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Abstract

Structural variants (SVs) are signi�cant components of genetic diversity and have been associated with
diseases, but the technological challenges surrounding their representation and identi�cation make
them di�cult to study relative to point mutations. Still, thousands of SVs have been characterized, and
catalogs continue to improve with new technologies. In parallel, variation graphs have been proposed
to represent human pangenomes, o�ering reduced reference bias and better mapping accuracy than
linear reference genomes. We contend that variation graphs provide an e�ective means for leveraging
SV catalogs for short-read SV genotyping experiments. In this work, we extend vg (a software toolkit
for working with variation graphs) to support SV genotyping. We show that it is capable of genotyping
insertions, deletions and inversions, even in the presence of small errors in the location of the SVs
breakpoints. We then benchmark vg against state-of-the-art SV genotypers using three high-quality
sequence-resolved SV catalogs generated by recent studies ranging up to 97,368 variants in size. We
�nd that vg systematically produces the best genotype predictions in all datasets. In addition, we use
assemblies from 12 yeast strains to show that graphs constructed directly from aligned de novo
assemblies can improve genotyping compared to graphs built from intermediate SV catalogs in the
VCF format. Our results demonstrate the power of variation graphs for SV genotyping. Beyond single
nucleotide variants and short insertions/deletions, the vg toolkit now incorporates SVs in its uni�ed
variant calling framework and provides a natural solution to integrate high-quality SV catalogs and
assemblies.



Introduction

A structural variant (SV) is a genomic mutation involving 50 or more base pairs. SVs can take several
forms such as deletions, insertions, inversions, translocations or other complex events. 
Due to their greater size, SVs often have a larger impact on phenotype than smaller events such as
single nucleotide variants (SNVs) and small insertions and deletions (indels)[1]. Indeed, SVs have long
been associated with developmental disorders, cancer and other complex diseases and
phenotypes[2].

Despite their importance, SVs remain much more poorly studied than their smaller mutational
counterparts. This discrepancy stems from technological limitations. Short read sequencing has
provided the basis of most modern genome sequencing studies due to its high base-level accuracy
and relatively low cost, however, it is poorly suited for discovering SVs. The central obstacle is in
mapping short reads to the human reference genome. It is generally di�cult or impossible to
unambiguously map a short read if the sample whose genome is being analyzed di�ers substantially
from the reference at the read’s location. The large size of SVs virtually guarantees that short reads
derived from them will not map to the linear reference genome. For example, if a read corresponds to
sequence in the middle of a large reference-relative insertion, then there is no location in the
reference that corresponds to a correct mapping. The best result a read mapper could hope to
produce would be to leave it unmapped. Moreover, SVs often lie in repeat-rich regions, which further
frustrate read mapping algorithms.

Short reads can be more e�ectively used to genotype known SVs. This is important, as even though
e�orts to catalog SVs with other technologies have been highly successful, their cost currently
prohibits their use in large-scale studies that require hundreds or thousands of samples such as
disease association studies. Traditional SV genotypers start from reads that were mapped to a
reference genome, extracting aberrant mapping that might support the presence of the SV of interest.
State-of-art methods like SVTyper[3] and Delly[4] typically focus on split reads and paired reads
mapped too close or too far from each other. These discordant reads are tallied and remapped to the
reference sequence modi�ed with the SV of interest in order to genotype deletions, insertions,
duplications, inversions and translocations. SMRT-SV v2 uses a di�erent approach: the reference
genome is augmented with SV-containing sequences as alternate contigs and the resulting mappings
are evaluated with a machine learning model trained for this purpose[5].

The catalog of known SVs in human is quickly expanding. Several large-scale projects have used short-
read sequencing and extensive discovery pipelines on large cohorts, compiling catalogs with tens of
thousands of SVs in humans[6,7], using split read and discordant pair based methods like SVTyper[3]
and Delly[4] to �nd SVs using short read sequencing. More recent studies using long-read or linked-
read sequencing have produced large catalogs of structural variation, the majority of which was novel
and sequence-resolved[10,11,5,8,9]. These technologies are also enabling the production of high-
quality de novo genome assemblies[12,8], and large blocks of haplotype-resolved sequences[13].
Such technical advances promise to expand the amount of known genomic variation in humans in the
near future, and further power SV genotyping studies. Representing known structural variation in the
wake of increasingly larger datasets poses a considerable challenge, however. VCF, the standard
format for representing small variants, is unwieldy when used for SVs due its unsuitability for
expressing nested or complex variants. Another strategy consists in incorporating SVs into a linear
pangenome reference via alt contigs, but it also has serious drawbacks. Alt contigs tend to increase
mapping ambiguity. In addition, it is unclear how to scale this approach as SV catalogs grow.

Pangenomic graph reference representations o�er an attractive approach for storing genetic
variation of all types[14]. These graphical data structures can seamlessly represent both SVs and
point mutations using the same semantics. Moreover, including known variants in the reference
makes both read mapping and variant calling variant-aware. This leads to bene�ts in terms of



accuracy and sensitivity[15,16,17]. The coherency of this model allows di�erent variant types to be
called and scored simultaneously in a uni�ed framework.

vg is the �rst openly available variation graph tool to scale to multi-gigabase genomes. It provides
read mapping, variant calling and visualization tools[15]. In addition, vg can build graphs both from
variant catalogs in the VCF format and from assembly alignments.

Other tools have used genome graphs or pangenomes to genotype variants. GraphTyper realigns
mapped reads to a graph built from known SNVs and short indels using a sliding-window
approach[18]. BayesTyper �rst builds a set of graphs from known variants including SVs, then
genotypes variants by comparing the distribution of k-mers in the sequencing reads with the k-mers
of haplotype candidate paths in the graph[19]. SMRT-SV v2 uses a di�erent approach: the reference
genome is augmented with SV-containing sequences as alternate contigs and the resulting mappings
are evaluated with a machine learning model trained for this purpose[5]. These graph-based
approaches showed clear advantages over standard methods that use only the linear reference.

In this work, we present a SV genotyping framework based on the variation graph model and
implemented in the vg toolkit. We show that this method is capable of genotyping known deletions,
insertions and inversions, and that its performance is not inhibited by small errors in the speci�cation
of SV allele breakpoints. We evaluated the genotyping accuracy of our approach using simulated and
real Illumina reads and a pangenome built from SVs discovered in recent long-read sequencing
studies[20,21,22,5], We also compared vg’s performance with state-of-the-art SV genotypers:
SVTyper[3], Delly[4], BayesTyper[19] and SMRT-SV v2[5]. Across these three datasets that we tested,
which range in size from 26k to 97k SVs, vg is the best performing SV genotyper on real short-read
data for all SV types. Finally, we demonstrate that a pangenome graph built from the alignment of de
novo assemblies of diverse Saccharomyces cerevisiae strains improves SV genotyping performance.

