
Exploring Tables with Snap!
Jens Mönig

Feb. 24. 2016

Data often comes in the form of tables. Snap’s answer to this is the generalization of
lists. Because lists are first-class citizens of Snap, a table can be modeled as a list of
lists, each sub-list representing a row, and same-indexed items of every row forming a
logical column. Snap! version 4.0.5 introduces an alternative widget for exploring large
lists and lists of lists.

The usual widget for exploring a list is Snap’s list watcher. It is modeled after Scratch’s list
watcher, providing a user-interface for exploring and directly editing a list. Since lists are first-
class in Snap, list-watchers are not restricted to be shown onstage, but also appear inside
sprites’ speech bubbles and in result-balloons whenever the user clicks on a reporter in a
scripting pane that returns a list:

Likewise, lists within lists are usually shown in Snap as exactly that: A list watcher within another
list watcher:

New in version 4.0.5 is that lists whose first item is another list are now displayed as tables:

The new table view feature needs to be enabled
in the settings menu (click on the gear button).
Once enabled Snap remembers this preference
across sessions. You can disable and re-enable
support for tables again anytime.

A gridded layout of nested lists was first
suggested by my friend and collaborator Brian
Harvey back in the days of BYOB 3. Alas, I did
not get around to implementing Brian’s original
idea until now.

Table widgets are optimized to let users browse
through large amounts of data. This is
accomplished by simplifying the visual
appearance of their components and by scrolling
cell-wise as opposed to per-pixel sliding of list
watchers. Unlike list watchers table widgets are “view-only” and do not enable direct editing of
cells. Instead, tables can be manipulated using Snap’s list blocks. Snap’s Morphic architecture
makes sure that any changes applied to the list elsewhere - either by directly editing a list or
variable watcher, or through blocks and scripts - are immediately reflected in every table view
for that list.

Note:

When Table support is enabled you get an
additional choice in the preferences menu, that
lets you add higher-contrast lines to table views.
By default this setting is off in order to de-
emphasize empty cells.

Conversely, enabling table lines emphasizes non-
existing cells in tables:

�2

CONTENTS

Large Lists 4
2D Lists 4
Examples 5
Switching Views 6
First-Class Data Types in Tables 7
Adjusting the Layout 7
Table Display Limitations 8
Blocks for Tables 9
Debugging Tables 12

Well-Formed Tables 12

Missing First Row 12

Incomplete Rows 13

Missing Rows 13

Malformed Rows 14

Overshooting Rows 14

Analyzing and Transforming Data 15
Example: Analyzing Gender Distribution 17

Example: Analyzing Age Distribution 18

Going Meta: Analyzing the Analysis 20

Fast Blocks 21
Fast MAP 22

Fast SORT 22

Fast ANALYZE 23

Codification 24
Final Quiz :) 24

�3

Large Lists
Since the new table widgets are more efficient at displaying large
lists, Snap now automatically uses them whenever showing lists
larger than 100 items, the current threshold for conventional list
watchers, at which the user has to manually select another range of
100 items to show in the widget. The new table view is not
constrained by this limit and lets the user seamlessly scroll through
the whole list.

An example of a list containing 10 million random integers is shown
to the right. Since the list is not 2-dimensional the widget’s value-
holding cells are colored in Snap’s list category color and slightly
rounded, like cells in list watchers. This emphasizes the single-
dimensional list-ness of the structure.

2D Lists
Two-dimensional lists are also automatically shown as tables. An
example of a short and simple dictionary is shown here. The
background color of the cells is white, same as the list-block’s input
slots. This coloring indicates that all cells can be safely accessed by
their column and row indices.

�4

Examples
Tables are sometimes convenient models for board-game type simulations. This Snap project
mimics an aspect of Nicki Case’s and Vi Hart’s “Parable of the Polygons”:

The sprites - or rather clones - on the stage are basically a visualization of the underlying table
data structure that is stored in a variable named grid here. It’s fun to watch the table in the
result-balloon inside the script editor change in synch with the pattern on the stage as the
project is in running auto-solving mode.

An example of a larger table is the
result of this pixels reporter that
returns a list of pixels, where each
pixel is a sub-list containing the RGBA
channel values:

The benefit of the table view modality
is that it lets you scroll through all four
color channels simultaneously and
rather “snappily”. The new table
widget being less feature-packed than
the full-fledged list watcher pops up
instantly once the data has been
received, and also is quicker to react
to both user input (scrolling) and to
modifications applied to the table
elsewhere (when running scripts).

You can navigate the table view
either through the scroll bars, using
the mouse-wheel or the touch-pad, or
by dragging the inner value-cells (like
dragging Google Maps). 

�5

Switching Views
Table views are just another way to inspect and observe a list. You can switch from table view to
list watcher and vice-versa using the context menu:

You can now also inspect every list / table in a separate modeless dialog box outside of the
stage, either using the context menu, or by double-clicking on a table view or list watcher:

Within a table view dialog only table views are supported, i.e. of you double-click on a list
watcher to open it in a dialog box it always appears as table view.

