RLC Analytical Responses

John Morrow

Equation 1is the differential equation for the series-connected RLC circuit (Figure 1) in terms of 4, the current

flowing in the circuit. R, L, and C represent the resistance, inductance, and capacitance.
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Figure 1: Series-connected RLC circuit

Taking the Laplace transform of each term in Equation 1:

L {LZZZ} = L (s*F(s) — si(0) — ' (0)) 2
r {REZ} — R(sF(s) - i(0)) @)
c {éz} - éF(s) (4)

Combining and collecting terms, the Laplace transform of Equation 1 is:

(Ls® + Rs + %)F(s) — (s +1)i(0) —'(0) = 0 (5)

Solving for F'(s):
(s +1)i(0) +4'(0)
Fls) = Ls>+ Rs+ & ©




Applying the initial conditions, i(0) = 0 and i'(0) = ~—~

where V(0) is the initial capacitor voltage at t = 0 :

V(0)

F(s)=—2%t 7
(s) Ls>+ Rs+ & )

Factoring the denominator of Equation 7 and substituting a = %:

<s+a+\/a2—l}0> (s—i—a— aQ_LlC> (8)

Simplifying further by substituting z = /a2 — % , the roots of F(s) are:

(s+a—2)(s+a+2) 9)

under-damped response

For the under-damped case, where a < % z becomes imaginary (denoted here by j):

(s+a—2j)(s+a+ zj) (19)
Expressing F(s) from Equation 7 with partial fractions:

L A B
F(s) = L = | = -+ , (11)
(s+a—=zj)(s+a+zj) sta+zj st+a—zj

v©) A(s+a—2zj)+ B(s+a+ zj)
_ L _
F(s) = (s+a—zj)(s+a+zj) (s+a—=zj)(s+a+zj) (12)

Equating the numerators in Equation 12:

V(o)

T:A(s+a—zj)+B(s+oz+zj) (13)

When s = —a — zj, Equation 13 becomes:

Vo) = A(=2z)) (14)



Solving for A:

A— VO () _ V) [15)
(=2z5)L \j 22L
When s = —a + zj, Equation 13 becomes:
V(o
v = B(2zj) (16)
L
Solving for B:
p= YO (3 _ =V (17)
(2z4)L \j 22L
Substituting these values for A and B into Equation 11:
V(0)j —V(0)j
F(S) — 2zL + 2zL (18)

s+a+zj s+a—zj

Taking the inverse Laplace transform of F'(s):

i(t) = L71F(s) 19)
i) = L0 (jemtessie _ jemtamsan) (20)
0= ey Q)i
i) = LDt ;je_zjt) -

Substituting the identity sin(x) =

Z(O) e~ sin(zt) (23)

i(t) =

Figure 2 is the response of Equation 23, with R = 1.2 (ohms), L = 1.5 (henries), C' = 0.3(farads), and

V(0) = 12 (volts). With these component values, « = 0.4 and z = 1.44.
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Figure 2: Under-damped response

critically-damped response

For the critically-damped case, o = % This results in z = 0, and both roots of F'(s) in Equation 9 are
identical.

(s+a)(s+ a) (24)

Expressing F(s) from Equation 7 with partial fractions and two identical roots:

o A B
F(s) = L = 25
() ((s+a)s+a)> s+a+(s+a)2 (25)
— A B
F(s) = L _ At d (26)
(s+ a)(s+ a) (s +a)
Equating the numerators in Equation 26:
YO _ As )+ 8 (27)
When s = —q, Equation 27 becomes:
@ =A(—a+a)+ B (28)
Solving for B and A:
B Léo), A=0 (29)



Substituting the values for A and B into Equation 25:

v©
F(s) = m (30)
Taking the inverse Laplace transform of F'(s):
i(t) = L71F(s) (31)
i(t) = @te—at (32)

Figure 3 is the response of Equation 32, with R = 4.47 (ohms), L = 1.5 (henries), C' = 0.3(farads), and

V(0) = 12 (volts). With these component values, o = 1.49.
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Figure 3: Critically-damped response

over-damped response

For the over-damped case, o > ,/%. Expressing F'(s) from Equation 7 with partial fractions:

v(0)
F(s):<( L >= 4, 5 (33)

S+a+z sS+a—z

Yo A(s+a—2)+B(s+a+2)
_ L —
F(s)_(s+a—zj)s+a+zj)_ (s+a—2)(s+a+2) (34)




Equating the numerators in Equation 34:

@:A(s—i—a—z)—f—B(s—}-a—i—z) (35)
When s = —«a — z, Equation 35 becomes:
M = A(-22) (36)
L
Solving for A:
V(0)
A= 37
—2zL (37)
When s = —« + z, Equation 35 becomes:
V(o) = B (2z2) (38)
L
Solving for B:
V(0)
B = 39
2zL (39)

Substituting the values for A and B into Equation 33:

F(S):V(O)( 1 ) 49)

2zL \s+a—2z s+a+z

Taking the inverse Laplace transform of F'(s):

i(t) = £1F(s) (41)
. _ V(O) (—a+z) (—a—2)
i(t) = 5oL (e Tt _e t) (42)

Figure 4 is the response of Equation 42, with R = 6.0 (ohms), L = 1.5 (henries), C = 0.3(farads), and

V(0) = 12 (volts). With these component values, o = 2.0 and z = 1.33.
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Figure 4: Over-damped response