Results

Structural variation in vg

We used vg to implement a straightforward SV genotyping pipeline. Reads are mapped to the graph
and used to compute the read support for each node and edge (see Supplementary Information for a
description of the graph formalism). Sites of variation are then identi�ed using the snarl (aka “bubble”)
decomposition as described in [23], each resulting site being represented as a subgraph of the larger
graph. For each site, we determine the two most supported paths (haplotypes), and use their relative
support in the read evidence to produce a genotype at that site (Figure 1a). We describe the pipeline
in more detail in Methods. We rigorously evaluated the accuracy of our method on a variety of
datasets, and present these results in the remainder of this section.



Figure 1:  Structural variation in vg. a) vg uses the read coverage over possible paths to genotype variants in a bubble
or more complex snarl. The cartoon depicts the case of an heterozygous insertion and an homozygous deletion. The
algorithm is described in more details in Methods. b) Simulation experiment. Each subplot shows a comparison of
genotyping accuracy for four SV calling methods. Results are separated between types of variation (insertions, deletions,
and inversions). The experiments were also repeated with small random errors introduced to the VCF to simulate
breakpoint uncertainty. For each experiment, the y-axis shows the maximum F1 across di�erent minimum quality
thresholds. SVTyper cannot genotype insertions, hence the missing line in the top panels.

Simulated dataset

As a proof of concept, we simulated genomes and di�erent types of SVs with a size distribution
matching real SVs[20]. We compared vg against SVTyper, Delly, and BayesTyper across di�erent levels



of sequencing depth. We also added some errors (1-10bp) to the location of the breakpoints to
investigate their e�ect on genotyping accuracy (see Methods). The results are shown in Figure 1b.

When using the correct breakpoints, vg tied with Delly as the best genotyper for deletions, and with
BayesTyper as the best genotyper for insertions. For inversions, vg was the second best genotyper
after BayesTyper. The di�erences between the methods were the most visible at lower sequencing
depth. In the presence of 1-10 bp errors in the breakpoint locations, the performance of Delly and
BayesTyper dropped signi�cantly (Figure 1b). The dramatic drop for BayesTyper can be explained by
its k-mer-based approach that requires precise breakpoints. In contrast, vg was only slightly a�ected
by the presence of errors. For vg, the F1 scores for all SV types decreased no more than 0.07. Overall,
these results show that vg is capable of genotyping SVs and is robust to breakpoint inaccuracies in the
input VCF.

HGSVC dataset

72,485 structural variants from The Human Genome Structural Variation Consortium (HGSVC) were
used to benchmark the genotyping performance of vg against the three other SV genotyping
methods. This high-quality SV catalog was generated from three samples using a consensus from
di�erent sequencing, phasing, and variant calling technologies[20]. The three individual samples
represent di�erent human populations: Han Chinese (HG00514), Puerto-Rican (HG00733), and
Yoruban Nigerian (NA19240). We used these SVs to construct a graph with vg and as input for the
other genotypers. Using short sequencing reads, the SVs were genotyped and compared with the
genotypes in the original catalog (see Methods).

First we compared the methods using simulated reads for HG00514. This represents the ideal
situation where the SV catalog exactly matches the SVs supported by the reads. While vg
outperformed Delly and SVTyper, BayesTyper showed the best F1 score and precision-recall trade-o�
(Figures 2a and S1, Table S1). When restricting the comparisons to regions not identi�ed as tandem
repeats or segmental duplications, the genotyping predictions were signi�cantly better for all
methods, with vg almost as good as BayesTyper on deletions (F1 of 0.944 vs 0.955). We observed
similar results when evaluating the presence of an SV call instead of the exact genotype (Figures 2a
and S2). Overall, both graph-based methods, vg and BayesTyper, outperformed the other two
methods tested.



Figure 2:  Structural variants from the HGSVC and Genome in a Bottle datasets. HGSVC: Simulated and real reads
were used to genotype SVs and compared with the high-quality calls from Chaisson et al.[20]. Reads were simulated
from the HG00514 individual. Using real reads, the three HG00514, HG00733, and NA19240 individuals were tested.
GIAB: Real reads from the HG002 individual were used to genotype SVs and compared with the high-quality calls from
the Genome in a Bottle consortium[21,22]. a) Maximum F1 score for each method (color), across the whole genome or
focusing on non-repeat regions (x-axis). We evaluated the ability to predict the presence of an SV (transparent bars) and
the exact genotype (solid bars). Results are separated across panels by variant type: insertions and deletions. SVTyper
cannot genotype insertions, hence the missing bars in the top panels. b) Maximum F1 score for di�erent size classes
when evaluating on the presence of SVs across the whole genome. c) Size distribution of SVs in the HGSVC and GIAB
catalogs.

We then repeated the analysis using real Illumina reads from the three HGSVC samples to benchmark
the methods on a more realistic experiment. Here, vg clearly outperformed other approaches (Figures
2a and S3). In non-repeat regions and across the whole genome, the F1 scores and precision-recall
AUC were higher for vg compared to other methods. For example, for deletions in non-repeat regions,



the F1 score for vg was 0.801 while the second best method, Delly, had a F1 score of 0.692. We
observed similar results when evaluating the presence of an SV call instead of the exact genotype
(Figures 2a and S4). In addition, vg’s performance was stable across the spectrum of SV sizes (Figure
2b-c). Figure 3 shows an example of an exonic deletion that was correctly genotyped by vg but not by
the other methods.

Figure 3:  Exonic deletion in the HGSVC dataset correctly genotyped by vg. a) Visualization of the HGSVC graph as
augmented by reads aligned by vg at a locus harboring a 51 bp homozygous deletion in the UTR region of the LONRF2
gene. At the bottom, a horizontal black line represents the topologically sorted nodes of the graph. Black rectangles
represent edges found in the graph. Above this rendering of the topology, the reference path from GRCh38 is shown (in
green). Red and blue bars represent reads mapped to the graph. Thin lines in the reference path and read mappings
highlight relative gaps (either insertions or deletions) against the full graph. The vg read mappings show consistent
coverage even over the deletion. b) Reads mapped to the linear genome reference GRCh38 using bwa in the same
region. Reads contain soft-clipped sequences and short insertions near the deletion breakpoints. Part of the deleted
region is also covered by several reads, potentially confusing traditional SV genotypers.

Other long-read datasets

Genome in a Bottle Consortium



The Genome in a Bottle (GiaB) consortium is currently producing a high-quality SV catalog for an
Ashkenazim individual (HG002)[21,22]. Dozens of SV callers operating on datasets from short, long,
and linked reads were used to produce this set of SVs. We evaluated the SV genotyping methods on
this sample as well using the GIAB VCF, which also contains parental calls (HG003 and HG004), all
totalling 30,224 SVs. vg performed similarly on this dataset as on the HGSVC dataset, with a F1 score
of 0.75 for both insertions and deletions in non-repeat regions (Figures 2, S5 and S6, and Table S2).
As before, other methods produced lower F1 scores in most cases, although Delly and BayesTyper
predicted better genotypes for deletions in non-repeat regions.

