navbox+

-An Unscented Estimation and Adaptive Control Package-

Author: Jason Nezvadovitz

Created: June 1, 2017

This is a work in progress. The ROS package demos and most of the documentation are not finished.

To install the Python package, navigate to this folder and do: sudo python setup.py install

This Python package provides an unscented Kalman filter (UKF) for online state and parameter estimation, and a general framework to feed those estimates into an adaptive controller. The only major assumptions are that:

- The physical system is Markovian with respect to some state
- That state lives on a finite-dimensional smooth manifold
- Process noise and sensor noise are independently sampled at each timestep
- Only the mean and covariance of any noises are known / available for use
- The true state's underlying probability distribution is unimodal
- Most uncertainty in the process is parametric

More importantly, this package (will eventually provide) some *usable* demos configuring navbox+ for a variety of robots, including boats and submarines, all integrated with ROS.

Notation

The physical system under consideration is modeled over time t discretized by a chosen Δt as,

$$x(t + \Delta t) = f(x(t), u, \omega_f, \Delta t)$$

where $x \in \mathcal{M}$ is the system state, $u \in \mathbb{R}^{n_u}$ is the input we can control, and $\omega_f \sim (\bar{\omega}_f, C_f)$ is a random vector ("process noise") distributed with mean $\bar{\omega}_f \in \mathbb{R}^{n_{\omega_f}}$ and covariance matrix C_f . Of the above variables, we only assume that $u, \bar{\omega}_f$, and C_f are known at all times.

The smooth n_m -dimensional manifold \mathcal{M} that x lives on (often called the state space) has to be understood a little. We must be capable of computing the exponential mapping between vectors in the tangent space of this manifold and points on the manifold itself. Specifically, we require two special operations: "boxplus" and "boxminus".

The boxplus operation, $\boxplus : \mathcal{M} \times \mathbb{R}^{n_m} \to \mathcal{M}$ perturbs a state on \mathcal{M} by a vector tangent to \mathcal{M} . I.e. for any $x \in \mathcal{M}$ and any $v \in \mathcal{T}_x(\mathcal{M})$, the result of $x \boxplus v$ is another point on \mathcal{M} that is the projection of v back onto \mathcal{M} . The boxminus operation $\boxminus : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^{n_m}$ is the inverse operation to boxplus, i.e. $(x \boxplus v) \boxminus x = v$. If your state is just a vector on \mathbb{R}^{n_m} then boxplus and boxminus are just vector addition and subtraction. However, if your state is or includes any non-vector components like quaternions, I highly suggest reading the paper linked above to further understand boxoperations. The navbox+ package provides a few tools to help you configure your boxoperations. You may also begin to notice the pun in the package name.

Anyway, we also have a suite of n_h memoryless sensors modeled as,

$$z_i = h_i(x, u, \omega_{h_i}), \quad i = 1, 2, \dots, n_h$$

where $z_i \in \mathbb{R}^{n_{z_i}}$ is the output of the ith sensor, corrupted by sensor noise $\omega_{h_i} \sim (\bar{\omega}_{h_i}, C_{h_i})$. The sensor noise mean and covariance are always known, but the measurements z_i can arrive intermittently.

So here's the deal: x can contain all your hopes and dreams. Typically, f and the h_i require a ton of physical parameters / biases that are difficult to experimentally determine. Or, your model may not even have the exact right form, so treating the parameters as time-varying may be necessary for flexibility through operating modes. To reconcile this,

- 1. Define $x_q \in \mathcal{M}_q$ as the true system states (not parameters).
- 2. Define $x_p \in \mathbb{R}^{n_p}$ as a vector of the *distinguishable* unknown parameters in f and the h_i .
- 3. Let $x \in \mathcal{M} = \mathcal{M}_q \times \mathbb{R}^{n_p}$ be the concatenation of x_q and x_p , i.e. $|\mathcal{M}| = n_m = n_q + n_p$. Note that x itself can still be described with $n_x \ge n_m$ values when using redundant state representations like quaternions.

