
Reinforcement Learning: A Case Study

in Model Generalization

John Morrow*

Abstract

This project explores the ability of a model trained with reinforcement learning (RL) to generalize, i.e., pro-

duce acceptable results when presented with data it was not exposed to during training. The application in

this study is an industrial process with multiple controls that determine the effect on a product as it tran-

sitions through the process. Determining optimal control settings in this environment can be challenging.

For example, when there are interactions between the controls, adjusting one setting can require the read-

justment of other settings. Also, a complex relationship between a control and its effect complicates finding

an optimal solution. The results presented here show that a model trained by an RL process performs well

in this environment. Further, with proper definitions of the state and reward functions in the RL process, the

trained model is able to generalize to conditions different from those used for training.

1 Introduction

In this project, an RL model is trained to find the optimal control settings for a reflow oven used for solder-

ing electronic components to a circuit board (Figure 1 & Figure 2). The oven’s moving belt transports the

product (i.e., the circuit board) through multiple heating zones. This process heats the product according to

a temperature-time target profile required to produce reliable solder connections.

One of the challenges in finding optimal control settings is that the timing of the target profile’s zones does

not necessarily align with the oven’s heating zones as the product moves through the oven. The model must

cope with this misalignment to produce a product profile close to the target profile.

*www.linkedin.com/in/johnmorrow1000

1

www.linkedin.com/in/johnmorrow1000

Figure 1: Reflow oven
(image licensed from Adobe)

Figure 2: Circuit boards on oven belt
(image licensed from Adobe)

The reflow oven in this project has eight heating zones, each with a control for setting the temperature of the

zone’s heater (Figure 3). Sensors record the temperature of the product at three hundred points as it travels

through the oven.

Figure 3: Reflow oven schematic diagram

2 Process optimization

A human operator typically takes the following steps to determine the heater settings required to solder

circuit boards successfully:

• run one pass of the product through the oven

• observe the resulting temperature-time profile from the sensor readings

• adjust the heater settings to improve the profile toward the target profile

• wait for the oven temperature to stabilize to the new settings

• repeat this procedure until the profile from the sensor readings is acceptably close to the target profile

2.1 Learning the policy

An RL system replaces the operator steps with a two-stage process. In the first stage, an agent learns

the dynamics of the oven and creates a policy for updating the heater settings under various oven condi-

tions.

2

Since considerable time is required to stabilize an oven’s temperature after making a change to the heater

settings and then to pass the product through the oven, an oven simulator is used to speed up the learning

process [Morrow, 2022][5]. The simulator emulates a single pass of the product through the heating profile

in a few seconds instead of the many minutes required by a physical oven.

In each pass of the learning stage, the agent takes an action from its current state by sending the simu-

lator new settings for the eight heaters. After the simulation run, the simulator reports back the product

temperature readings (three hundred readings taken at 1-second intervals).

The agent is rewarded for its action based on the difference between the returned readings (oven_pts) and

the target temperature-time profile (profile_pts). If the difference for the current run is less than the previous

run, the reward is positive; otherwise, it is negative.

A subset of the readings determines the new state of the system. The agent starts the next pass of the

learning stage by taking action from the new state.

2.2 Planning with the policy

In the second stage, the agent follows the learned policy to find optimal heater settings. These settings

will produce the closest match between the actual product profile and the target temperature-time profile.

Figure 4 shows the result of the agent following the policy to find optimal settings. The blue trace is the target

temperature-time profile, and the red trace is the actual profile produced by the optimal settings.

Figure 4: Example planning result Blue trace: target profile.
Red trace: actual product profile.

3 Reinforcement learning system

As discussed above, an RL system comprises an agent taking actions in an environment to learn a policy

for reaching the target goal. The environment responds to each action with a reward indicating whether the

action was good or bad toward reaching the goal. The environment also returns the state of the agent in

3

the environment. The agent consists of two neural networks: the model network and the target network. The

agent’s goal is to find heater settings that will produce a product time-temperature profile that is very close

to the target profile. The environment is the reflow oven simulator. (Figure 5)

Figure 5: Reinforcement learning system

3.1 Generalization: state and reward definition

The state and reward definitions are critical to the RL model’s ability to generalize to new environments

where the target profile and product parameters differ from those used during training. Specifically, both

the state and reward are defined in terms of the relative difference between the product and target profile

temperatures and normalized by the maximum range of allowed heater values.