SMRT-SV v2 catalog and training data [5]

A recent study by Audano et al. generated a catalog of 97,368 SVs (referred as SVPOP below) using
long-read sequencing across 15 individuals[5]. These variants were then genotyped from short reads
across 440 individuals using the SMRT-SV v2 genotyper, a machine learning-based tool implemented
for that study. The SMRT-SV v2 genotyper was trained on a pseudo-diploid genome constructed from
high quality assemblies of two haploid cell lines (CHM1 and CHM13) and a single negative control
(NA19240). We �rst used vg to genotype the SVs in this two-sample training dataset using 30X
coverage reads, and compared the results with the SMRT-SV v2 genotyper. vg was systematically
better at predicting the presence of an SV for both SV types, but SMRT-SV v2 produced better
genotypes for deletions (see Figures 4, S7 and S8, and Table S3). To compare vg and SMRT-SV v2, we
then genotyped SVs from the entire SVPOP catalog with both methods, using the read data from the
three HGSVC samples described above. Given that the the SVPOP catalog contains these three
samples, we once again evaluated accuracy by using the long-read genotypes as a baseline of
comparison.

Compared to SMRT-SV v2, vg had a better precision-recall curve and a higher F1 for both insertions
and deletions (SVPOP in Figures 4 and S9, and Table S4). Of note, SMRT-SV v2 produces no-calls in
regions where the read coverage is too low, and we observed that its recall increased when �ltering
these regions out the input set. Interestingly, vg performed well even in regions where SMRT-SV v2
produced no-calls (Figure S10 and Table S5). Audano et al. discovered 217 sequence-resolved
inversions using long reads, which we attempted to genotype. vg correctly predicted the presence of
around 14% of the inversions present in the three samples (Table S4). Inversions are often complex,
harboring additional variation that makes their characterization and genotyping challenging.



Figure 4:  Structural variants from SMRT-SV v2 [5]. The pseudo-diploid genome built from two CHM cell lines and one
negative control sample was originally used to train SMRT-SV v2 in Audano et al.[5]. It contains 16,180 SVs. The SVPOP
panel shows the combined results for the HG00514, HG00733, and NA19240 individuals, three of the 15 individuals used
to generate the high-quality SV catalog in Audano et al. [5]. Here, we report the maximum F1 score (y-axis) for each
method (color), across the whole genome or focusing on non-repeat regions (x-axis). We evaluated the ability to predict
the presence of an SV (transparent bars) and the exact genotype (solid bars). Genotype information is not available in
the SVPOP catalog hence genotyping performance could not be evaluated.

Graphs from alignment of de novo assemblies

We can construct variation graphs directly from whole genome alignments of multiple de novo
assemblies[15]. This bypasses the need for generating an explicit variant catalog relative to a linear
reference, which could be a source of error due to the reference bias inherent in read mapping and
variant calling. Genome alignments from graph-based software such as Cactus [24] can contain
complex structural variation that is extremely di�cult to represent, let alone call, outside of a graph,
but which is nevertheless representative of the actual genomic variation between the aligned
assemblies. We sought to establish if graphs built in this fashion provide advantages for SV
genotyping.

To do so, we analyzed public sequencing datasets for 12 yeast strains from two related clades (S.
cerevisiae and S. paradoxus) [25]. We distinguished two di�erent strain sets, in order to assess how
the completeness of the graph a�ects the results. For the all strains set, all 12 strains were used, with
S.c. S288C as the reference strain. For the �ve strains set, S.c. S288C was used as the reference strain,
and we selected two other strains from each of the two clades (see Methods). We compared
genotyping results from two di�erent types of genome graphs. The �rst graph (VCF graph) was
created from the linear reference genome of the S.c. S288C strain and a set of SVs relative to this
reference strain in VCF format identi�ed from the other assemblies in the respective strain set by
three methods: Assemblytics [26], AsmVar [27] and paftools [28]. The second graph (cactus graph)
was derived from a multiple genome alignment of the strains in the respective strain set using Cactus
[24]. The VCF graph is mostly linear and highly dependent on the reference genome. In contrast, the
cactus graph is structurally complex and relatively free of reference bias.

First, we tested our hypothesis that the cactus graph has higher mappability due to its better
representation of sequence diversity among the yeast strains (see Supplementary Information).
Generally, more reads mapped to the cactus graph with high identity (Figures S12a and S13a) and
high mapping quality (Figures S12b and S13b) than to the VCF graph.

Next, we compared the SV genotyping performance of both graph types. We mapped short reads
from the 11 non-reference strains to both graphs and called variants for each strain using the vg
toolkit’s variant calling module (see Methods). There is no gold standard call set for these samples, so
we used an indirect measure of SV calling accuracy. We evaluated each SV call set based on the
alignment of reads to a sample graph constructed from the call set (see Methods). If a given call set is
correct, we expect that reads from the same sample will be mapped with high identity and con�dence
to the corresponding sample graph. To speci�cally quantify mappability in SV regions we excluded
reads that produced identical mapping quality and identity on both sample graphs and an empty
sample graph containing the linear reference only (see Methods and Figure S14 for results from all
reads). Then, we analyzed the average delta in mapping identity and mapping quality of the remaining
short reads between both sample graphs (Figures 5a and b).

For most of the strains, we observed an improvement in mapping identity of the short reads on the
cactus sample graph compared to the VCF sample graph. The mean improvement in mapping identity
across the strains was 8.0% and 8.5% for the all strains set graphs and the �ve strains set graphs,
respectively. Generally, the improvement in mapping identity was larger for strains in the S.
paradoxus clade (mean of 13.7% and 13.3% for the two strain sets, respectively) than for strains in the



S. cerevisiae clade (mean of 3.3% and 4.4%). While the higher mapping identity indicated that the
cactus graph represents the reads better (Figure 5a), the higher mapping quality con�rmed that this
did not come at the cost of added ambiguity or a more complex graph (Figure 5b). For most strains,
we observed an improvement in mapping quality of the short reads on the cactus sample graph
compared to the VCF sample graph (mean improvement across the strains of 1.0 and 5.7 for the two
strain sets, respectively).

Figure 5:  SV genotyping comparison. Short reads from all 11 non-reference yeast strains were used to genotype SVs
contained in the cactus graph and the VCF graph. Subsequently, sample graphs were generated from the resulting SV
callsets. The short reads were aligned to the sample graphs and reads with identical mapping identity and quality across
both sample graphs and an additional empty sample graph were removed from the analysis. The quality of the
remaining divergent alignments was used to ascertain SV genotyping performance. The bars show the average delta in
mapping identity (a) and in mapping quality (b) of divergent short reads aligned to the sample graphs derived from the
cactus graph and the VCF graph. Positive values denote an improvement of the cactus graph over the VCF graph. Colors
represent the two strain sets and transparency indicates whether the respective strain was part of the �ve strains set.

Discussion

Overall, vg was the most accurate SV genotyper in our benchmarks. These results show that variant
calling bene�ts from variant-aware read mapping and graph based genotyping, a �nding consistent
with previous studies[15,16,17,18,19]. We took advantage of newly released datasets for our
evaluation, which feature up to 3.7 times more variants than the more widely-used GIAB benchmark.
More and more large-scale projects are using low cost short-read technologies to sequence the
genomes of thousands to hundreds of thousands of individuals (e.g. the Pancancer Analysis of Whole
Genomes[29], the Genomics England initiative[30], and the TOPMed consortium[31]). We believe
pangenome graph-based approaches will improve both how e�ciently SVs can be represented, and
how accurately they can be genotyped with this type of data.

