
Bayesian Nonlinear Filter for Training Neural Networks

-An Investigation-

Jason Nezvadovitz

4/26/2017

Lead and Supporting Documents:

[1] Arasaratnam, Ienkaran, and Simon Haykin. “Nonlinear Bayesian filters for training recurrent
neural networks.” MICAI 2008: Advances in Artificial Intelligence (2008): 12-33.

[2] Haykin, S., Ed.: Kalman Filtering and Neural Networks, Wiley, New York (2001). Chapter 2.

The textbook chapter [2] primarily helped me with implementation of the theoretical ideas which
I found were better handled by the paper [1]. No surprise, [1] references [2]. They also share an
author; hopefully that is okay.

Usually I like to provide lengthy self-contained write-ups, but this time I’ll just refer you to the
above documents for that. Instead, here I’ll provided a simpler, more straight-forward review.

Summary

As you know, a neural network is a nonlinear function of its weights ŵ and the input u,

y = h(ŵ, u)

For example, with u ∈ Rn and y ∈ Rm, the simplest multilayer perceptron (a feedforward, fully-
connected neural network) can be expressed as,

h(ŵ, u) = Ŵ2g(Ŵ1u)

where the matrices Ŵ1 ∈ Rl×n and Ŵ2 ∈ Rm×l are just a reorganization of the elements of
ŵ ∈ Rl(n+m). (The function g : Rl → Rl is just an element-wise application of the l neuron
functions). Even recurrent neural networks (which have activation feedback) can be expressed
similarly if the internal states are included in u.

The fundamental idea presented in [1] is that training a neural network can be viewed as a stochastic
estimation problem (or at least, that was the idea that got me hooked). There is a reason for putting
a hat on ŵ. The Universal Approximation Theorem (UAT) basically promises us (under some easy
conditions) that for all training data input-output pairs (ui, zi) there exists a w such that,∑

i

||zi − h(w, ui)|| < ε

where ε can be made arbitrarily small with proper choice of neuron function g and a finite number
of neurons l <∞. In [1], we are not concerned with network architecture (designing g and l), but
rather with training, i.e. estimating w.

1

Let us encode the UAT equation as a stochastic process with state variable wt∼Pt. First, note that
for a specific set of data, this ideal w is fixed, so from “time” (iteration, sample, etc...) t to t+ 1,

wt+1 = wt

We can’t measure w directly; we only get partial information in the form of the training data,

zt = h(wt, ut) + νt

where νt∼Rt is a random sequence that encodes both the ideal error ε and the possibility that our
training data zt has noise (i.e. zt is not exactly what we want, but rather a noisy version of it). In
[1] and [2], they include an “artificial” noise in the wt process equation as well, but later say that
they practically always make it ≈0. Also, note that we could have just written h(wt, ut) as h(w, ut)
since w is static. Here, time t is just the iteration of the training process, so in a sense the training
data is considered a known timeseries. When the end of the data set has been reached, it can be
randomly reordered and then presented again (with each presentation being called an “epoch”).

This is a hidden Markov model (HMM), which is the name for a POMDP when there is no
“decision” to be made; just a state to estimate. Additionally, the process equation is trivial.
However, we cannot directly attack this with the nonlinear filter covered in class, because both the
state and observation spaces are continuous. Well I mean, we can, but the sums will be integrals
(multidimensional integrals, in fact). So instead we will discretize our spaces into grids... haha no.
Never again.

What we will actually do is what [1] does: make assumptions.

• w0 is Gaussian, i.e. our known prior is P0 = N (ŵ0, P0)

• νt is zero-mean Gaussian, i.e. Rt = N (0, Rt)

• h is linear in wt, i.e. h(wt, ut) = Hwt + hu(ut)

Hold on! That linearity assumption could not be farther from the truth. Well, these are the
assumptions that would make the following algorithms optimal. The fact that they end up working
well is mostly heuristic, as we’ll discuss later.