3.1.1 State definition

State parameters are defined at the centers of the eight heater zones. Each state parameter, m, is defined

as the normalized difference between the temperature at the center of the product and the temperature of

the profile at the center of each heater zone:

state_paramsm = state_scale ·
(

profile_ptsm − oven_ptsm
maximum_temperature_range

)
(1)

The state_scale factor controls the magnitude of input values presented to the neural networks. The

maximum_temperature_range factor is the maximum range of allowed heater values.

3.1.2 Reward definition

When the agent performs an action, the environment returns a reward indicating the effectiveness of the

action in achieving the agent’s goal. The reward is based on whether the action reduced the total temperature

difference between the oven_pts and profile_pts. The total temperature difference is calculated by the error

4

function, and then further processed by the reward function to produce the final reward presented to the

agent.

Error function: The error function reports the summed differences between the oven points and their

corresponding target profile points. The total error comprises two parts, the error for oven_pts above the

target profile and the error for points below the target profile:

current_errorA =

num pts∑
n=0

(profilen − ovenn), for profilen > ovenn (2)

current_errorB =

num pts∑
n=0

(ovenn − profilen), for ovenn ≥ profilen (3)

Reward function: The total reward is the sum of two terms: reward_A and reward_B. Each of these terms

comprises two factors (Figure 6):

• the difference between the current error and the previous error

• a weighting factor determined by the average of the current error and previous error

Figure 6: Reward elements The reward is based on the differ-
ence between the current and previous errors and the average of
the two errors.

This produces a reward that represents not only the increase or decrease in the error but also the magnitude

of the error. For example, an error reduction for a large average error would produce a greater reward than

the same error reduction for a smaller average error. In other words, the agent is rewarded more for reducing

large average errors.

The factor, k_weight, can change the relative importance of errors above or below the target profile. The

factors (reward_scale_factor, weight_scale, and weight_normalize) are used to scale the range of reward val-

ues.

reward = reward_scale_factor · ((rewardA + k_weight · (rewardB)) (4)

5

where,

rewardA = weightA · (prev_errorA − current_errorA) (5)

rewardB = weightB · (prev_errorB − current_errorB) (6)

weightA = weight_scale ·
(
prev_errorA + current_errorA

weight_normalize

)
+ 1 (7)

weightB = weight_scale ·
(
prev_errorB + current_errorB

weight_normalize

)
+ 1 (8)

weight_normalize = 2 · num_profile_pts · (maximum_temperature_range) (9)

3.2 Learning process

The model is trained with a DQN [4] SARSA process [Sutton & Barto, 2018, p.129] [6]. The DQN process is

modified [2] to use a mellowmax update target (Appendix A). A diagram of the learning process is presented

in Figure 7 and the steps of the process are detailed in Algorithm 1.

Figure 7: Learning process

3.2.1 Experience memory

The experience memory is used to implement experience replay [3] [4]. Experience replay provides a number

of advantages including the efficiency of using each experience in multiple training updates and providing

uncorrelated update batches for training the model neural network.

Experiences are collected from the environment (oven simulator) and stored in the experience memory. Each

6

experience starts from a random state and an action is chosen in the state based on epsilon-greedy selection.

The agent takes the action to move to a new state and receives a reward based on how good the action was

toward achieving the agent’s goal. Each experience is stored in the experience memory as (state, action,

reward, new-state).

Typically, experiences are collected in episodes that start from a random state followed by a sequence of

experiences generated by following an epsilon-greedy policy. For this project, the best performance resulted

when using one experience per episode (Appendix B).

3.2.2 Model network training

Periodically, as the agent collects experiences, a random sample of thirty-two experiences is drawn from the

experience memory and a batch of thirty-two training updates is calculated from the samples. The model

neural network is then trained with the batch of updates comprising states as inputs and their corresponding

action-value updates as training targets.