A particular advantage of our method is that it does not require exact breakpoint resolution in the
variant library. Our simulations showed that vg’s SV genotyping algorithm is robust to errors of as
much as 10 bp in breakpoint location. However, there is an upper limit to this �exibility, and we �nd
that vg cannot accurately genotype variants with much higher uncertainty in the breakpoint location
(like those discovered through read coverage analysis). vg is also capable of �ne-tuning SV
breakpoints by augmenting the graph with di�erences observed in read alignments. Simulations
showed that this approach can usually correct small errors in SV breakpoints (Figure S11 and Table
S6).



vg uses a uni�ed framework to call and score di�erent variant types simultaneously. In this work, we
only considered graphs containing certain types of SVs, but the same methods can be extended to a
broader range of graphs. For example, we are interested in evaluating how genotyping SVs together
with SNPs and small indels using a combined graph e�ects the accuracy of studying either alone. The
same methods used for genotyping known variants in this work can also be extended to call novel
variants by �rst augmenting the graph with edits from the mapped reads. This approach, which was
used only in the breakpoint �ne-tuning portion of this work, could be further used to study small
variants around and nested within SVs. Novel SVs could be called by augmenting the graph with long-
read mappings. vg is entirely open source, and its ongoing development is supported by a growing
community of researchers and users with common interest in scalable, unbiased pangenomic
analyses and representation. We expect this collaboration to continue to foster increases in the
speed, accuracy and applicability of methods based on pangenome graphs in the years ahead.

Our results suggest that constructing a graph from de novo assembly alignment instead of a VCF
leads to better SV genotyping. High quality de novo assemblies for human are becoming more and
more common due to improvements in technologies like optimized mate-pair libraries[32] and long-
read sequencing[12]. We expect future graphs to be built from the alignment of numerous de novo
assemblies, and we are presently working on scaling our assembly-based pipeline to human-sized
genome assemblies. Another challenge is creating genome graphs that integrate assemblies with
variant-based data resources. One possible approach is to progressively align assembled contigs into
variation graphs constructed from variant libraries, but methods for doing so are still experimental.

Conclusion

In this study, the vg toolkit was compared to existing SV genotypers across several high-quality SV
catalogs. We showed that its method of mapping reads to a variation graph leads to better SV
genotyping compared to other state of the art methods. This work introduces a �exible strategy to
integrate the growing number of SVs being discovered with higher resolution technologies into a
uni�ed framework for genome inference. Our work on whole genome alignment graphs shows the
bene�t of directly utilizing de novo assemblies rather than variant catalogs to integrate SVs in genome
graphs. We expect this latter approach to increase in signi�cance as the reduction in long read
sequencing costs drives the creation of numerous new de novo assemblies. We envision a future in
which the lines between variant calling, alignment, and assembly are blurred by rapid changes in
sequencing technology. Fully graph based approaches, like the one we present here, will be of great
utility in this new phase of genome inference.

Methods

The vg call genotyping algorithm

In vg call , we implemented a simple variant caller capable of operating on any kind of variation
that can be represented in variation graphs. The algorithm uses a genome graph as a structuring
prior, and consumes read mappings to the graph to drive the inference of the true genomic state at
each locus. Here, we apply vg call  to genotype structural variants already present in the graph, but
the same algorithm can also be used for smaller variants such as SNPs, as well as making de-novo
calls. The algorithm, illustrated in Figure 1a, proceeds through three main phases:

1. We compute the average read support for each node and edge, adjusted for mapping and base
quality. The graph can optionally be augmented to include new variation from the reads using a
minimum support cuto�.

2. We then decomposed the graph into snarls[23]. Brie�y, a snarl is a subgraph de�ned by two end
nodes, where cutting the graph at these nodes disconnects the subgraph from the rest of the



graph. Snarls can be nested inside other snarls, and this nesting hierarchy forms a forest. As
proposed in Paten et al.[23], we use the snarl decomposition as a structure for identifying variants
in a graph.

3. In parallel, we independently consider root-level snarls from the decomposition. Only snarls whose
two ends lie on a reference (i.e. chromosome) path are considered as the VCF format used for
output requires de�nite reference positions. For each root snarl, we:
1. Compute a set of paths between the snarl boundary nodes using a heuristic search that

enumerates paths until all nodes and edges in the snarl are contained in at least one path.
2. Rank these paths according to their average support from the reads.
3. Determine a genotype using the relative support of the best paths, as well as the background

read depth. The same logic is used for all types of variation, each of which can be expressed
simply as a path in the graph.

4. Project variants in the graph into VCF format.

toil-vg

toil-vg is a set of Python scripts for simplifying vg tasks such as graph construction, read mapping and
SV genotyping. It uses the Toil work�ow engine [33] to seamlessly run pipelines locally, on clusters, or
on the cloud. All variation graph analyses in this report used toil-vg, with the exact commands
available at github.com/vgteam/sv-genotyping-paper. The principal toil-vg commands used are
described below.

toil-vg construct

toil-vg construct automates graph construction and indexing following the best practices put forth by
the vg community. It parallelizes graph construction across di�erent sequences from the reference
FASTA, and creates di�erent whole-genome indexes side by side when possible. When available, toil-
vg construct can use phasing information from the input VCF to preserve haplotypes in the GCSA2
pruning step, as well as to extract haploid sequences to simulate from.

toil-vg map

toil-vg map splits the input reads into batches, maps each batch in parallel, and merges the result.

toil-vg call

Due to the high memory requirements of the current implementation of vg call, toil-vg call splits the
input graph into 2.5Mb overlapping chunks along the reference path. Each chunk is called
independently in parallel and the results are concatenated into the output VCF.

toil-vg sveval

toil-vg sveval evaluates the SV calls relative to a truth set. The variants are �rst normalized with 
bcftools norm  (1.9) to ensure consistent representation between called variants and baseline

variants[34]. We then implemented an overlap-based strategy to compare SVs and compute
evaluation metrics (sveval R package: https://github.com/jmonlong/sveval). Figure S15 shows an
overview of the SV evaluation approach which is described below.

For deletions and inversions, we begin by computing the overlaps between the SVs in the call set and
the truth set. For each variant we then compute the proportion of its region that is covered by a
variant in the other set, considering only variants overlapping with at least 10% reciprocal overlap. If
this coverage proportion is higher than 50%, we consider the variant covered. True positives (TPs) are
covered variants from the call set (when computing the precision) or the truth set (when computing

https://github.com/vgteam/sv-genotyping-paper
https://github.com/jmonlong/sveval


the recall). Variants from the call set are considered false positives (FPs) if they are not covered by the
truth set. Conversely, variants from the truth set are considered false negatives (FNs) if they are not
covered by the call set.

For insertions, we select pairs of insertions that are located no farther than 20 bp from each other. We
then align the inserted sequences using a Smith-Waterman alignment. For each insertion we compute
the proportion of its inserted sequence that aligns a matched variant in the other set. If this
proportion is at least 50% the insertions are considered covered. Covering relationships are used to
de�ne TPs, FPs, and FNs the same way as for deletions and inversions.