�6

First-Class Data Types in Tables
Tables can hold any of Snap’s first-class data objects. Currently these are text, numbers,
Booleans, lists and rings (lambdafied blocks and scripts), and - experimentally - costumes:

Adjusting the Layout
Unlike list watchers the new table widgets don’t
automatically adjust cell-sizes to their values’
visualizations. Instead they initially start out with
a fixed default cell size for everything. This is
one of the trade-offs for supporting views on
large data sets.

You can adjust the width of each column
individually by dragging the column-label left
and right. Holding the shift-key down while
dragging any column-label globally changes the
widths of all columns. Similarly you can increase
or decrease row heights globally by dragging
any row label up or down. this way users can
explore diverse data:

�7

Table Display Limitations
Another concession to enabling the user to scroll through large tables is only showing 2 data
dimensions in a table view at one time. If in item in a table row contains another list, the cell
does not offer an interactive, recursive list watcher but only shows the symbol for a list that is
also used for list-type input slots in custom blocks. In this example the cell B4 hold a two-item
list. It is shown symbolically in the table view:

Double clicking on a cell that holds a list opens a dialog box with a (table) view on the
embedded list. This way you can explore more-dimensional lists and tables-within-tables

Display of text in table view cells is also limited to a single line of a few words, longer texts will
be shown in abbreviated form. However, this only affects the display of text in cells, the actual
data in the list is not altered in any way. Querying the item in the actual data structure using
Snap’s list blocks always reports the full sized and correctly lined text object.

�8

Blocks for Tables
The big idea behind tables in Snap is that there isn’t any. Tables in Snap are nothing but
lists of row-lists. Everything you already know about lists can be applied to tables. It’s fun and
very straightforward to build your own blocks for tables:

Note: Table views label rows by number and columns
with letters. If you want to quickly find out the index
number of a column instead, you can simply mouse over
the column head, and it will be shown. Identifying the
column number can be useful when accessing cells in
tables with very many columns.

It’s also fun and straightforward to directly use Snap’s existing list blocks on tables, for example
to strip the table of its first row, which often contains the column names:

�9

Likewise you can combine existing blocks for higher-order functions on tables. This example
strips the table of its first row and last column, and also swaps the remaining two columns:

�10

Rearranging a table by swapping columns already opens up all kinds of fun activities. Consider
the pixel-data example from above, here shown alongside the image the pixel were extracted
from:

Swapping the color channels produces an interesting graphics effect:

 

�11

Debugging Tables
A downside of Snap’s pedagogical idea to assemble tables out of lists of lists - rather than
introducing another black-boxed first-class table object - is that it opens up ample opportunity for
errors. If a table is not well-formed scripts operating on the assumption of certain table
dimensions might trigger exceptions or silently produce wrong outcomes if an accessed cell
does, in fact, not exist. Snap’s new table view widget helps debug such errors by highlighting
any quirks in the fabric of 2D lists that are assumed to resemble tables.

Well-Formed Tables
Snap assumes a list to be a table if the first element of the list is another list longer than 1.
The length of this first list is assumed to be the number of columns in the table. The table is
well-formed, if every other item in the list is also a list of exactly the same size as the first row.
Well formed tables display a white background for every
cell:

Missing First Row
A list whose first item isn’t a list - or is a list of only
length 1 - does not get recognized by Snap as
being a table. Therefore, by default, the
conventional feature-rich list-watcher appears. If
the list is over 100 items long, or if the user
explicitly switches to “table view” in the list
watcher’s context menu, Snap displays the list
inside the new table widget, but the table shows
only a single column where each “row” is
represented as a list symbol. In addition, all cells of
the single column table are list-category colored
and rounded to emphasize that Snap regards this
table as a one-dimensional list.

With the exception of the first row all custom blocks for tables and any
list blocks combined for tables also work on such an “orphaned” table.

�12

Incomplete Rows
In rows being shorter than the first one all unreachable cells are grayed out. In this example the
rows 2 (Garcia) and 4 (Mönig) are both one item shorter than
the first row. Since the cells C2 and C5 are unreachable they
are both grayed out in the table view:

Note: “Unreachable” cells are not the same as “empty” cells. In the example above the cell B2
is empty, i.e. it does not hold any value. However that cell surely exists and can be reached.
Therefore it is legitimately “white-listed”.

Missing Rows
Snap regards a list whose first item is another list as table
whose number of columns equals the length of the first row,
and whose number of rows equals the length of the list itself.
The following example is missing all rows but the first one.
Therefore Snap
considers it to
be a table. The
items of the first
row are all reachable and thus “white-listed”. Since all other items in the list are not lists
themselves the cells B2 - B5 and C2 - C5 are unreachable und thus grayed out. The empty cells
of the first column (A2 - A5) are list-category colored and rounded, indicating that this part of the
“table” isn’t actually a table at all but a single-dimensional list. Those cells can be reached, but
only directly, not by specifying both a column and a row index.