Equation 10 defines the procedure for updating action-values in a SARSA model ([Sutton & Barto, 2018,

p.129] [6]) with a mellowmax policy (Appendix A).

Q(st, at)︸ ︷︷ ︸
new value

← Q(st, at)︸ ︷︷ ︸
current value

+ α︸︷︷︸
learning rate

·
(

rt︸︷︷︸
reward

+ γ︸︷︷︸
discount

· mm_value(st+1)︸ ︷︷ ︸
mellowmax value

− Q(st, at)︸ ︷︷ ︸
current value

)
(10)

This procedure is implemented in the model neural network by applying values from Equation 10 to the cost

function of the gradient descent algorithm used to train the network. The cost function is given by:

J(θ) = 1/2 (y − ŷ)
2 (11)

where y is the current value output by the network:

y = Q(st, at) (12)

and ŷ is the desired output:

ŷ = rt + γ · mm_value(st+1). (13)

Learning rate, α The learning rate in Equation 10 becomes the learning rate used in the gradient descent

algorithm.

7

Gamma, γ The γ hyperparameter in Equation 10 controls the influence of future rewards. The greater the

value of γ, the greater the influence of rewards from distant steps. After investigating a range of values for

γ, it was found that γ = 0.99 produces action values that are extremely close to each other in value and

frequently result in unstable behavior, i.e., diverging errors in the planning process. Setting γ = 0.81 spreads

out the action values delivering stable behavior.

3.2.3 Target network

The target neural network is a frozen copy of the model network that is periodically refreshed by updating

it with the weights from the model network. This network provides the update targets for the DQN update

process. The use of a separate target network improves the stability of the learning process [4].

3.3 Planning process

As discussed in Section 2.2, the agent uses the trained model neural network to find oven settings that

produce a product profile close to the target temperature-time profile. The agent starts from an initial state

and takes a greedy action step from that state and from each successive state until it reaches a minimum

error between the product profile and the target profile. A diagram of the planning process is presented in

Figure 8 and the steps of the process are detailed in Algorithm 2.

Figure 8: Planning process

An example of the error reduction as the agent follows the policy is presented in Figure 9.

8

Figure 9: Planning error

4 Results

Following are the test results of running the planning process on various configurations of product materials

and temperature-time profiles. All of the tests were run with a model neural network trained with the following

product and profile parameters:

Oven Parameters

transport belt speed 0.0075 m/s
heat transport coefficient (air) 50.0 W/degK-m**2
heater zones (1-8) lengths 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225 m
top heaters on
bottom heaters off

Table 1: Oven parameters (training)

Target Profile Parameters

zone start temp (degC) slope (degC/sec) duration (sec)

1 20 2 65
2 150 0 60
3 150 2 35
4 220 0 80
5 220 -2 60

Table 2: Profile parameters (training)

Product Parameters

material FR4 circuit board
density 2000 kg/m3
specific heat 1300 J/kg-degC
thermal conductivity 0.8 w/m-degK
length 0.1 m
width 0.1 m
thickness 0.0016 m

Table 3: Product parameters (training)

As mentioned in the Introduction, one of the challenges in finding optimal control settings is that the timing

of the target profile’s zones does not necessarily align with the oven’s heating zones as the product moves

through the oven [Figure 10]. Although the model is able to minimize the resulting error, the misalignment

will generally account for some unavoidable portion of the error reported in each test.

9

Figure 10: Zone misalignment Blue trace: target profile. Red
trace: actual product profile.

The following notes apply to the errors reported in tests 1-6:

• The errors reported are single point errors, i.e., individual oven_pts compared to their corresponding

profile_pts.

• The errors reported apply to the first four target profile zones. The fifth profile zone is beyond the eight

heater zones and allows the product to cool to ambient temperature. This zone is outside the agent’s

control.

4.1 Test 1: baseline using training parameters

Test 1 is a baseline for testing the model’s performance with the same parameters used to train the model

[1, 2, 3]. Following are the test 1 errors, the optimal heat zone settings, and the target profile vs. actual

temperature-time plot.

