−1
n towards I and the continuous map-

ping theorem, |FU(H−1
n ◦ Gn(x)) − FU(x)| P−→ 0 for all x ∈ [0, 1]. Moreover, |FU(H−1

n ◦

Gn(x))− FU(x)| ≤ 1. Hence, for all x ∈ [0, 1],

E
[
|FU(x)− FU(H−1

n ◦Gn(x))|
]
→ 0.

Next, we show E[|Rn|]→ 0 by proving

E
[
|FU(x)− FU(H−1

n ◦Gn(x))|
]
. x1−b1 . (31)

and applying the dominated convergence theorem. As in Theorem 1, we apply Lemma 5

with Qn(x) := H−1
n ◦ Gn(x). The two conditions of this lemma are checked in Lemma 4.

Hence, (31), and thus (23), hold.

Third step: R1n = op(1). Recall that R1n is defined in (25). By the mean value theorem,

there exists Tn(t) ∈ (Gn(t),H−1
n ◦Gn(t)) such that

R1n =
√
n
∫ ξ(n)

ξ(1)

[fU − fU ◦ Tn]︸ ︷︷ ︸
:=An

[
H−1
n ◦Gn −Gn

]
dF−1

Y .

By Assumption 2, there exists δ > 0 such that bj + dj < 1/2 − δ. Further, let δj > 0 be

such that

bj + dj < 1/2− δ − δj. (32)

Then let q(t) = t1/2−δ1(1− t)1/2−δ2 . From what precedes, we have

|R1n| ≤ sup
t∈(1/n,1−1/n)

∣∣∣∣∣
√
n(H−1

n (t)− t)
q(t)

∣∣∣∣∣
∫ ξ(n)

ξ(1)

|An(t)|q(t) dF−1
Y (t). (33)

We now show that the second term tends to 0 almost surely. First, by uniform convergence

of H−1
n towards I and convergence of Gn(t) to t, we have, for all t ∈ (0, 1), Tn(t) a.s.−→ t.

Then, by continuity of fU , An(t) a.s.−→ 0 for all t ∈ (0, 1). Fix ε > 0. By Theorem 10.6.1 in

Shorack and Wellner (1986), we have, for all t ≥ ξ(1) and all n large enough,

Gn(t) ≤ (1 + ε)t1−δ/2 ≤ (1 + ε)t1−δ.
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Moreover, by the same theorem, we have, for all u ≥ 1/n,

H−1
n (u) ≤ (1 + ε)u(1−δ/2).

Then, since Gn(t) ≥ 1/n for all t ≥ ξ(1),

H−1
n ◦Gn(t) ≤ (1 + ε)2t1−δ.

Now, let B(t) := CU t
−b1(1 − t)−b2 . Then, by Assumption 2 and because B is a convex

function, we obtain, for all t ∈ [ξ(1), ξ(n)],

|An(t)| ≤
[
B
(
H−1
n ◦Gn(t)

)
∨B (Gn(t))

]
+B(t)

. t−b1−δ(1− t)−b2−δ, a.s.

Therefore,

|An(t)|1
{
t ∈ [ξ(1), ξ(n)]

}
q(t) . t1/2−b1−δ−δ1(1− t)1/2−b2−δ−δ2 .

Moreover, by (32) and Lemma 3,∫ 1

0
t1/2−b1−δ−δ1(1− t)1/2−b2−δ−δ2 dF−1

Y (t) <∞.

Then, by the dominated convergence theorem,∫ ξ(n)

ξ(1)

|An(t)|q(t) dF−1
Y (t) a.s.−→ 0. (34)

Next, by Corollary 4.3.1 and Theorem 3.4 in Csorgo et al. (1986),

sup
t∈(1/n,1−1/n)

∣∣∣∣∣
√
n(H−1

n (t)− t)
q(t)

∣∣∣∣∣ = Op(1).

This, together with (33) and (34), implies that R1n = op(1).