The coverage statistics are computed using any variant larger than 1 bp but a minimum size is
required for a variant to be counted as TP, FP, or FN. In this work, we used the default minimum SV
size of 50 bp.

sveval accepts VCF �les with symbolic or explicit representation of the SVs. If the explicit
representation is used, multi-allelic variants are split and their sequences right-trimmed. When using
the explicit representation and when the REF and ALT sequences are longer than 10 bp, the reverse-
complement of the ALT sequence is aligned to the REF sequence to identify potential inversions. If
more than 80% of the sequence aligns, it is classi�ed as an inversion.

We assess both the ability to predict the presence of an SV as well as the full genotype. For the
presence evaluation, both heterozygous and homozygous alternate SVs are compared jointly using
the approach described above. To compute genotype-level metrics, the heterozygous and
homozygous SVs are compared separately. Before splitting the variants by genotype, pairs of
heterozygous variants with reciprocal overlap of at least 80% are merged into a homozygous ALT
variant. To handle fragmented variants, consecutive heterozygous variants located at less that 20 bp
from each other are �rst merged into larger heterozygous variants.

Precision-recall curves are produced by successively �ltering out variants of low-quality. By default the
QUAL �eld in the VCF �le is used as the quality information. If QUAL is missing (or contains only 0s),
the genotype quality in the GQ �eld is used.

The evaluation is performed using all variants or using only variants within high-con�dence regions. In
most analysis, the high-con�dence regions are constructed by excluding segmental duplications and
tandem repeats (using the respective tracks from the UCSC Genome Browser). For the GIAB analysis,
we used the Tier 1 high-con�dence regions provided by the GIAB consortium in version 0.6.

Other SV genotypers

BayesTyper (v1.5 beta 62888d6)

Where not speci�ed otherwise BayesTyper was run as follows. Raw reads were mapped to the
reference genome using bwa mem (citation: https://arxiv.org/abs/1303.3997) (0.7.17). GATK
haplotypecaller[35] (3.8) and Platypus[36] (0.8.1.1) with assembly enabled were run on the mapped
reads to call SNVs and short indels (<50bp) needed by BayesTyper for correct genotyping. The VCFs
with these variants were then normalised using bcftools norm  (1.9) and combined with the SVs
across samples using bayesTyperTools combine  to produce the input candidate set. k-mers in the
raw reads were counted using kmc (citation:
https://academic.oup.com/bioinformatics/article/33/17/2759/3796399) (3.1.1) with a k-mer size of 55.
A Bloom �lter was constructed from these k-mers using bayesTyperTools makeBloom . Finally,
variants were clustered and genotyped using bayestyper cluster  and bayestyper genotype ,
respectively, with default parameters except --min-genotype-posterior 0 . Non-PASS variants



and non-SVs (GATK and Platypus origin) were �ltered prior to evaluation using bcftools filter
and filterAlleleCallsetOrigin , respectively.

Delly (v0.7.9)

The delly call  command was run on the reads mapped by bwa mem , the reference genome
FASTA �le, and the VCF containing the SVs to genotype (converted to their explicit representations).

SVTyper (v0.7.0)

The VCF containing deletions was converted to symbolic representation and passed to svtyper  with
the reads mapped by bwa mem . The output VCF was converted back to explicit representation using 
bayesTyperTools convertAllele  to facilitate variant normalization before evaluation.

SMRT-SV v2 (v2.0.0 Feb 21 2019 commit adb13f2)

SMRT-SV v2 was run with the “30x-4” model and min-call-depth 8 cuto�. It was run only on VCFs
created by SMRT-SV, for which the required contig BAMs were available. The Illumina BAMs used
where the same as the other methods described above. The output VCF was converted back to
explicit representation to facilitate variant normalization later.

Simulation experiment

We simulated a synthetic genome with 1000 insertions, deletions and inversions. We separated each
variant from the next by a bu�er of at least 500 bp. The sizes of deletions and insertions followed the
distribution of SV sizes from the HGSVC catalog. We used the same size distribution as deletions for
inversions. A VCF �le was produced for three simulated samples with genotypes chosen uniformly
between homozygous reference, heterozygous, and homozygous alternate.

We created another VCF �le containing errors in the SV breakpoint locations. We shifted one or both
breakpoints of deletions and inversions by distances between 1 and 10 bp. The locations and
sequences of insertions were also modi�ed, either shifting the variants or shortening them at the
�anks, again by up to 10 bp.

Paired-end reads were simulated using vg sim  on the graph that contained the true SVs. Di�erent
read depths were tested: 1x, 3x, 7x, 10x, 13x, 20x. The base qualities and sequencing errors were
trained to resemble real Illumina reads from NA12878 provided by the Genome in a Bottle
Consortium.

The genotypes called in each experiment (genotyping method/VCF with or without errors/sequencing
depth) were compared to the true SV genotypes to compute the precision, recall and F1 score (see
toil-vg sveval).

Breakpoint �ne-tuning using graph augmentation

vg can call variants after augmenting the graph with the read alignments to discover new variants (see
toil-vg call). We tested if this approach could �ne-tune the breakpoint location of SVs in the graph. We
started with the graph that contained approximate SVs (1-10 bp errors in breakpoint location) and 20x
simulated reads from the simulation experiment (see Simulation experiment). The variants called
after graph augmentation were compared with the true SVs. We considered �ne-tuning correct if the
breakpoints matched exactly.



HGSVC Analysis

We �rst obtained phased VCFs for the three Human Genome Structural Variation Consortium (HGSVC)
samples from Chaisson et al.[20] and combined them with bcftools merge . A variation graph was
created and indexed using the combined VCF and the HS38D1 reference with alt loci excluded. The
phasing information was used to construct a GBWT index[37], from which the two haploid sequences
from HG00514 were extracted as a graph. Illumina read pairs with 30x coverage were simulated from
these sequences using vg sim, with an error model learned from real reads from the same sample.
These simulated reads re�ect an idealized situation where the breakpoints of the SVs being
genotyped are exactly known a priori. The reads were mapped to the graph, and the mappings used
to genotype the SVs in the graph. Finally, the SV calls were compared back to the HG00514 genotypes
from the HGSVC VCF. We repeated the process with the same reads on the linear reference, using 
bwa mem  for mapping and Delly, SVTyper and BayesTyper for SV genotyping.

We downloaded Illumina HiSeq 2500 paired end reads from the EBI’s ENA FTP site for the three
samples, using Run Accessions ERR903030, ERR895347 and ERR894724 for HG00514, HG00733 and
NA19240, respectively. We ran the graph and linear mapping and genotyping pipelines exactly as for
the simulation, and aggregated the comparison results across the three samples. We used
BayesTyper to jointly genotype the 3 samples.