So what is meant by "distinguishable" parameters? Well consider some $y = ax + \sin(bx)$. Here a and b are distinguishable. Suppose you ran a system identification finding a = 4 and b = 2. Then I tell you that a is really a combination of two other parameters, a_1 and a_2 , like perhaps $y = (a_1 + a_2)x + \sin(bx)$ or $y = a_1a_2x + \sin(bx)$. The parameters a_1 and a_2 are indistinguishable because any combination of numbers that sum (first example) or multiply (second example) to a = 4 will still satisfy the identification. However, if the function was, say, $y = (a_1+a_2)x + \sin(a_1+bx)$, then a_1 and a_2 are distinguishable because a_1 contributes uniquely elsewhere. In short, indistinguishable parameters are those that connect themselves to the state in an identical way.

If your equations (f and the h_i) are linear in their parameters, it is really easy to spot and consolidate indistinguishable parameters. Fortunately, most robot models are linear in their parameters. While navbox+ can work on systems nonlinear in their parameters, things can go wrong because indistinguishability may be lurking within your parameterization.

Now then, if you can manage to get a good model with navbox+ online system identification, then you are poised to construct a great adaptive controller. The controller is a function,

$$u = g(r(t), r(t+dt), \hat{x}, C_x, dt)$$

where $r \in \mathcal{M}_q$ is the desired value of the non-parameter states (i.e. the "reference") and C_x is the covariance of \hat{x} , our current estimate of x. This controller is adaptive because it makes use of parameters identified in realtime (i.e. the \hat{x}_p part of \hat{x}). If the parameter estimates were perfect, then g could simply be f with r plugged into x_q and then solved for u. However perfection is impractical, so remember to be safe and always wear a feedback term.

One more thing! If you happen to have a state derivative sensor too (like an accelerometer), you can still incorporate it in a variety of ways. The one we suggest is to append this measured derivative to the state vector and treat the sensor as an update for it. Cross-correlation between these derivative values and the other true states will couple the accelerometer information to the rest of the filter.

A table is provided on the following page to summarize most of the notation used in this package.

Symbol	Space / Args	Meaning	Code
t	\mathbb{R}	Time	t
Δt	\mathbb{R}	Discrete timestep	dt
f	$\mathcal{M} imes \mathbb{R}^{n_u} imes \mathbb{R}^{n_{\omega_f}} imes \mathbb{R}\mapsto \mathcal{M}$	State advance function	f
\hat{x}	$\mathcal{M}=\mathcal{M}_q imes \mathbb{R}^{n_p}$	Full state estimate (contains $n_x \ge n_m$ values)	x
\hat{x}_q	\mathcal{M}_q	Non-parameter part of the state estimate	хq
\hat{x}_p	\mathbb{R}^{n_p}	Parameter part of the state estimate	хр
C_x	$\mathbb{R}^{n_m imes n_m}$	Full state estimate covariance matrix	Cx
u	\mathbb{R}^{n_u}	Control input	u
ω_f	$\mathbb{R}^{n_{\omega_f}}$	Process noise	wf
$\bar{\omega}_f$	$\mathbb{R}^{n_{\omega_f}}$	Process noise mean	wfO
C_f	$\mathbb{R}^{n_{\omega_f} imes n_{\omega_f}}$	Process noise covariance matrix	Cf
z_i	$\mathbb{R}^{n_{z_i}}$	Measurement from a sensor	Z
h_i	$\mathcal{M} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_{\omega_{h_i}}} \mapsto \mathbb{R}^{n_{z_i}}$	Model of a sensor	h
ω_{h_i}	$\mathbb{R}^{n_{\omega_{h_i}}}$	Noise in a sensor	wh
$\bar{\omega}_{h_i}$	$\mathbb{R}^{n_{\omega_{h_i}}}$	Mean of the noise in a sensor	wh0
C_{h_i}	$\mathbb{R}^{n_{\omega_{h_i}} imes n_{\omega_{h_i}}}$	Covariance matrix of a sensor's noise	Ch
g	$\mathcal{M}_q imes \mathcal{M}_q imes \mathcal{M} imes \mathbb{R}^{n_m imes n_m} imes \mathbb{R} \mapsto \mathbb{R}^{n_u}$	Controller function	g
r	\mathcal{M}_q	Desired non-parameter state	r
Ξ	$\mathcal{M} imes \mathbb{R}^{n_m} \mapsto \mathcal{M}$	Boxplus	xplus
	$\mathcal{M} imes \mathcal{M} \mapsto \mathbb{R}^{n_m}$	Boxminus	xminus

Table of Notation

Configuration / Usage

pass

References

pass