Fourth step: R2n = op(1). Recall that R2n is defined in (26). We actually prove the

result in L1. Let Wn =
√
n(H−1

n − I) and Bn = 1
{
ξ(1) ≤ x < ξ(n)

}
. We have, by Fubini-

Tonelli’s theorem,

E[|R2n|] ≤
∫ 1

0
E[|Wn ◦Gn(x)−Wn(x)| ×Bn]fU(x)dF−1

Y (x)

≤
∫ 1

0
E[(Wn ◦Gn(x)−Wn(x))2 ×Bn]1/2fU(x)dF−1

Y (x).
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We apply the dominated convergence theorem to prove the result. First, note that for all

(i, j) ∈ {1, ..., n}2,

|H−1
n (j/n)−H−1

n (i/n)| ∼ Beta(|j − i|, n− |j − i|+ 1),

with the convention that the Beta(0, n + 1) is the Dirac distribution at 0. Hence, for any

k ∈ {1, ..., n− 1},

E
[
(Wn ◦Gn(x)−Wn(x))2 |Gn(x) = k/n

]
= n

{
E
[(
H−1
n (k/n)−H−1

n (x)− (k/n− x)
)2
]}

= n
{
E
[(

H−1
n (k/n)−H−1

n (dnxe/n)− n

n+ 1(k/n− dnxe/n)

+ n

n+ 1(dnxe/n− x)− 1
n+ 1(k/n− x)

)2]}

= n

{
V
[
H−1
n (k/n)−H−1

n (x)
]

+ 1
(n+ 1)2 (dnxe − nx− k/n+ x)2

}

= n

(n+ 1)2(n+ 2) |k − dnxe| (n+ 1− |k − dnxe|) + n

(n+ 1)2 (dnxe − nx− k/n+ x)2

≤
∣∣∣∣∣kn − dnxen

∣∣∣∣∣+ 2
n

(dnxe − nx)2 +
(
k

n
− x

)2


≤
∣∣∣∣∣kn − x

∣∣∣∣∣+ 1
n

3 + 2
(
k

n
− x

)2
 , (35)

where the first inequality follows by convexity and the last by the triangle inequality and

because by definition, |nx− dnxe| ≤ 1. Now, remark thatBn = 1 iff nGn(x) ∈ {1, ..., n−1}.

Then, by what precedes,

E
[
(Wn ◦Gn(x)−Wn(x))2 ×Bn

]
≤ E [|Gn(x)− x|] + 1

n
[3 + 2V (Gn(x))] (36)

→ 0.

To apply the dominated convergence theorem, we show that there exists q(.) such that for

all n ≥ n0 and all x ∈ [0, 1],

E[(Wn ◦Gn(x)−Wn(x))2 ×Bn]1/2 ≤ q(x), (37)

22



with
∫ 1

0 q(x)fU(x)dF−1
Y (x) < ∞. As above, we focus on a neighborhood of 0. If x > 1/n,

we have, by (36) and (19),

E
[
(Wn ◦Gn(x)−Wn(x))2 ×Bn

]
≤ 7x.

Now suppose that x < 1/n. Remark that E(Bn) ≤ 1 − (1 − x)n ≤ nx. Then, integrating

(35), we obtain

E
[
(Wn ◦Gn(x)−Wn(x))2 ×Bn

]
≤ E [Gn(x)] + 1

n
[3nx+ 2V (Gn(x))]

≤ 7x.

Then we can choose q(x) = (7x)1/2 in (37). By Assumption 2 and Lemma 3, we have∫ 1/2
0 q(x)fU(x)dF−1

Y (x) < ∞. The same reasoning applies to the interval [1/2, 1]. The

result follows.

Fifth step: R3n = op(1). Recall that R3n is defined in (27). Let Λ denote the measure

on (0, 1) such that dΛ/dF−1
Y = fU . Remark that E[Hn(x)] = dnxe/(n+ 1). Then

E[|R3n|] ≤
∫ 1

0
[1− xn − (1− x)n]

∣∣∣∣∣dnxe − (n+ 1)x
(n+ 1)n−1/2

∣∣∣∣∣ dΛ(x).

Let fn(x) denote the integrand. We have limn→∞ fn(x) = 0. Moreover, using 1−xn− (1−

x)n ≤ nx, we obtain, when x < 1/n,

fn(x) ≤ 2n1/2x ≤ x1/2 . [x(1− x)]1/2.

When x ∈ [1/n, 1− 1/n],

fn(x) ≤ 2
n1/2 . [x(1− x)]1/2.

Finally, when x > 1− 1/n, using 1− xn ≤ n(1− x),

fn(x) ≤ n(1− x) 2
(n+ 1)n−1/2 ≤ 2(1− x)1/2 . [x(1− x)]1/2.