GIAB Analysis

We obtained version 0.5 of the Genome in a Bottle (GIAB) SV VCF for the Ashkenazim son (HG002) and
his parents from the NCBI FTP site. We obtained Illumina reads as described in Garrison et al.[15] and
downsampled them to 50x coverage. We used these reads as input for vg call  and the other SV
genotyping pipelines described above (though with GRCh37 instead of GRCh38). For BayesTyper, we
created the input variant set by combining the GIAB SVs with SNV and indels from the same study.
Variants with reference allele or without a determined genotype for HG002 in the GIAB call set (10,569
out of 30,224) were considered “false positives” as a proxy measure for precision. These variants
correspond to putative technical artifacts and parental calls not present in HG002. For the evaluation
in high con�dence regions, we used the Tier 1 high-con�dence regions provided by the GIAB
consortium in version 0.6.

SMRT-SV v2 Comparison (CHMPD and SVPOP)

The SMRT-SV v2 genotyper can only be used to genotype sequence-resolved SVs present on contigs
with known SV breakpoints, such as those created by SMRT-SV v2, and therefore could not be run on
the simulated, HGSVC, or GIAB call sets. The authors shared their training and evaluation set: a
pseudodiploid sample constructed from combining the haploid CHM1 and CHM13 samples (CHMPD),
and a negative control (NA19240). The high quality of the CHM assemblies makes this set an attractive
alternative to using simulated reads. We used this two-sample pseudodiploid VCF along with the 30X
read set to construct, map and genotype with vg, and also ran SMRT-SV v2 genotyper with the “30x-4”
model and min-call-depth 8 cuto�, and compared the two back to the original VCF.

In an e�ort to extend this comparison from the training data to a more realistic setting, we reran the
three HGSVC samples against the SMRT-SV v2 discovery VCF (SVPOP, which contains 12 additional
samples in addition to the three from HGSVC) published by Audano et al.[5] using vg and SMRT-SV v2
Genotyper. The discovery VCF does not contain genotypes. In consequence, we were unable to
distinguish between heterozygous and homozygous genotypes, and instead considered only the
presence or absence of a non-reference allele for each variant.

SMRT-SV v2 produces explicit no-call predictions when the read coverage is too low to produce
accurate genotypes. These no-calls are considered homozygous reference in the main accuracy



evaluation. We also explored the performance of vg and SMRT-SV v2 in di�erent sets of regions
(Figure S10 and Table S5):

1. Non-repeat regions, i.e. excluding segmental duplications and tandem repeats (using the
respective tracks from the UCSC Genome Browser).

2. Repeat regions de�ned as segmental duplications and tandem repeats.
3. Regions where SMRT-SV v2 could call variants.
4. Regions where SMRT-SV v2 produced no-calls.

Yeast graph analysis

For the analysis of graphs from de novo assemblies, we utilized publicly available PacBio-derived
assemblies and Illumina short read sequencing datasets for 12 yeast strains from two related clades
(Table 1) [25]. We constructed graphs from two di�erent strain sets: For the �ve strains set, we
selected �ve strains for graph contruction (S.c. SK1, S.c. YPS128, S.p. CBS432, S.p. UFRJ50816 and S.c.
S288C). We randomly selected two strains from di�erent subclades of each clade as well as the
reference strain S.c. S288C. For the all strains set in contrast, we utilized all twelve strains for graph
contruction. We constructed two di�erent types of genome graphs from the PacBio-derived
assemblies of the �ve or twelve (depending on the strains set) selected strains. In this section, we
describe the steps for the construction of both graphs and the calling of variants. More details and the
precise commands used in our analyses can be found at github.com/vgteam/sv-genotyping-paper.

Table 1:  12 yeast strains from two related clades were used in our analysis. Five strains were selected to be included in
the �ve strains set and all strains were included in the all strains set. Graphs were constructed from strains in the
respective strain set while all eleven non-reference strains were used for variant calling.

Strain Clade Included in �ve strains set Included in all strains set

S288C S. cerevisiae ✓ ✓

SK1 S. cerevisiae ✓ ✓

YPS128 S. cerevisiae ✓ ✓

UWOPS034614 S. cerevisiae ✓

Y12 S. cerevisiae ✓

DBVPG6765 S. cerevisiae ✓

DBVPG6044 S. cerevisiae ✓

CBS432 S. paradoxus ✓ ✓

UFRJ50816 S. paradoxus ✓ ✓

N44 S. paradoxus ✓

UWOPS919171 S. paradoxus ✓

YPS138 S. paradoxus ✓

Construction of the VCF graph

We constructed the �rst graph (called the VCF graph throughout the paper) by adding variants onto a
linear reference. This method requires one assembly to serve as a reference genome. The other
assemblies must be converted to variant calls relative to this reference. The PacBio assembly of the
S.c. S288C strain was chosen as the reference genome because this strain was used for the S.
cerevisiae genome reference assembly. To obtain variants for the other assemblies, we combined
three methods for SV detection from genome assemblies: Assemblytics [26] (commit df5361f),
AsmVar (commit 5abd91a) [27] and paftools (version 2.14-r883) [28]. We constructed a union set of
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SVs detected by the three methods (using bedtools [38]), and combined variants with a reciprocal
overlap of at least 50% to avoid duplication in the union set. We merged these union sets of variants
for each of the other (non-reference) strains in the strain set, and we then applied another
deduplication step to combine variants with a reciprocal overlap of at least 90%. We then used vg 
construct  to build the VCF graph with the total set of variants and the linear reference genome.

Construction of the cactus graph

The second graph (called the cactus graph throughout the paper) was constructed from a whole
genome alignment between the assemblies. First, the repeat-masked PacBio-assemblies of the strains
in the strain set were aligned with our Cactus tool [24]. Cactus requires a phylogenetic tree of the
strains which was estimated using Mash (version 2.1) [39] and PHYLIP (version 3.695) [40].
Subsequently, we converted the HAL format output �le to a variation graph with hal2vg
(https://github.com/ComparativeGenomicsToolkit/hal2vg).

Calling and genotyping of SVs

Prior to variant calling, we mapped the Illumina short reads of all 12 yeast strains to both graphs using
vg map . We measured the fractions of reads mapped with speci�c properties using vg view  and

the JSON processor jq . Then, we applied toil-vg call  (commit be8b6da) to call variants,
obtaining a separate variant call set for each of the 11 non-reference strains on both graphs and for
each of the two strain sets (in total 11 x 2 x 2 = 44 call sets). From the call sets, we removed variants
smaller than 50 bp and variants with missing or homozygous reference genotypes. To evaluate the
�ltered call sets, we generated a sample graph (i.e. a graph representation of the call set) for each call
set using vg construct  and vg mod  on the reference assembly S.c. S288C and the call set.
Subsequently, we mapped short reads from the respective strains to each sample graph using vg 
map . We mapped the short reads also to an empty sample graph that was generated using vg 
construct  as a graph representation of the linear reference genome. In an e�ort to restrict our
analysis to SV regions, we removed reads that mapped equally well (i.e. with identical mapping quality
and percent identity) to all three graphs (the two sample graphs and the empty sample graph) from
the analysis. These �ltered out reads most likely stem from portions of the strains’ genomes that are
identical to the reference strain S.c. S288C. We analyzed the remaining alignments of reads from SV
regions with vg view  and jq .
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Supplementary Material

Supplementary Tables

Table S1:  Genotyping evaluation on the HGSVC dataset. Precision, recall and F1 score for the call set with the best F1
score. The best F1 scores were achieved with no �ltering in the vast majority of cases (see Figure S1 and S3). The
numbers in parentheses corresponds to the results in non-repeat regions.

