Skip to content

Julia implementation of polar encoding and decoding

Notifications You must be signed in to change notification settings

jneu-research/Polar.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Polar.jl

This repository contains Polar.jl, a Julia implementation of various aspects of polar codes, in particular encoding, decoding and code design for various scenarios.

This package is intended for Julia v1.0 and above.

Usage

For details and examples on how to use Polar.jl, please refer to Polar.jl-examples and Polar.jl-ternaryquantization-examples.

Support

The code is provided as is, without any warranties or guarantees (neither implicit nor explicit). Use at your own risk!

Citation

Please cite the use of Polar.jl as:

  • J. Neu, ''Polar.jl: Julia implementation of polar coding'', URL: https://jneu.net/Polar.jl
    @MISC{Polar_jl,
      author = {Neu, Joachim},
      title = {{Polar.jl}: {Julia} implementation of polar coding},
      howpublished = {\url{https://jneu.net/Polar.jl}},
      year = 2019,
    }
    

References

General

  • N. Stolte. ''Recursive Codes with the Plotkin-Construction and Their Decoding / Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung''. PhD thesis. Technische Universität Darmstadt, 2002.
  • E. Arıkan. ''Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels''. In: IEEE Trans. Inf. Theory (2009).

Decoding

  • I. Tal and A. Vardy. ''List Decoding of Polar Codes''. In: IEEE Trans. Inf. Theory (2015).
  • A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg. ''LLR-Based Successive Cancellation List Decoding of Polar Codes''. In: IEEE Trans. Signal Process. (2015).

Design

  • R. Mori and T. Tanaka. ''Performance and Construction of Polar Codes on Symmetric Binary-Input Memoryless Channels''. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT). 2009.
  • M. Mondelli, S. H. Hassani, and R. L. Urbanke. ''From Polar to Reed-Muller Codes: A Technique to Improve the Finite-Length Performance''. In: IEEE Trans. Commun. (2014).

Others

  • F. Brännström, L. K. Rasmussen, and A. J. Grant. ''Convergence Analysis and Optimal Scheduling for Multiple Concatenated Codes''. In: IEEE Trans. Inf. Theory (2005).

About

Julia implementation of polar encoding and decoding

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages