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1 Introduction: What is physics-informed?

Many relationships in physics, biology, chemistry, economics, engineering, etc., are defined by differential

equations. (Check here for an extensive list.) In general, a differential equation (DE) describes how variables

are affected by the rate of change of other variables. For instance, a DE explains how the position of a mass

vibrating on spring changes with time in relation to the mass’s velocity and acceleration. A physics-informed

neural network (PINN) produces responses that adhere to the relationship described by a DE (whether the

subject is physics, engineering, economics, etc.). In contrast, an inverse physics-informed neural network

(iPINN) acts on a response and determines the parameters of the DE that produced it. PINNs and iPINNs

are trained by including a constraint during training that forces the relationship between the input and output

of the neural network to conform to the DE being modeled.

This article begins with the implementation of a PINN, then builds on the PINN model to implement an

iPINN. The analytical solution for the modeled DE is included for comparison to the responses produced by

the PINN and iPINN.

2 Second-order differential equations

This article focuses on a PINN and iPINN for DEs that describe damped harmonic motion, e.g., a spring-

mass system with damping (Figure 1) and an electronic circuit comprising series-connected components of

resistance, inductance, and capacitance (RLC) (Figure 2).

These applications are defined by second-order DEs, which include second derivatives with respect to time.

Equation 1 is the second-order differential equation for a spring-mass system, where the parameters m, c,

and k are, respectively, mass, damping coefficient, and spring constant. The displacement of the mass is

represented by x, and time by t. The second derivative of x with respect to t is the acceleration of the mass,
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Figure 1: Vibrating Mass & Spring
Figure 2: RLC Circuit

and the first derivative is the velocity of the mass.

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (1)

Equation 2 is the second-order DE for the RLC circuit, where R, L, and C are, respectively, resistance,

inductance, and capacitance. The current in the circuit is represented by i, and the time by t.

L
d2i

dt2
+R

di

dt
+

1

C
i = 0 (2)

Both of these DEs produce similar responses, i.e., the motion of the mass when it is displaced from a resting

position, then released, and the variation of the current over time when the switch is closed after pre-charging

the capacitor with an initial voltage. The following section presents details of the responses of the RLC

circuit.

3 RLC circuit response

Following is an overview of the possible responses of the RLC circuit in Figure 2, including the equation

of the analytical solution to Equation 2 for each response. (A derivation of the analytical solution by the

author is available for download here.) The analytical responses will later be compared to PINN-derived and

iPINN-derived responses.

Depending upon the values of the components, this RLC circuit can produce three different types of re-

sponses: under-damped, critically damped, and over-damped. All three responses are based on the capacitor
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charged to a voltage, V0, prior to switch closure and the following initial conditions:

i = 0 at t = 0 (3)

L
di

dt
= V0 at t = 0 (4)

3.1 Under-damped response

An under-damped response occurs when the values of R, L, and C produce the following condition:

R

2L
<

1√
LC

(5)

As an example, let R = 1.2 (ohms), L = 1.5 (henries), C = 0.3 (farads), and V0 = 12 (volts). The analytically-

derived response to Equation 2 with these values is:

i(t) = 5.57e−0.4tsin(1.44t) (6)

The following is a plot of the response from Equation 6.

Figure 3: Under-damped response

3.2 Critically damped response

A critically-damped response occurs when the values of R, L, and C produce the following condition:

R

2L
=

1√
LC

(7)

As an example, let R = 4.47 (ohms), L = 1.5 (henries), C = 0.3 (farads), and V0 = 12 (volts). The analytically-
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derived response to Equation 2 with these values is:

i(t) = 8.0te−1.49t (8)

The following is a plot of the response from Equation 8.

Figure 4: Critically-damped response

3.3 Over-damped response

An over-damped response occurs when the values of R, L, and C produce the following condition:

R

2L
>

1√
LC

(9)

As an example, let R = 6.0 (ohms), L = 1.5 (henries), C = 0.3 (farads), and V0 = 12 (volts). The analytically-

derived response to Equation 2 with these values is:

i(t) = 3.0(e−0.67t − e−3.33t) (10)

The following is a plot of the response from Equation 10.

Figure 5: Over-damped response
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4 PINN structure

Typically, a neural network is trained with pairs of known input and output data. The training input data is

presented to the neural network, and the resulting output is compared to the training output data using a

loss function. The loss returned by this function is used via backpropagation to adjust the network’s weights

to reduce the loss. PINNs and iPINNs use custom loss functions that include additional loss components

for constraining the neural network to produce outputs that comply with the DE being modeled.