Experiment Method Type Precision Recall F1

Simulated reads vg INS 0.795 (0.885) 0.796 (0.883) 0.795 (0.884)

DEL 0.869 (0.971) 0.771 (0.92) 0.817 (0.945)

BayesTyper INS 0.91 (0.935) 0.835 (0.9) 0.871 (0.917)

DEL 0.898 (0.981) 0.806 (0.929) 0.849 (0.954)

SVTyper DEL 0.809 (0.876) 0.328 (0.754) 0.467 (0.81)

Delly INS 0.767 (0.866) 0.093 (0.225) 0.166 (0.358)

DEL 0.696 (0.903) 0.707 (0.846) 0.701 (0.874)

Real reads vg INS 0.431 (0.683) 0.541 (0.726) 0.48 (0.704)

DEL 0.65 (0.886) 0.519 (0.708) 0.577 (0.787)

BayesTyper INS 0.601 (0.747) 0.254 (0.433) 0.357 (0.549)

DEL 0.627 (0.91) 0.325 (0.381) 0.428 (0.537)

SVTyper DEL 0.661 (0.733) 0.236 (0.551) 0.348 (0.629)

Delly INS 0.516 (0.621) 0.068 (0.176) 0.12 (0.275)

DEL 0.55 (0.838) 0.445 (0.547) 0.492 (0.662)

Table S2:  Genotyping evaluation on the Genome in a Bottle dataset. Precision, recall and F1 score for the call set with
the best F1 score. The best F1 scores were achieved with no �ltering in the vast majority of cases (see Figure S5). The
numbers in parentheses corresponds to the results in non-repeat regions.

Method Type Precision Recall F1

vg INS 0.658 (0.774) 0.646 (0.735) 0.652 (0.754)

DEL 0.68 (0.768) 0.643 (0.735) 0.661 (0.751)

BayesTyper INS 0.776 (0.879) 0.286 (0.379) 0.418 (0.53)

DEL 0.808 (0.886) 0.512 (0.696) 0.627 (0.779)

SVTyper DEL 0.742 (0.818) 0.342 (0.496) 0.468 (0.618)

Delly INS 0.822 (0.894) 0.177 (0.268) 0.291 (0.412)

DEL 0.722 (0.822) 0.645 (0.768) 0.681 (0.794)

Table S3:  Genotyping evaluation on the pseudo-diploid genome built from CHM cell lines in Audano et al.[5].

Method Region Type Precision Recall F1

vg all INS 0.665 0.661 0.663

DEL 0.688 0.500 0.579



Method Region Type Precision Recall F1

non-repeat INS 0.806 0.784 0.795

DEL 0.869 0.762 0.812

SMRT-SV all INS 0.757 0.536 0.628

DEL 0.848 0.630 0.723

non-repeat INS 0.880 0.680 0.767

DEL 0.971 0.824 0.891

Table S4:  Calling evaluation on the SVPOP dataset. Combined results for the HG00514, HG00733 and NA19240
individuals, 3 of the 15 individuals used to generate the high-quality SV catalog in Audano et al.[5].

Method Region Type TP FP FN Precision Recall F1

vg all INS 25838 22042 15772 0.540 0.621 0.577

DEL 14545 6824 15425 0.681 0.485 0.567

INV 27 26 173 0.509 0.135 0.213

non-repeat INS 8051 3258 1817 0.712 0.816 0.760

DEL 3769 623 818 0.858 0.822 0.840

INV 19 12 75 0.613 0.202 0.304

SMRT-SV all INS 16270 26031 25340 0.385 0.391 0.388

DEL 11793 10106 18177 0.539 0.393 0.455

non-repeat INS 4483 4659 5385 0.490 0.454 0.472

DEL 2928 930 1659 0.759 0.638 0.693

Table S5:  Calling evaluation on the SVPOP dataset in di�erent sets of regions for the HG5014 individual.

Method Region Type TP FP FN Precision Recall F1

vg all INS 8618 7237 5416 0.546 0.614 0.578

DEL 4762 2048 5145 0.696 0.481 0.569

INV 11 8 54 0.579 0.169 0.262

repeat INS 6176 6923 4678 0.475 0.569 0.518

DEL 2428 1701 4542 0.584 0.348 0.436

INV 1 1 6 0.500 0.143 0.222

non-repeat INS 2677 987 514 0.731 0.839 0.781

DEL 1180 176 321 0.869 0.786 0.825

INV 7 4 20 0.636 0.259 0.368

called in SMRT-SV INS 3410 3789 2108 0.478 0.618 0.539

DEL 2544 1092 1518 0.699 0.626 0.661

INV 8 8 52 0.500 0.133 0.210

not called in SMRT-SV INS 4838 542 3678 0.899 0.568 0.696



Method Region Type TP FP FN Precision Recall F1

DEL 2034 26 3723 0.987 0.353 0.520

SMRT-SV all INS 5245 8563 8789 0.394 0.374 0.384

DEL 3741 3382 6166 0.533 0.378 0.442

repeat INS 3848 7125 7006 0.368 0.354 0.361

DEL 1990 2832 4980 0.426 0.286 0.342

non-repeat INS 1396 1468 1795 0.493 0.438 0.464

DEL 901 308 600 0.745 0.600 0.665

called in SMRT-SV INS 4343 5595 1175 0.445 0.787 0.569

DEL 3227 2451 835 0.573 0.794 0.666

not called in SMRT-SV INS 116 109 8400 0.551 0.014 0.026

DEL 206 16 5551 0.911 0.036 0.069

Table S6:  Breakpoint �ne-tuning using graph augmentation from the read alignment. For deletions and inversions,
either one or both breakpoints were shifted to introduce errors in the input VCF. For insertions, the insertion location
and sequence contained errors. In all cases, the errors a�ected 1-10 bp.

SV type Error type Breakpoint Variant Proportion Mean size (bp) Mean error (bp)

DEL one end incorrect 220 0.219 422.655 6.095

�ne-tuned 784 0.781 670.518 5.430

both ends incorrect 811 0.814 826.070 6.275

�ne-tuned 185 0.186 586.676 2.232

INS location/seq incorrect 123 0.062 428.724 6.667

�ne-tuned 1877 0.938 440.043 6.439

INV one end incorrect 868 0.835 762.673 5.161

�ne-tuned 172 0.165 130.244 5.884

both ends incorrect 950 0.992 556.274 5.624

�ne-tuned 8 0.008 200.000 1.375

Supplementary Figures



Figure S1:  Genotyping evaluation on the HGSVC dataset using simulated reads. Reads were simulated from the
HG00514 individual. The bottom panel zooms on the part highlighted by a dotted rectangle.



Figure S2:  Calling evaluation on the HGSVC dataset using simulated reads. Reads were simulated from the
HG00514 individual. The bottom panel zooms on the part highlighted by a dotted rectangle.