Moreover,
∫ 1

0 [x(1 − x)]1/2dΛ < ∞ by Lemma 3. Thus, by the dominated convergence

theorem, R4n = op(1).
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Sixth step: R4n = op(1). Recall that R4n is defined in (28). We prove the stronger result

that R4n converges to 0 in L1. By Fubini-Tonelli’s theorem combined with Assumption 1

and Jensen’s inequality, we have

E[|R4n|] ≤
∫ 1

0

√
nE

[∣∣∣1 {x ∈ [ξ(1), ξ(n)]
}
− 1 {x ∈ [1/n, (n− 1)/n]}

∣∣∣]

× E

(H−1
n (x)− dnxe

(n+ 1)

)2
1/2

dΛ(x). (38)

Since H−1
n (x) ∼Beta(dnxe, n+ 1− dnxe), we have

E

(H−1
n (x)− dnxe

(n+ 1)

)2
1/2

=

√√√√dnxe(n+ 1− dnxe)
(n+ 1)2(n+ 2) .

√
x(1− x)

n
.

Let qn(x) denote the first expectation in the integrand. By letting pn(x) := 1−xn−(1−x)n,

we have

qn(x) = Pr(ξ(1) ≤ x ≤ ξ(n), x < 1/n) + Pr(ξ(1) ≤ x ≤ ξ(n), x > (n− 1)/n)

+ Pr(ξ(1) > x ∪ x > ξ(n), 1/n ≤ x ≤ (n− 1)/n)

= pn(x) [1 {x < 1/n}+ 1 {1− x < 1/n}] + (1− pn(x))1 {1/n ≤ x ≤ (n− 1)/n} .

Let fn(x) denote the integrand in the right-hand side of (38). For all x ∈ (0, 1), limn→∞ pn(x) =

1 so from what precedes, limn→∞ fn(x) = 0 for all x ∈ [0, 1]. Moreover, using qn(x) ≤ 1,

we get

fn(x) . [x(1− x)]1/2,

with
∫ 1

0 [x(1−x)]1/2dΛ <∞ by Lemma 3. The result follows by the dominated convergence

theorem.

Seventh step: asymptotic normality of J2n. Let νi = FZ(Zi) and Iin = [(i −

1)/n, i/n). First, note that

−
√
nJ2n =

n∑
i=1

ain

(
ν(i) −

i

(n+ 1)

)
, (39)
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where a1n = ann = 0, and, for all i ∈ {2, . . . , n− 1}, ain =
√
nΛ (Iin). We now verify that

the necessary and sufficient conditions given by Hecker (1976) for the asymptotic normality

of the L−statistic in (39) hold in our case. Let us define

σ2
n = 1

n+ 2

n∑
j=1

n∑
k=1

ajnakn

[(
j

n+ 1 ∧
k

n+ 1

)
− jk

(n+ 1)2

]
.

We have to prove that

lim
n→∞

max1≤i≤n

∣∣∣∑n
j=i ajn

∣∣∣
nσn

= 0. (40)

First, by Assumption 2 and Lemma 3, there exists δ < 1/2 such that
∫ 1

0
tδ−b1(1− t)δ−b2 dF−1

Y (t) < +∞.

Now, because ain ≥ 0, we have, for all n ≥ 2,

max
1≤i≤n

∣∣∣∣∣∣
n∑
j=i

ajn

∣∣∣∣∣∣ =
√
n
n−1∑
j=2

Λ (Ijn)

=
√
n
∫ (n−1)/n

1/n
fU(t) dF−1

Y (t)

≤ CU
√
n
∫ (n−1)/n

1/n
t−b1(1− t)−b2 dF−1

Y (t)

≤ CU2δn1/2+δ
∫ (n−1)/n

1/n
tδ−b1(1− t)δ−b2 dF−1

Y (t)

≤ CU2δn1/2+δ
∫ 1

0
tδ−b1(1− t)δ−b2 dF−1

Y (t),

where the first inequality follows by Assumption 2 and the second uses the fact that

[t(1− t)]δ ≥ 1/(2n)δ for all t ∈ [1/n, 1− 1/n]. Therefore,

max
1≤i≤n

∣∣∣∣∣∣
n∑
j=i

ajn

∣∣∣∣∣∣ = O(n1/2+δ). (41)

Next, we have

σ2
n = n

n+ 2

n−1∑
j=2

n−1∑
k=2

Λ (Ijn) Λ (Ikn)
(

j

n+ 1 ∧
k

n+ 1 −
jk

(n+ 1)2

)