At the core of the nonlinear filters we will discuss, is a little-known linear thing some call the
Kalman filter (sarcasm). I will not derive it here (Google can give you thousands of derivations),
but rather outline its logic. If the prior distribution P0 is Gaussian, the noise distribution Rt is
Gaussian, and the function h is linear (hurts to say that), then the belief Pt will remain Gaussian
for all time. This is because linear combinations of Gaussian random variables are also Gaussian.
The belief certainly encodes all possible statistics we could want for estimating wt, but conveniently
if it is Gaussian, it is sufficient to just know a mean ŵt and covariance Pt. Additionally, the mean
and mode of a Gaussian coincide, so ŵ is both the maximum a-posteriori (MAP) and minimum
mean-square-error (MMSE) estimate of w. The Kalman filter just analytically carries out recursive
Bayes for this special case. Applied to our HMM with initial condition (ŵ0, P0), it is,

Kt = PtH
T (HPtH

T +Rt)
−1

ŵt+1 = ŵt +Kt(zt − h(ŵt, ut))

Pt+1 = Pt −KtHPt

Much like the Kalman filter, the nonlinear filters that [1] employs attempt to estimate the first and
second moments (ŵt and Pt) of Pt as well, and use ŵt as the current estimate of w. They become
nonlinear filters when they add on their own special heuristics to engage our assumptions. For
example, the “cubature Kalman filter” carries out numerical integrations with Gaussian functions

2

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

to employ the equations that otherwise analytically simplify to the Kalman filter equations. The
“central-difference Kalman filter” uses finite-differencing to compute,

Ht :=
∂h

∂w

∣∣∣
w=ŵt

at each timestep and replaces H with Ht in the above Kalman filter equations. Lastly, the “extended
Kalman filter” (EKF) does the same thing but using a known analytical derivative of h. There is
also the unscented Kalman filter (my personal favorite) which uses the unscented transform and
is only discussed in the last chapter of [2]. Any of these algorithms are run until you are satisfied
with your neural network’s fit on the training set or a validation set.

The paper also covers an interesting demonstration of how the EKF is equivalent to Newton’s
method (just read section 4.1 of [1]). Compared to the notorious backpropagation-gradient-descent
algorithms, [1] claims and supports that these Bayesian methods provide increased accuracy /
superior convergence due to their approximate second-order nature. However, despite needing less
iterations with them, [1] does not claim that they are always faster since each iteration takes longer.

Critique / Discussion

After reading [1] and [2], I was really only left unsure about the strictness of the conditions for
convergence. Gradient-descent (GD) just “moves down”, ya know? With GD, there should be a
bell deep enough for your chosen step-size to rattle in. On the other hand, these algorithms do
“extra stuff” and I don’t have a perfect picture of how they will move. Ideally they will only move
“up” for a moment if it helps them move very down soon after.

Additionally, if the EKF is Newton-Raphson, it will fail whenever the Hessian is ill-conditioned (i.e.
if the inverse defining Kt doesn’t exist). Does this happen often with neural networks? Should I be
worried? Well, as an engineer, my approach to answering that was to try a couple simple examples
and then say “yup, always works”.

I chose to implement the EKF method so I can call it “stochastic Newton-Raphson” to bother
Sean (since it may not be exactly what he calls stochastic Newton-Raphson). The code for my
Python implementation can be found here: https://github.com/jnez71/kalmaNN. It is very
user friendly and well documented in the docstrings (not the README). The file knn.py contains a
class for creating and training a neural network by either EKF or GD. The other files are just demos.

The only real point of concern in implementation is computing that damn Jacobian ∂h
∂w . I chose

to use a multilayer perceptron (MLP) with one hidden layer, so with a little tensor math (hours of
expanding scalar equations and pulling my hair out) we have,

h(ŵ, u) := Ŵ2g(Ŵ1u)

dh

dŴ2

= block diag(g(Ŵ1u)T)

dh

dŴ1

=
dh

dg

dg

dŴ1

=
dh

dg

dg

dŴ1

=
(
Ŵ2 �

dg(Ŵ1u)

dŴ1u

)
⊗ u

where � is the Hadamard product (element-wise multiplication) and ⊗ is the outer product. We
can consistently construct ∂h

∂w from the elements of dh
dŴ1

and dh
dŴ2

. The reason I formulated it this

way was to take as much advantage of memoization and vectorization as backpropagation does (the
equations are very similar).

3

https://github.com/jnez71/kalmaNN

Another important implementation detail is the inclusion of biases. The neural network equation
we saw at the beginning looked like neurons applied to linear combinations of the input, but really
it is supposed to be affine combinations if you want to satisfy the UAT. To reconcile this, the input
u is given one extra element that is always 1, and an extra neuron gl+1 is set to permanently output
1. That breaks no prior derivations.