Test 1

Average Error 1.9 %
Maximum Error 7.3 %

Optimal Heater Settings (°C)

zone 1 zone2 zone3 zone 4 zone 5 zone 6 zone 7 zone 8

207 273 210 100 357 260 218 230

Figure 11: Test 1 Blue trace: target profile. Red trace: actual
product profile.

10

4.2 Test 2

Test 2 increases the size of FR4 product. The oven and profile parameter values are the same as used

in the baseline of test 1, except that both the top and bottom heating elements are active. The following

table reflects the product parameters used for this test (changes from the baseline training parameters are

bold).

Product Parameters

material FR4 circuit board
density 2000 kg/m3
specific heat 1300 J/kg-degC
thermal conductivity 0.8 w/m-degK
length 0.2 m
width 0.15 m
thickness 0.0032 m

Table 4: Product parameters (test 2)

Following are the test 2 errors, the optimal heat zone settings, and the target profile vs. actual temperature-

time plot.

Test 2

Average Error 2.2 %
Maximum Error 10.0 %

Optimal Heater Settings (°C)

zone 1 zone2 zone3 zone 4 zone 5 zone 6 zone 7 zone 8

195 275 212 99 351 256 222 233

Figure 12: Test 2 Blue trace: target profile. Red trace: actual
product profile.

4.3 Test 3

Test 3 increases the size of the FR4 product and has a different profile from the baseline of test 1. The

oven parameter values are the same as used in the baseline of test 1, except that both the top and bottom

heating elements are active. The following tables reflect the profile and product parameters used for this

test (changes from the baseline training parameters are bold).

11

Target Profile Parameters

zone start temp (degC) slope (degC/sec) duration (sec)

1 20 1.5 60
2 110 0 60
3 110 2 30
4 200 0 75
5 200 -2 50

Table 5: Test 3 profile parameters

Product Parameters

material FR4 circuit board
density 2000 kg/m3
specific heat 1300 J/kg-degC
thermal conductivity 0.8 w/m-degK
length 0.2 m
width 0.15 m
thickness 0.0032 m

Table 6: Product parameters (test 3)

Following are the test 3 errors, the optimal heat zone settings, and the target profile vs. actual temperature-

time plot.

Test 3

Average Error 3.2 %
Maximum Error 9.4 %

Optimal Heater Settings (°C)

zone 1 zone2 zone3 zone 4 zone 5 zone 6 zone 7 zone 8

173 179 142 83 376 232 216 220

Figure 13: Test 3 Blue trace: target profile. Red trace: actual
product profile.

4.4 Test 4

Test 4 changes the product from FR4 to aluminum oxide (alumina 99%). The oven and profile parameter

values are the same as used in the baseline of test 1. The following table reflects the product parameters

used for this test (changes from the baseline training parameters are bold).

12

Product Parameters

material alumina 99% circuit board
density 3900 kg/m3
specific heat 800 J/kg-degC
thermal conductivity 27.5 w/m-degK
length 0.1 m
width 0.1 m
thickness 0.0016 m

Table 7: Product parameters (test 4)

Following are the test 4 errors, the optimal heat zone settings, and the target profile vs. actual temperature-

time plot.

Test 4

Average Error 1.8 %
Maximum Error 6.6 %

Optimal Heater Settings (°C)

zone 1 zone2 zone3 zone 4 zone 5 zone 6 zone 7 zone 8

236 306 232 97 369 268 224 227

Figure 14: Test 4 Blue trace: target profile. Red trace: actual
product profile.

4.5 Test 5

Test 5 changes the product to aluminum oxide (alumina 99%) and increases the size of the product. The

oven and profile parameter values are the same as used in the baseline of test 1, except that both the top

and bottom heating elements are active. The following table reflects the product parameters used for this

test (changes from the baseline training parameters are bold).