Likewise, the next example is missing three rows in the middle.
Those three missing rows are indicated in the same way as the
mostly empty table above, the cells of the first column
indicating that this part of the table is single-dimensioned, and
the unreachable cells of the other columns grayed out.

�13

Malformed Rows
In both of the “missing rows” examples above the items of the “outer” list can be accessed and
replaced using “normal” list blocks. This way the missing
rows could be added to the table. If, however, the “outer” list
contains any item that isn’t a list, it still gets shown in the
first column of the table view, but the cell is list-colored to
indicate that a proper row element is missing.

Another possible error source is wrong nesting of rows. In the following example the fourth row
was accidentally dropped onto the second slot of the third row. Similar errors can occur when
developing a parser for a new encoding. This error is visualized in the table view by an empty
row and a list-symbol inside the middle cell of row 3. The user can double-click on the list-
symbol cell to inspect that embedded list in a separate table
view dialog box. That way its contents and possible
sources of error can be discovered interactively.

Overshooting Rows
The pendant to an incomplete row is a row that is longer than the first row in the table. Consider
the following example, where Jens Mönig has two middle
names, but the structure of the table - defined by the length
of its first row - only provides for one:

Here, the rightmost cell of the overshooting row has a jagged
right border to indicate that this row continues in a single
dimension. The additional columns cannot be shown in the
current table, they can only be inspected by switching to the
conventional, more feature-rich list-watcher widget.

�14

Analyzing and Transforming Data
When analyzing data a recurring theme is counting the occurrences of every unique item in a
list. A fun and very useful block for this generic activity is the ANALYZE reporter. it reports a
table that lists the frequency of each item in a given list. You can build it yourself using the list
blocks from the tools and list libraries:

When you analyze the text “hello world” (after splitting it up into a list of characters), you get a
table with a row for every unique character. For each unique character the second column holds
how often that character occurs in the source list:

As you can see, most character occur just once. However, the letter “o” is used twice in “hello
world”, and the letter “l” occurs even three times.

�15

Consider this table of persons:

This is a short list of persons that stores each person’s
name, age and gender. the table’s first row holds the
column names. It is often a custom for the first row of a
table to contain meta-information about the data, such
as field names from the data base it was extracted from.

�16

Example: Analyzing Gender Distribution
step 1:

step 2: Ignoring the first row, which holds the column names

step 3: Adding new column names to the output

�17

Example: Analyzing Age Distribution

step 1: Looking at the exact ages produces too many keys

step 2: Grouping the age column by decades

�18

step 3: Transforming ranges for keys and add column labels

step 4: Transforming values to percentages

 

�19

Going Meta: Analyzing the Analysis

analyzing first letters:

Going meta - analyzing the analysis:

• 5 persons’ names have unique first letters.
• 4 pairs of persons share the same first letters in their names.
• 3 letters are shared by three persons’ names’ first letters.
• 2 groups of 4 persons each share the same first letter in their names. 

�20

Fast Blocks
When exploring larger data sets Snap’s
evaluation speed can be a hindrance, even
when WARPing repetitive operations or when
using “turbo” mode. For example, creating a
list of a million random integers using Snap’s
standard primitives takes approximately 8.4
seconds on my computer:

This can be alleviated by supplying pseudo-
primitives using Snap’s JavaScript-function
block. a “big idea” in Snap is custom higher
order functions. These used to be difficult to
write in JavaScript, because JavaScript could
not directly evaluate Snap’s lambda-blocks
(rings) as functions. Since v4.0.4 Snap now provides that ability, enabling significantly faster
synchronous custom blocks to be written in JavaScript inside Snap. This way, the same list
containing a million random integers can be created in less than half that time:

�21

Carefully providing speed-optimized pseudo-primitives that use Snap’s new invoke() JavaScript
function for higher-order procedures makes exploring bigger data sets more immediate and
enjoyable.

Here are two examples for general purpose speed-optimized higher-order Snap blocks, MAP
and SORT, both utilizing this method:

Fast MAP

Fast SORT

As you can see in the textual JavaScript code, you can simply use “invoke()” to call a Snap-
Ring. This way, Snap blocks - sorta - become first-class JavaScript citizens, much as JavaScript
functions can be invoked within Snap using the RUN and CALL blocks and thus have become
first-class Snap objects.

�22

Fast ANALYZE

�23

Codification
Running an interpreter of an interactive visual programming language inside a browser tab is
bound to hit resource and performance limits rather sooner than later. For “bigger” data sets a
more promising strategy might be to store them in a server-hosted data base and to use Snap
as a client. Snap’s codification feature can be leveraged to transcompile blocks into SQL
queries than can be sent to the server hosting the (possibly remote) data base using Snap’s
HTTP block. This way, only sample data or smaller sized query results would have to be
processed inside the Snap client - and inspected with Snap’s table view widget.

Final Quiz :)
Explain this table:

How was it created?

Enjoy!
-Jens

�24