= n

n+ 2

∫ 1

0

∫ 1

0
fn(x, y)dΛ(x)dΛ(y),
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where fn(x, y) = j
n+1 ∧

k
n+1 −

jk
(n+1)2 when (x, y) ∈ Ijn × Ikn, 1 < j ∧ k ≤ j ∨ k < n,

fn(x, y) = 0 otherwise. For any (x, y) ∈ (0, 1)2, fn(x, y)→ f(x, y) := x∧y−xy. Moreover,

for any (x, y) ∈ Ijn × Ikn, 1 < j ∧ k ≤ j ∨ k < n,

j

n+ 1 ∧
k

n+ 1 ≤ 2(x ∧ y),

1− j

n+ 1 ∨
k

n+ 1 ≤ 2 (1− x ∨ y) .

Thus, fn(x, y) ≤ 4f(x, y) for all (x, y) ∈ [1/n, 1 − 1/n]2. This inequality also holds for

(x, y) ∈ [0, 1]2\[1/n, 1 − 1/n]2 since fn(x, y) = 0 for such (x, y). Because x ∧ y ≤ (xy)1/2

and 1− x ∨ y ≤ [(1− x)(1− y)]1/2, we have f(x, y) ≤ [x(1− x)y(1− y)]1/2. Moreover, by

Lemma 3,
∫ 1

0 [I(1− I)]1/2dΛ <∞. Thus, by the dominated convergence theorem,

lim
n→∞

σ2
n = σ2 :=

∫ 1

0

∫ 1

0
(x ∧ y − xy)dΛ(x)dΛ(y) > 0. (42)

Combined with (41), this implies (40). Thus, by Theorem 1 of Hecker (1976) and (42)

again,

−
√
nJ2n

d−→ N (0, σ2).

Eighth step: conclusion. By the previous steps and the proof of Theorem 1, we have

√
n
(
θ̌n − θ0

)
= 1√

n

n∑
i=1

(ηi + εi) +
√
nJ2n + op(1).

As shown in the proof of Theorem 1, the first term on the right-hand side is asymp-

totically normal. The second term is also asymptotically normal by the previous step.

Moreover, by Assumption 3, J2n is independent of the (ηi, εi)i≥1. Therefore, the vector

(∑n
i=1(ηi + εi)/

√
n,
√
nJ2n) converges jointly in distribution to two independent normal

variables distributions. The result follows. �

C Technical lemmas

In Theorems 1 and 2, we use the following lemma, which is established in Proposition 1 of

Falkner and Teschl (2012).
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Lemma 2 Let g be some Borel measurable function on [0, 1], and F,Q be cdf’s on [0, 1].

Then, for any 0 ≤ a ≤ b ≤ 1,
∫ Q(b)

Q(a)
g ◦Q−1 dF =

∫ b

a
g dF ◦Q. (43)

Lemma 3 Suppose that Assumption 2 holds and that a1 > d1 and a2 > d2, then
∫ 1

0 x
a1(1−

x)a2 dF−1
Y (x) <∞.

Proof: first, we have
∫ 1

0
xa1(1− x)a2 dF−1

Y (x) =
∫
R
FY (u)a1(1− FY (u))a2 du.

By Assumption 2 (ii), for all u ∈ R:

|u| ≤ CFY (u)−d1(1− FY (u))−d2 .

Fix ε > 0. Then, for all u ≤ −1 ∧ F−1
Y (ε), FY (u) ≤ C1/d1(1− ε)−d2/d1|u|−1/d1 . Thus:

∫ −1∧F−1
Y (ε)

−∞
FY (u)a1(1− FY (u))a2 du ≤ C1/d1(1− ε)−d2/d1

∫ −1∧F−1
Y (ε)

−∞
|u|−a1/d1 du <∞,

since d1 < a1. A similar reasoning shows that
∫∞

1∨F−1
Y (1−ε) FY (u)a1(1 − FY (u))a2 du < ∞,

using d2 < a2. �

We recall that Gn is defined as Gn(x) = Gn(x) +∑n−1
i=1 1

{
ξ(i) < x < ξ(i+1)

}
/n.