A PINN model of the DE in Equation 2 accepts time, t, as input to the neural network and produces a corre-

sponding current, i, as output. Training the PINN to comply with the DE requires both the first and second

derivatives of the output with respect to the input, i.e., di/dt and d2i/dt2. These derivatives are available in

TensorFlow and PyTorch through each platform’s automatic differentiation function. In this article, the PINN

and iPINN are developed with TensorFlow GradientTape.

For each training input to the PINN, the first and second derivatives from GradientTape are combined with

R, L, and C according to the DE in Equation 2 to produce a result that should equal zero. The difference

between the actual result and zero is known as the residual. The residual becomes a component of the loss

function used to train the PINN.

A second-order DE, such as Equation 2, also requires that the solution complies with two initial conditions.

In this case, the first condition is the value of i at t = 0 (Equation 3) and the second is the value of di/dt at

t = 0 (Equation 4). Each initial condition is included as a component of the loss function.

Figure 6 illustrates the composition of the total loss. Loss 2 is from the residual. Loss 1 and loss 3 are from

the initial conditions. During training, backpropagation is used to reduce the total loss. The PINN outputs

for d2i/dt2 and di/dt are provided by GradientTape.

Figure 6: PINN loss function
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5 PINN implementation

Following is the python code for the PINN implementation. The complete code for the PINN implementation

is available here.

5.1 Neural network model definition

The neural network for the PINN has two fully-connected hidden layers, each with 128 neurons. There is a

single input for time points and a single output for the response points.

Listing 1: PINN TensorFlow model

# Hyperparameters
batch_size = 1
epochs = 600
optimizer = Adam(learning_rate=0.001)
weight_init = RandomNormal()

# Build model
inputs = tf.keras.Input(shape=(1,))
x = layers.Dense(128, activation='gelu', kernel_initializer=weight_init,

kernel_regularizer=None)(inputs)
x = layers.Dense(128, activation='gelu', kernel_initializer=weight_init,

kernel_regularizer=None)(x)
output = layers.Dense(1, activation='linear', kernel_initializer=weight_init)(x)
model = tf.keras.Model(inputs, output)

5.2 PINN initialization

In the PINN model, the R, L, and C component values and the initial capacitor voltage (lines 2-5) are

constants that determine the response of the DE. The co-location points, specified in the time domain (line

8), are the points where the residual is calculated. The initial conditions (lines 11 and 15) are from Equation 3

and Equation 4.

Listing 2: PINN initialization

1 # circuit parameters (under-damped)
2 R = 1.2 # resistance, ohm
3 L = 1.5 # inductance, H
4 C = 0.3 # capacitance, F
5 VC_0 = 12.0 # volts, initial capacitor voltage
6

7 # co-location points
8 t_coloc = np.arange(0, 6.0, 0.3)
9

10 # initial conditions:
11 # f(t) initial conditions
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12 t_init = np.array([0.0]) # time, sec
13 i_init = np.array([0.0]) # current, A
14

15 # f'(t) initial conditions
16 t_init2 = np.array([0.0]) # time, sec
17 v_init2 = np.array([VC_0]) # d/dt(i) * L = VC_0

5.3 PINN training step

Following is the python code for the training step function. For each training batch, the step function calcu-

lates the three components of loss, then uses the total loss to update the weights in the neural network.

loss 1: The initial condition from Equation 3 is compared to the output of the network, pred_y (line 9). The

square of the difference is model_loss1 (line 10).

loss 2: The residual (line 30) is calculated at the co-location points. It uses the first-order gradient, dfdx

(line 17), and the second-order gradient, dfdx2 (line 26), from GradientTape, along with the output of the

network, pred_y (line 29), to calculate the left-hand side of Equation 2. This value squared is model_loss2

(line 31).

loss 3: The initial condition from Equation 4 compares the product of L and the first-order gradient, dfdx

(line 17), to v_init2. The square of the difference is model_loss3 (line 19).

The total of the three loss components,model_loss (line 35), is used to calculate the gradients of the loss with

respect to the neural network’s weights (line 38). The optimizer then updates the weights (line 41).

Listing 3: PINN training step

1 # Step function
2 def step(t_coloc, t_init, i_init, t_init2, i_init2):
3 t_coloc = tf.convert_to_tensor(t_coloc)
4 t_coloc = tf.reshape(t_coloc, [batch_size, 1])
5 t_coloc = tf.Variable(t_coloc, name='t_coloc')
6 with tf.GradientTape(persistent=True) as tape:
7

8 # model_loss1: initial condition i_init @ t_init -> f(t) initial condition
9 pred_init = model(t_init)
10 model_loss1 = math_ops.squared_difference(pred_init, i_init)
11