The rest of the implementation is pretty straightforward, so lets look at some results. In the
following, I initialized the network weights random uniform on [−10, 10].

For the first test, 100 points were evenly sampled over the domain [−10, 10] of the following function,

z = e−u2

+ 0.5e−(u−3)2 + ν

where ν∼N (0, 0.0025). Pretending we don’t know what function produced that data anymore, the
MLP was trained on those samples to approximate it. A logistic activation function was used for
l = 10 neurons in the hidden layer. The initial weight covariance P0 was set to 0.5I, and the
sensor variance R was accordingly set to a constant 0.0025. The training was run for 100 epochs
(presentations of randomly ordered training data). The weight covariance trace decreased steadily
during training, implying an increasing confidence in the fit. To compare the results, GD was also
used to train an identical MLP (over the same data that was used for the EKF training). The
faster GD was given a step-size of 0.05 and 400 epochs. The results are shown in Figures 1-4. Note
that a lot more trails with different parameters were run; these just represent the common result.

Figure 1: A test to fit an arbitrary nonlinear function with only sparse noisy samples. Compared
to GD, the EKF training method took longer per iteration, but was able to achieve a much better
fit in only a quarter of the number of epochs.

For the second test, the MLP was used to classify 2D data. The MLP output can be interpreted
as classifications by selecting the class integer closest to the floating-point output of the MLP. The
classes for this test “spiral” into one-another, making them not linearly-separable. The configuration
(number of neurons, initial weight covariance, etc...) was initialized exactly like in test 1, but with
GD only given 200 epochs. Results (with a comparison to GD) are shown in Figure 5. The two
MLP’s were trained and reset 50 times each (over the same randomized data as each other). The
MLP trained by EKF had an average accuracy of 90% (with 2% standard deviation) while the MLP
trained by GD had an average accuracy of 84% (with 5% stdev).

4

Figure 2: Another run of the 1D data fit test. Comparing this to that of Figure 1, notice the
similarity in convergence provided by the EKF method, despite random initial conditions.

Figure 3: The decay of the trace of the state covariance matrix P during the training.

For the final test data, 100 seconds (timestep 0.01 seconds) of a 3D Lorenz Strange Attractor
dynamic was simulated, with the MLP’s objective being to learn the mapping from state to state-

5

Figure 4: The same 1D fit problem was run 50 times, and the RMS error of the final fit was recorded.
This histogram shows that the EKF method provides a tighter convergence variance than GD.

Figure 5: The second test involved training to classify noisy non-linearly-separable 2D data. A
couple of purposeful “miss-classifications” were including in the training set to further noise the
data. The EKF-trained MLP was 90% accurate on average, while the GD-trained MLP with 84%
accurate. Also, the EKF training took half as many epochs (although computational time was
about even between the two).

derivative, which is analytically given by,

ẋ =

 10(x1 − x0)
x0(28− x2)− x1
x0x1 − 2.6x2

The MLP was given 30 neurons each using tanh for activation. Both P0 and R were set to 0.5I. The
data was only presented once (one epoch). Once trained, another simulation of the Lorenz dynamic
was performed starting from the same initial condition, but this time using the MLP to compute
the state derivative. The resulting evolution is shown in Figures 6 and 7. The Lorenz dynamic

6

is chaotic, and thus just the fact that the MLP’s autonomous predictions produced a somewhat
similar trajectory is impressive (a recurrent neural network would work a lot better for this specific
test; I mostly did it for fun). No comparison to GD for this test (I need to turn this in now).

Figure 6: The third test involved attempting to predict the behavior of a chaotic Lorenz system
after training on a short simulation of one (the black dashed line).

Figure 7: A zoomed-out view of Figure 4, showing that the learned dynamic was not unstable, but
rather had large strange-attractor-like oscillations.

Overall I am pretty impressed with the methods presented by [1] and [2]. The EKF training actually
did provide both better fits and a smaller convergence variance (i.e. more consistent results) which
is really nice. The theory was right, and at least on these tests I never ran into an issue with
infinite Kt. And as expected, EKF training converged in less iterations than GD but took longer
per iteration.

7