Figure S3:  Genotyping evaluation on the HGSVC dataset using real reads. Combined results across the HG00514,
HG00733 and NA19240.

Figure S4:  Calling evaluation on the HGSVC dataset using real reads. Combined results across the HG00514,
HG00733 and NA19240.



Figure S5:  Genotyping evaluation on the Genome in a Bottle dataset. Predicted genotypes on HG002 were
compared to the high-quality SVs from this same individual.

Figure S6:  Calling evaluation on the Genome in a Bottle dataset. Calls on HG002 were compared to the high-quality
SVs from this same individual.



Figure S7:  Genotyping evaluation on the CHM pseudo-diploid dataset. The pseudo-diploid genome was built from
CHM cell lines and used to train SMRT-SV v2 in Audano et al.[5] The bottom panel zooms on the part highlighted by a
dotted rectangle.



Figure S8:  Calling evaluation on the CHM pseudo-diploid dataset. The pseudo-diploid genome was built from CHM
cell lines and used to train SMRT-SV v2 in Audano et al.[5]



Figure S9:  Calling evaluation on the SVPOP dataset. Combined results across the HG00514, HG00733 and NA19240.

Figure S10:  Evaluation across di�erent sets of regions in HG00514 (SVPOP dataset). Calling evaluation.



Figure S11:  Breakpoint �ne-tuning using augmentation through “vg call”. For deletions and inversions, either one
or both breakpoints were shifted to introduce errors in the input VCF. For insertions, the insertion location and
sequence contained errors. a) Proportion of variant for which breakpoints could be �ne-tuned. b) Distribution of the
amount of errors that could be corrected or not. c) Distribution of the size of the variants whose breakpoints could be
�ne-tuned or not.



Figure S12:  Mapping comparison on graphs of the �ve strains set. Short reads from all 12 yeast strains were
aligned to both graphs. The fraction of reads mapped to the cactus graph (y-axis) and the VCF graph (x-axis) are
compared. a) Strati�ed by percent identity threshold. b) Strati�ed by mapping quality threshold. Colors and shapes
represent the 12 strains and two clades, respectively. Transparency indicates whether the strain was included or
excluded in the graphs.

Figure S13:  Mapping comparison on graphs of the all strains set. Short reads from all 12 yeast strains were aligned
to both graphs. The fraction of reads mapped to the cactus graph (y-axis) and the VCF graph (x-axis) are compared. a)
Strati�ed by percent identity threshold. b) Strati�ed by mapping quality threshold. Colors and shapes represent the 12
strains and two clades, respectively.



Figure S14:  SV genotyping comparison using all reads. Short reads from all 11 non-reference yeast strains were
used to genotype SVs contained in the cactus graph and the VCF graph. Subsequently, sample graphs were generated
from the resulting SV callsets. The short reads were aligned to the sample graphs and the quality of all alignments was
used to ascertain SV genotyping performance. More accurate genotypes should result in sample graphs that have
mappings with high identity and con�dence for a greater proportion of the reads. a) Average delta in mapping identity
of all short reads aligned to the sample graphs derived from cactus graph and VCF graph. b) Average delta in mapping
quality of all short reads aligned to the sample graphs derived from cactus graph and VCF graph. Positive values denote
an improvement of the cactus graph over the VCF graph. Colors represent the two strain sets and transparency
indicates whether the respective strain was part of the �ve strains set.

Figure S15:  Overview of the SV evaluation by the sveval package. For deletions and inversions, we compute the
proportion of a variant that is covered by variants in the other set, considering only variants overlapping with at least
10% reciprocal overlap. A variant is considered true positive if this coverage proportion is higher than 50% and false-
positive or false-negative otherwise. A similar approach is used for insertions, although they are �rst clustered into pairs
located less than 20 bp from each other. Then their inserted sequences are aligned to derive the coverage statistics. The
SV evaluation approach is described in more detail in the Methods.



Supplementary Information

Variation graph and structural variation

A variation graph encodes DNA sequence in its nodes. Such graphs are bidirected, in that we
distinguish between edges incident on the starts of nodes from those incident on their ends. A path in
such a graph is an ordered list of nodes where each is associated with an orientation. If a path walks
from, for example, node A in the forward orientation to node B in the reverse orientation, then an
edge must exist from the end of node A to the end of node B. Concatenating the sequences on each
node in the path, taking the reverse complement when the node is visited in reverse orientation,
produces a DNA sequence. Accordingly, variation graphs are constructed so as to encode haplotype
sequences as walks through the graph. Variation between sequences shows up as bubbles in the
graph [23].

Breakpoint �ne-tuning

In addition to genotyping, vg can use an augmentation step to modify the graph based on the read
alignment and discover novel variants. On the simulated SVs from Figure 1b, this approach was able
to correct many of the 1-10 bp breakpoint errors that were added to the input VCF. The breakpoints
were accurately �ne-tuned for 93.8% of the insertions (Figure S11a and Table S6). For deletions,
78.1% of the variants were corrected when only one breakpoint had an error. In situations where both
breakpoints of the deletions were incorrect, only 18.6% were corrected through graph augmentation,
and only when the amount of error was small (Figure S11b). The breakpoints of less than 20% of the
inversions could be corrected. Across all SV types, the size of the variant didn’t a�ect the ability to �ne-
tune the breakpoints through graph augmentation (Figure S11c).

Mappability comparison between yeast graphs

In order to elucidate whether the cactus graph represents the sequence diversity among the yeast
strains better than the VCF graph, we mapped Illumina short reads to both graphs using vg map .
Generally, more reads mapped to the cactus graph with high identity (Figures S12a and S13a) and
high mapping quality (Figures S12b and S13b) than to the VCF graph. The VCF graph exhibited higher
mappability only on the reference strain S.c. S288C with a marginal di�erence. The bene�t of using
the cactus graph is largest for strains in the S. paradoxus clade and smaller for strains in the S.
cerevisiae clade. We found that the genetic distance to the reference strain (as estimated using Mash
v2.1 [39]) correlated with the increase in con�dently mapped reads (mapping quality >= 60) between
the cactus graph and the VCF graph (Spearman’s rank correlation, p-value=3.993e-06). These results
suggest that the improvement in mappability is not driven by the higher sequence content in the
cactus graph alone (16.8 / 15.4 Mb in the cactus graph compared to 12.6 / 12.4 Mb in the VCF graph
for the all strains set and the �ve strains set, respectively). Instead, an explanation could be the
construction of the VCF graph from a comprehensive but still limited list of variants and the lack of
SNPs and small Indels in this list. Consequently, substantially fewer reads mapped to the VCF graph
with perfect identity (Figures S12a and S13a, percent identity threshold = 100%) than to the cactus
graph. The cactus graph has the advantage of implicitly incorporating variants of all types and sizes
from the de novo assemblies. As a consequence, the cactus graph captures the genetic makeup of
each strain more comprehensively and enables more reads to be mapped.

Interestingly, our measurements for the �ve strains set showed only small di�erences between the
�ve strains that were used to construct the graph and the other seven strains (Figure S12). Only the
number of alignments with perfect identity is substantially lower for the strains that were not included
in the creation of the graphs (Figure S12a).
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