12 # model_loss3: initial condition i_init2 @ t_init2 -> f'(t) initial condition
13 t_init2 = tf.convert_to_tensor(t_init2)
14 t_init2 = tf.reshape(t_init2, [1, 1])
15 t_init2 = tf.Variable(t_init2, name='t_init2')
16 pred_init2 = model(t_init2)
17 dfdx = tape.gradient(pred_init2, t_init2) # f'(t)
18 vl = dfdx * tf.cast(L, tf.float64) # inductor voltage due to dfdx
19 model_loss3 = math_ops.squared_difference(vl, v_init2)
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20 model_loss3 = tf.cast(model_loss3, tf.float32)
21

22 # 1st and 2nd order gradients for co-location pts
23 with tf.GradientTape(persistent=True) as tape2:
24 pred_y = model(t_coloc)
25 dfdx = tape2.gradient(pred_y, t_coloc) # f'(t)
26 dfdx2 = tape2.gradient(dfdx, t_coloc) # f"(t)
27

28 # model_loss2: collocation points
29 pred_y = tf.cast(pred_y, tf.float64)
30 residual = dfdx2 + dfdx * (R / L) + pred_y / (L * C)
31 model_loss2 = K.mean(math_ops.square(residual), axis=-1)
32 model_loss2 = tf.cast(model_loss2, tf.float32)
33

34 #total loss
35 model_loss = model_loss1 + model_loss2 + model_loss3
36

37 trainable = model.trainable_variables
38 model_gradients = tape.gradient(model_loss, trainable)
39

40 # Update model
41 optimizer.apply_gradients(zip(model_gradients, trainable))

6 PINN results

The results of training a PINN for three test cases follow. The tests are for the conditions of section 3:

under-damped, critically-damped, and over-damped. Each plot below presents three traces:

• the response of the analytical equation (blue)

• the co-location points (green)

• the output response of the trained PINN (red)

Under-damped test case:

Figure 7: Under-damped response
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Critically-damped test case:

Figure 8: Critically-damped response

Over-damped test case:

Figure 9: Over-damped response

7 iPINN structure

Figure 10 illustrates the composition of the total loss. Like the PINN model, Loss 2 is from the residual,

except that R, L, and C are variables whose values are determined during training. In contrast, R, L, and

C are constants in the PINN model. As in the PINN, loss 1 and loss 3 force compliance with the initial

conditions of Equation 3 and Equation 4.

The iPINN model includes an additional loss function, loss 4, that forces the output response to match the

response of the DE under investigation.
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Figure 10: iPINN loss function

8 iPINN implementation

Following is the python code for the PINN implementation. The complete code for the iPINN implementation

is available here.

The neural network model definition for iPINN is identical to the PINN network defined above, i.e., two fully-

connected hidden layers, each with 128 neurons. There is a single input for time points and a single output

for the response points.

8.1 iPINN initialization

The response of the DE under investigation is loaded in line 4. The two initial conditions (lines 9 and 13) are

the same as in the PINN model. As discussed above, R, L, and C are trainable variables in the iPINN model

(lines 18-20).

Listing 4: iPINN initialization

1 VC_0 = 12.0 # volts, initial capacitor voltage
2

3 # Load response data file
4 pinn_data = np.load('[insert path here]/pinn_data.npy')
5 t_coloc = pinn_data[:, 0]
6 i_coloc = pinn_data[:, 1]
7

8 # initial conditions
9 # f(t) initial conditions
10 t_init = np.array([0.0]) # time, sec
11 i_init = np.array([0.0]) # current, A
12

13 # f'(t) initial conditions
14 t_init2 = np.array([0.0]) # time, sec
15 v_init2 = np.array([VC_0]) # d/dt(i) * L = VC_0
16
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17 # additional variables added to gradient tracking
18 R = tf.Variable([0.1], trainable=True)
19 L = tf.Variable([0.1], trainable=True)
20 C = tf.Variable([0.1], trainable=True)

8.2 iPINN training step

loss 1: The initial condition from Equation 3 is compared to the output of the network, pred_y (line 10). The

square of the difference is model_loss1 (line 11).

loss 2: As in the PINN training step function, the residual (line 34) is calculated at the co-location points

defined by t_coloc to produce model_loss2 (line 35). R, L, and C are trainable variables.

loss 3: The initial condition from Equation 4 compares the product of L, a trainable variable, and the first-

order gradient, dfdx (line 18), to v_init2. The square of the difference is model_loss3 (line 20).

loss 4: This loss component compares the output of the network (line 39) to the response of the DE under

investigation, i_coloc, to produce model_loss4 (line 40).

The total of the four loss components,model_loss (line 43), is used to calculate the gradients of the loss with

respect to the neural network’s weights and the three trainable variables: R, L, and C (line 49). The optimizer

then updates the network’s weights (line 52), and the R, L, and C values are updated in lines 53-55.