Lemma 4 (Useful properties of H−1
n ◦Gn) There exists δ ∈ (0, 1/2) and n0 ∈ N such that

for all 0 < x < δ and all n ≥ n0,

E
[∣∣∣H−1

n ◦Gn(x)− x
∣∣∣] . x. (44)

Moreover, for any η > 0, there exists n1 such that for all n ≥ n1 and for all 0 < x < δ,

Pr(H−1
n ◦Gn(x) > 1/2) . x1−η. (45)

Inequalities (44)-(45) hold if we replace x by 1− x, using possibly another δ and n0.
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Proof: Let us define

G̃n(x) = Gn(x) + 1 {0 < Gn(x) < 1}
n

. (46)

Observe that for a given x ∈ [0, 1], we have, with probability one, Gn(x) = G̃n(x). Then,

letting pn(x) = [1− xn − (1− x)n]/n,

E[Gn(x)] = x+ pn(x).

We now establish (44).

By the triangle inequality,

E
[∣∣∣H−1

n ◦Gn(x)− x
∣∣∣] ≤ E

[∣∣∣∣H−1
n ◦Gn(x)− n

n+ 1Gn(x)
∣∣∣∣]+ E

[∣∣∣∣ n

n+ 1Gn(x)− x
∣∣∣∣] . (47)

Consider the second term first. We have

E
[∣∣∣∣ n

n+ 1Gn(x)− x
∣∣∣∣] ≤ n

n+ 1E [|Gn(x)− x|] + npn(x)
n+ 1 + x

n+ 1
≤ n

n+ 1E [|Gn(x)− x|] + 2x

≤ 4x, (48)

where the first inequality uses the triangle inequality and Gn(x) = G̃n(x) with probability

one, the second follows by pn(x) ≤ x and the third by (19).

Now, let us bound the first term of (47). Since H−1
n (i/n) ∼Beta(i, n + 1− i), we have

E [H−1
n (i/n)] = i

n+1 . By the law of iterated expectations and under Assumption 3, we have

E
[∣∣∣∣H−1

n ◦Gn(x)− n

n+ 1Gn(x)
∣∣∣∣] =

n∑
i=1

E
[∣∣∣∣H−1

n

(
i

n

)
− E

[
H−1
n

(
i

n

)]∣∣∣∣]Pr
(
Gn(x) = i

n

)
.

Then, using that Gn = G̃n with probability one, we obtain

Pr
(
Gn(x) = i

n

)
= 1 {2 ≤ i ≤ n− 1}

(
n

i− 1

)
xi−1(1− x)n+1−i + 1 {i = n}xn−1. (49)

Let B(·, ·) denote the beta function and Z ∼Beta(a, b). Then, for all (x, y) ∈ N∗2, we have

E [|Z − E[Z]|] = 2aabb
B(a, b)(a+ b)a+b+1 , (50)

x+ y

xyB(x, y) =
(
x+ y

x

)
∀(x, y) ∈ N∗. (51)
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As a result,

E
[∣∣∣∣H−1

n ◦Gn(x)− n

n+ 1Gn(x)
∣∣∣∣]

≤ xn−1 + 2
(n+ 1)n+1

n−1∑
i=2

ii(n+ 1− i)n+1−i

B(i, n+ 1− i)

(
n

i− 1

)
xi−1(1− x)n+1−i

= xn−1 + 2x(1− x)
n−3∑
j=0

(j + 2)j+2

(n+ 1)n+1(j + 1)

(
n

j

)
xj(1− x)n−j

≤ 3x. (52)

The first inequality follows using E [|H−1
n (1)− E [H−1

n (1)]|] ≤ 1, (49) and (50). The equal-

ity is obtained by applying the change j = i− 2 in the sum and (51). The last inequality

uses (j + 2)j+2 ≤ (n + 1)n+1(j + 1) for all j ∈ {0, . . . , n − 3}. Given (47) and (48), (44)

follows by (52).

We now turn to Equation (45). Because (Gn(x),Hn(1/2)) ∈ {0, 1/n, ..., 1}2 and |Gn(x)−

Gn(x)| ≤ 1/n , Gn(x) > Hn(1/2) implies Gn(x) ≥ Hn(1/2). Moreover, H−1
n (a) < b iff

a < Hn(b). Then, by Kiefer’s and Hoeffding’s inequalities,

Pr(H−1
n ◦Gn(x) > 1/2) = E

[
Pr(Gn(x) > Hn(1/2)|Hn(1/2))

]
≤ E [Pr(Gn(x) ≥ Hn(1/2)|Hn(1/2))]

≤ E
[
(xe)n(Hn(1/2)−x)2]

≤ xe+ Pr
(
Hn(1/2)− x < 1/

√
n
)

≤ xe+ exp
(
−2(
√
n(x− 1/2) + 1)2

)
= xe+ exp

(
−2n(x− 1/2 + 1/

√
n)2

)
.

