Skip to content
Julia implementation of polar encoding and decoding
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
src
.gitignore
Manifest.toml
Project.toml
README.md

README.md

Polar.jl

This repository contains a Julia implementation of various aspects of polar codes, in particular encoding, decoding and code design for various scenarios.

This package is intended for Julia v1.0 and above.

Usage

For details on how to use Polar.jl, please refer to Polar.jl-examples.

Support

The code is provided as is, without any warranties or guarantees (neither implicit nor explicit). Use at your own risk!

Citation

Please cite the use of any material in this repository as:

  • J. Neu, ''Polar.jl: Julia implementation of polar coding'', URL: https://jneu.net/Polar.jl
    @MISC{Polar_jl,
      author = {Neu, Joachim},
      title = {{Polar.jl}: {Julia} implementation of polar coding},
      howpublished = {\url{https://jneu.net/Polar.jl}},
      year = 2019,
    }
    

References

General

  • N. Stolte. ''Recursive Codes with the Plotkin-Construction and Their Decoding / Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung''. PhD thesis. Technische Universität Darmstadt, 2002.
  • E. Arıkan. ''Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels''. In: IEEE Trans. Inf. Theory (2009).

Decoding

  • I. Tal and A. Vardy. ''List Decoding of Polar Codes''. In: IEEE Trans. Inf. Theory (2015).
  • A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg. ''LLR-Based Successive Cancellation List Decoding of Polar Codes''. In: IEEE Trans. Signal Process. (2015).

Design

  • R. Mori and T. Tanaka. ''Performance and Construction of Polar Codes on Symmetric Binary-Input Memoryless Channels''. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT). 2009.
  • M. Mondelli, S. H. Hassani, and R. L. Urbanke. ''From Polar to Reed-Muller Codes: A Technique to Improve the Finite-Length Performance''. In: IEEE Trans. Commun. (2014).

Others

  • F. Brännström, L. K. Rasmussen, and A. J. Grant. ''Convergence Analysis and Optimal Scheduling for Multiple Concatenated Codes''. In: IEEE Trans. Inf. Theory (2005).
You can’t perform that action at this time.