Listing 5: iPINN training step

1 # Step function
2 def step(t_coloc, i_coloc, t_init, i_init, t_init2, v_init2, rlc_lr):
3

4 t_coloc = tf.convert_to_tensor(t_coloc)
5 t_coloc = tf.reshape(t_coloc, [batch_size, 1])
6 t_coloc = tf.Variable(t_coloc, name='t_coloc')
7 with tf.GradientTape(persistent=True) as tape:
8

9 # model_loss1: initial condition i_init @ t_init -> f(t) initial condition
10 pred_init = model(t_init)
11 model_loss1 = math_ops.squared_difference(pred_init, i_init)
12

13 # model_loss3: initial condition v_init2 @ t_init2 -> f'(t) initial condition
14 t_init2 = tf.convert_to_tensor(t_init2)
15 t_init2 = tf.reshape(t_init2, [1, 1])
16 t_init2 = tf.Variable(t_init2, name='t_init2')
17 pred_init2 = model(t_init2)
18 dfdx = tape.gradient(pred_init2, t_init2) # f'(t)
19 vl = dfdx * tf.cast(L, tf.float64) # inductor voltage due to dfdx
20 model_loss3 = math_ops.squared_difference(vl, v_init2)
21 model_loss3 = tf.cast(model_loss3, tf.float32)
22

23 # 1st and 2nd order gradients for co-location pts
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24 with tf.GradientTape(persistent=True) as tape2:
25 pred_y = model(t_coloc)
26 dfdx = tape2.gradient(pred_y, t_coloc) # f'(x)
27 dfdx2 = tape2.gradient(dfdx, t_coloc) # f"(t)
28

29 # model_loss2: collocation points
30 pred_y = tf.cast(pred_y, tf.float64)
31 R64 = tf.cast(R, tf.float64)
32 L64 = tf.cast(L, tf.float64)
33 C64 = tf.cast(C, tf.float64)
34 residual = dfdx2 + (R64 / L64) * dfdx + pred_y / (L64 * C64
35 model_loss2 = K.mean(math_ops.square(residual), axis=-1)
36 model_loss2 = tf.cast(model_loss2, tf.float32)
37

38 # model_loss4: response
39 pred_response = model(t_coloc)
40 model_loss4 = K.mean(math_ops.squared_difference(pred_response, i_coloc), axis=-1)
41

42 #total loss
43 model_loss = model_loss1 + model_loss2 + model_loss3 + model_loss4 * 10
44

45 trainable = model.trainable_variables
46 trainable.append(R)
47 trainable.append(L)
48 trainable.append(C)
49 model_gradients = tape.gradient(model_loss, trainable)
50

51 # Update model
52 optimizer.apply_gradients(zip(model_gradients, trainable))
53 R.assign_sub(model_gradients[6] * rlc_lr)
54 L.assign_sub(model_gradients[7] * rlc_lr)
55 C.assign_sub(model_gradients[8] * rlc_lr)
56

57 return R, L, C, model_loss

9 iPINN results

The results of using an iPINN to identify three unknown test responses follow. The test responses presented

to the iPINN were generated with the conditions of section 3: under-damped, critically-damped, and over-

damped. The tables below compare the R, L, and C component values used to generate the test response

to the values determined by the iPINN. Each plot below presents three traces:

• the response curve of the analytical equation (blue)

• the response data (60 points) to be identified by the iPINN (green)

• the output response of the trained iPINN (red)
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Under-damped test case:

Generating values vs iPINN-determined values

circuit parameter generating value iPINN value

R (ohms) 1.20 1.20
L (henries) 1.50 1.60
C (farads) 0.30 0.31

Table 1: Under-damped test case

Figure 11: Under-damped response

Critically-damped test case:

Generating values vs iPINN-determined values

circuit parameter generating value iPINN value

R (ohms) 4.47 4.54
L (henries) 1.50 1.58
C (farads) 0.30 0.32

Table 2: Critically-damped test case

Figure 12: Critically-damped response
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Over-damped test case:

Generating values vs iPINN-determined values

circuit parameter generating value iPINN value

R (ohms) 6.00 6.12
L (henries) 1.50 1.66
C (farads) 0.30 0.31

Table 3: Over-damped test case

Figure 13: Over-damped response

10 Conclusion

This study demonstrates that a neural network can successfully solve differential equations, which describe

many relationships in numerous fields of science, engineering, and economics. A physics-informed neural

network is trained to solve the second-order differential equation of an electronic circuit resulting in a neural

network that produces the same response to an input signal as the actual circuit.

This study also demonstrates that a neural network can determine the parameters of an unknown differential

equation. Specifically, an inverse physics-informed neural network is trained to determine the unknown

component values of an electronic circuit using only a sample response from the circuit. Further, after

determining the unknown component values, the resulting neural network can produce the same response

to an input signal as the actual circuit.
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