Let δ ∈ (0, e−1] and fix δ = δ/2 and n0 ≥ (2/δ)2. Then, for all n ≥ n0 and any 0 < x ≤ δ,

we have ∣∣∣∣∣x− 1/2 + 1√
n

∣∣∣∣∣ = 1
2 − (x+ 1/

√
n)

≥ 1
2 − δ.
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Let C = 2(1/2− δ)2 and suppose first that x ≥ exp(A− Cn) for some A. Then some

algebra shows that

Pr(H−1
n ◦Gn(x) > 1/2) . x.

Now assume that x < exp(A− Cn). Then

Pr(H−1
n ◦Gn(x) > 1/2) ≤Pr(Gn(x) ≥ 1/n)

=1− (1− x)n

≤nx

≤A− ln x
C

x.

For any η > 0, we have − ln x . x−η. Thus, Pr(H−1
n ◦Gn(x) > 1/2) . x1−η. �

Lemma 5 (Bounds on moments involving FU) Suppose that Assumption 2 holds and a

random variable Qn(x) satisfies, for some 0 < δ < 1/2 and all 0 < x < δ, E[|Qn(x)−x|] .

x and Pr(Qn(x) > 1/2) . x1−b1. Then, for such x ∈ (0, δ), E[|FU(Qn(x))−FU(y)|] . x1−b1.

The latter inequality holds if we replace x by 1− x, using possibly another δ.

Proof of Lemma 5: first, remark that for x < 1/2, FU(x) . x1−b1 . Then,

E[|FU(x)− FU(Qn(x))|] ≤E[1 {x > Qn(x)} |FU(x)− FU(Qn(x))|] + Pr(Qn(x) > 1/2)

+ E [1 {Qn(x) ∈ [x, 1/2]} |FU(x)− FU(Qn(x))|]

.FU(x) + x1−b1 + E [1 {Qn(x) ∈ [x, 1/2]} |FU(x)− FU(Qn(x))|]

.x1−b1 + E [1 {Qn(x) ∈ [x, 1/2]} |FU(x)− FU(Qn(x))|] .

Now, if Qn(x) ∈ [x, 1/2), by the mean value theorem, there exists Xn ∈ (x, 1/2) such that

FU(x)− FU(Qn(x)) = fU(Xn)(x−Qn(x)).

Moreover, by Assumption 2 and x < δ, fU(Xn) . x−b1 . Then, using E[|Qn(x)− x|] . x,

E [1 {Qn(x) ∈ [x, 1/2]} |FU(x)− FU(Qn(x))|] . x1−b1 .

The result follows. �
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D Proofs details

Proof of the case 1− x in Lemma 4: We want to prove that there exists δ ∈ (1/2, 1)

and n0 ∈ N such that for all δ < x < 1 and all n ≥ n0,

E
[∣∣∣H−1

n ◦Gn(1− x)− (1− x)
∣∣∣] . (1− x). (53)

Moreover, for any η > 0, there exists n1 such that for all n ≥ n1 and for all δ < x < 1

Pr(H−1
n ◦Gn(1− x) > 1/2) . (1− x)1−η. (54)

Proof: We first establish (53). Replace x by 1 − x in the proof of Lemma 4 until Equa-

tion (48). The latter holds because Equation (19) can be obtained for 1 − x by the same

reasoning than before (use Cauchy-Schwarz inequality when (1 − x) ≤ 1/n and the third

part of Theorem 1 in Berend and Kontorovich (2013) when (1 − x) > 1/n). By noticing

that all the steps to show (52) remain valid when replacing x by 1− x, this proves (53).

We now turn to Equation (54). Following the same reasoning than for the proof of

(45), we obtain

Pr(H−1
n ◦Gn(x) > 1/2) ≤ (1− x)e+ exp

(
−2n(1− x− 1/2 + 1/

√
n)2

)
.

Let δ̄ ∈ (1 − e−1, 1) and fix δ = δ̄/2 and n0 ≥ (2/δ̄)2. Then, for all n ≥ n0 and any

δ < x < 1, we have ∣∣∣∣∣1− x− 1/2 + 1√
n

∣∣∣∣∣ = 1
2 −

(
1− x+ 1√

n

)

≥ 1
2 − δ̄.

All the remaining arguments hold by replacing x by 1− x. This proves (54). �
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