Product Parameters

material alumina 99% circuit board
density 3900 kg/m3
specific heat 800 J/kg-degC
thermal conductivity 27.5 w/m-degK
length 0.2 m
width 0.15 m
thickness 0.0032 m

Table 8: Product parameters (test 5)

13

Following are the test 5 errors, the optimal heat zone settings, and the target profile vs. actual temperature-

time plot.

Test 5

Average Error 2.2 %
Maximum Error 10.0 %

Optimal Heater Settings (°C)

zone 1 zone2 zone3 zone 4 zone 5 zone 6 zone 7 zone 8

220 311 233 86 390 267 220 240

Figure 15: Test 5 Blue trace: target profile. Red trace: actual
product profile.

4.6 Test 6

Test 6 changes the product from FR4 to aluminum oxide (alumina 99%), changes the size of the product,

and changes the profile. The oven parameter values are the same as used in the baseline of test 1, except

that both the top and bottom heating elements are active. The following tables reflect the profile and product

parameters used for this test (changes from the baseline training parameters are bold).

Target Profile Parameters

zone start temp (degC) slope (degC/sec) duration (sec)

1 20 3 60
2 200 0 60
3 200 2 40
4 280 0 80
5 280 -3 60

Table 9: Test 6 profile parameters

Product Parameters

material alumina 99% circuit board
density 3900 kg/m3
specific heat 800 J/kg-degC
thermal conductivity 27.5 w/m-degK
length 0.2 m
width 0.15 m
thickness 0.0032 m

Table 10: Product parameters (test 6)

14

Following are the test 6 errors, the optimal heat zone settings, and the target profile vs. actual temperature-

time plot.

Test 6

Average Error 2.8 %
Maximum Error 15.0 %

Optimal Heater Settings (°C)

zone 1 zone2 zone3 zone 4 zone 5 zone 6 zone 7 zone 8

314 478 245 120 524 286 314 284

Figure 16: Test 6 Blue trace: target profile. Red trace: actual
product profile.

5 Conclusion

This project demonstrates that a reinforcement learning system can provide solutions to control a complex

industrial process. Specifically, a reinforcement learning system successfully learns the optimal control

settings of a reflow oven used to solder electronic components to a circuit board. Further, once trained, the

system can generalize to produce acceptable results in environments with different requirements from those

used during training.

6 Appendix A: Mellowmax

This project uses a SARSA model [Sutton & Barto, 2018, p.129] [6] with a mellowmax policy [Asadi and

Littman, 2017][1]. Mellowmax is a variant of the Boltzmann softmax operator updated to avoid potential sta-

bility issues. The mellowmax operator produces a value derived from all of the action values of a state.

mm_value(s) =
1

mm_temp
· log

(
1

n
·

n∑
i=1

e(xi−maxi(xi))

)
+maxi (xi) (14)

where xi are the action values of a state, s.

15

This operator was chosen for its ability to provide a good balance between exploitation and exploration.

Other properties of the mellowmax operator are discussed in the following references: [Asadi and Littman,

2017][1] and [Kim, 2019][2].

7 Appendix B: Experiences per episode

The model was trained with episodes that start from a random state followed by a sequence of experiences

generated by following an epsilon-greedy policy. Each experience is added to the experience memory as

it is generated. Two model configurations were investigated: sixteen experiences per episode and one

experience per episode.

With sixteen-experience episodes, the experience samples in each episode are in relatively tight clusters in

state space. This contrasts with one-experience episodes where the samples are more randomly distributed

(Figure 17). For a given number of experiences, the one-experience model gives better state space coverage

(upper plots). The figure also shows that the one-experience model’s average return during training stabilizes

with fewer total experiences (lower plots). It is stable well before 48,000 experiences as compared to the

sixteen-experience model, which has still not reached stability at 160,000 experiences.

Figure 17: Experiences per episode (upper plots) 2-dimension state-space simulation
of 1000 experience samples. state0 and state1 are the state parameters of the space.
(lower plots) The average return plots are from training sessions of the 8-dimension
state-space model.

It is believed that this result is due to the model neural network serving as a complex function generator

16

that learns the function, action_value = f(state_parameters), by training on update batches generated from

experience memory samples. Since the model then uses the learned function to deliver an action value when

presented with an arbitrary input of state parameters, the more evenly distributed the training samples in

state space, the more accurately the learned function can interpolate outputs for arbitrary inputs.

8 Algorithms

Algorithm 1 learning algorithm

model(·) model network
target(·) target network
algorithm parameters
n_exp total experiences
n_train experiences per model network update
n_update experiences per target network update
procedure learn

state← random_state ▷ generate random state
n = 0
while n ̸= n_exp do

action_values← model(state)
action← get_action(action_values) ▷ epsilon-greedy selection
htr_settings← get_htr_settings(action)
oven_pts← simulator(htr_settings) ▷ run pass with oven simulator
reward← get_reward(oven_pts)
new_state← get_nxt_state(oven_pts)
exp_memory ← state, action, reward, new_state ▷ save experience to exp_memory
state← random_state
n← n+ 1
if (n mod n_train) = 0 then ▷ train model every n_train experiences

sample random batch from exp_memory
for each experience in batch do

state, action, reward, new_state← exp_sample
target_action_values← target(new_state)
target_value← mellowmax(target_action_values)
update(state, action)← reward+ (γ · target_value)
add this update to batch of updates

end for
train model with batch of updates

end if
if (n mod n_update) = 0 then ▷ update target every n_update experiences

target← model ▷ target updated by cloning model
end if

end while
end procedure

17

Algorithm 2 planning algorithm

model(·) model network
procedure plan

oven_pts← simulator(initial_htr_settings) ▷ run pass with oven simulator
current_error ← get_error(oven_pts)
state← get_nxt_state(oven_pts) ▷ initial state
while error > current_error do

action_values← model(state)
action← get_action(action_values) ▷ greedy selection
htr_settings← get_htr_settings(action)
oven_pts← simulator(htr_settings)
error ← get_error(oven_pts)
new_state← get_nxt_state(oven_pts)
state← new_state
if error < current_error then

current_error ← error
end if

end while
output: htr_settings ▷ final heater settings to program oven

end procedure

18

References

[1] K. Asadi and M. L. Littman, “An alternative softmax operator for reinforcement learning,” 2016. [Online].

Available: https://arxiv.org/abs/1612.05628

[2] S. Kim, K. Asadi, M. Littman, and G. Konidaris, “Deepmellow: Removing the need for a target network

in deep q-learning,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, 7 2019,

pp. 2733–2739, also available as https://www.ijcai.org/proceedings/2019/0379.pdf.

[3] L. Lin, “Reinforcement learning for robots using neural networks,” 1992, also available as https://apps.

dtic.mil/sti/pdfs/ADA261434.pdf.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A. Ried-

miller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Ku-

maran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, pp. 529–533, 2015, also available as https://www.deepmind.com/publications/

human-level-control-through-deep-reinforcement-learning.

[5] J. Morrow, “Reinforcement learning: Training environment simulator,” 2022. [Online]. Available:

https://github.com/jmorrow1000/RL-generalize

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: A Bradford

Book, 2018, also available as http://www.incompleteideas.net/book/the-book-2nd.html.

19

https://arxiv.org/abs/1612.05628
https://www.ijcai.org/proceedings/2019/0379.pdf
https://apps.dtic.mil/sti/pdfs/ADA261434.pdf
https://apps.dtic.mil/sti/pdfs/ADA261434.pdf
https://www.deepmind.com/publications/human-level-control-through-deep-reinforcement-learning
https://www.deepmind.com/publications/human-level-control-through-deep-reinforcement-learning
https://github.com/jmorrow1000/RL-generalize
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Process optimization
	Learning the policy
	Planning with the policy

	Reinforcement learning system
	Generalization: state and reward definition
	State definition
	Reward definition

	Learning process
	Experience memory
	Model network training
	Target network

	Planning process

	Results
	Test 1: baseline using training parameters
	Test 2
	Test 3
	Test 4
	Test 5
	Test 6

	Conclusion
	Appendix A: Mellowmax
	Appendix B: Experiences per episode
	Algorithms

