
navbox+

-An Unscented Estimation and Adaptive Control Package-

Author: Jason Nezvadovitz

Created: June 1, 2017

This is a work in progress. The ROS package demos and most of the documentation are not finished.

To install the Python package, navigate to this folder and do: sudo python setup.py install

This Python package provides an unscented Kalman filter (UKF) for online state and parameter
estimation, and a general framework to feed those estimates into an adaptive controller. The only
major assumptions are that:

• The physical system is Markovian with respect to some state

• That state lives on a finite-dimensional smooth manifold

• Process noise and sensor noise are independently sampled at each timestep

• Only the mean and covariance of any noises are known / available for use

• The true state’s underlying probability distribution is unimodal

• Most uncertainty in the process is parametric

More importantly, this package (will eventually provide) some usable demos configuring navbox+
for a variety of robots, including boats and submarines, all integrated with ROS.

Notation

The physical system under consideration is modeled over time t discretized by a chosen ∆t as,

x(t + ∆t) = f(x(t), u, ωf ,∆t)

where x ∈M is the system state, u ∈ Rnu is the input we can control, and ωf∼(ω̄f , Cf) is a random
vector (“process noise”) distributed with mean ω̄f ∈ Rnωf and covariance matrix Cf . Of the above
variables, we only assume that u, ω̄f , and Cf are known at all times.

The smooth nm-dimensional manifold M that x lives on (often called the state space) has to be
understood a little. We must be capable of computing the exponential mapping between vectors
in the tangent space of this manifold and points on the manifold itself. Specifically, we require two
special operations: “boxplus” and “boxminus”.

The boxplus operation, � :M×Rnm →M perturbs a state on M by a vector tangent to M. I.e.
for any x ∈M and any v ∈ Tx(M), the result of x� v is another point onM that is the projection
of v back ontoM. The boxminus operation � :M×M→ Rnm is the inverse operation to boxplus,
i.e. (x�v)�x = v. If your state is just a vector on Rnm then boxplus and boxminus are just vector
addition and subtraction. However, if your state is or includes any non-vector components like
quaternions, I highly suggest reading the paper linked above to further understand boxoperations.

1

https://en.wikipedia.org/wiki/Kalman_filter#Unscented_Kalman_filter
https://en.wikipedia.org/wiki/Adaptive_control
http://www.ros.org/
https://arxiv.org/pdf/1107.1119.pdf

The navbox+ package provides a few tools to help you configure your boxoperations. You may also
begin to notice the pun in the package name.

Anyway, we also have a suite of nh memoryless sensors modeled as,

zi = hi(x, u, ωhi
), i = 1, 2, . . . , nh

where zi ∈ Rnzi is the output of the ith sensor, corrupted by sensor noise ωhi
∼(ω̄hi

, Chi
). The sensor

noise mean and covariance are always known, but the measurements zi can arrive intermittently.

So here’s the deal: x can contain all your hopes and dreams. Typically, f and the hi require a ton
of physical parameters / biases that are difficult to experimentally determine. Or, your model may
not even have the exact right form, so treating the parameters as time-varying may be necessary
for flexibility through operating modes. To reconcile this,

1. Define xq ∈Mq as the true system states (not parameters).

2. Define xp ∈ Rnp as a vector of the distinguishable unknown parameters in f and the hi.

3. Let x ∈ M = Mq × Rnp be the concatenation of xq and xp, i.e. |M| = nm = nq + np.
Note that x itself can still be described with nx ≥ nm values when using redundant state
representations like quaternions.

So what is meant by “distinguishable” parameters? Well consider some y = ax + sin(bx). Here
a and b are distinguishable. Suppose you ran a system identification finding a = 4 and b = 2.
Then I tell you that a is really a combination of two other parameters, a1 and a2, like perhaps
y = (a1 + a2)x + sin(bx) or y = a1a2x + sin(bx). The parameters a1 and a2 are indistinguishable
because any combination of numbers that sum (first example) or multiply (second example) to a = 4
will still satisfy the identification. However, if the function was, say, y = (a1+a2)x+sin(a1+bx), then
a1 and a2 are distinguishable because a1 contributes uniquely elsewhere. In short, indistinguishable
parameters are those that connect themselves to the state in an identical way.

If your equations (f and the hi) are linear in their parameters, it is really easy to spot and consolidate
indistinguishable parameters. Fortunately, most robot models are linear in their parameters.
While navbox+ can work on systems nonlinear in their parameters, things can go wrong because
indistinguishability may be lurking within your parameterization.

Now then, if you can manage to get a good model with navbox+ online system identification, then
you are poised to construct a great adaptive controller. The controller is a function,

u = g(r(t), r(t + dt), x̂, Cx, dt)

where r ∈ Mq is the desired value of the non-parameter states (i.e. the “reference”) and Cx is
the covariance of x̂, our current estimate of x. This controller is adaptive because it makes use of
parameters identified in realtime (i.e. the x̂p part of x̂). If the parameter estimates were perfect,
then g could simply be f with r plugged into xq and then solved for u. However perfection is
impractical, so remember to be safe and always wear a feedback term.

One more thing! If you happen to have a state derivative sensor too (like an accelerometer), you can
still incorporate it in a variety of ways. The one we suggest is to append this measured derivative to
the state vector and treat the sensor as an update for it. Cross-correlation between these derivative
values and the other true states will couple the accelerometer information to the rest of the filter.

A table is provided on the following page to summarize most of the notation used in this package.
. . .

2

Table of Notation

Symbol Space / Args Meaning Code

t R Time t

∆t R Discrete timestep dt

f M× Rnu × Rnωf × R 7→ M State advance function f

x̂ M =Mq × Rnp Full state estimate (contains nx ≥ nm values) x

x̂q Mq Non-parameter part of the state estimate xq

x̂p Rnp Parameter part of the state estimate xp

Cx Rnm×nm Full state estimate covariance matrix Cx

u Rnu Control input u

ωf Rnωf Process noise wf

ω̄f Rnωf Process noise mean wf0

Cf Rnωf
×nωf Process noise covariance matrix Cf

zi Rnzi Measurement from a sensor z

hi M× Rnu × Rnωhi 7→ Rnzi Model of a sensor h

ωhi
Rnωhi Noise in a sensor wh

ω̄hi
Rnωhi Mean of the noise in a sensor wh0

Chi Rnωhi
×nωhi Covariance matrix of a sensor’s noise Ch

g Mq ×Mq ×M× Rnm×nm × R 7→ Rnu Controller function g

r Mq Desired non-parameter state r

� M× Rnm 7→ M Boxplus xplus

� M×M 7→ Rnm Boxminus xminus

Configuration / Usage

pass

References

pass

3

