
www.renesas.com

U
ser’s M

anual

All information contained in these materials, including products and product specifications
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RV850
Real-Time Operating System

User’s Manual: Functionality

Target Device

RH850 Family (RH850G3K)

RH850 Family (RH850G3M)

RH850 Family (RH850G3KH)

RH850 Family (RH850G3MH)

Rev.1.03 2015.12



Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by you 
or third parties arising from the use of these circuits, software, or information. 

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of 
third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  No 
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of 
Renesas Electronics or others. 

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, 
modification, copy or otherwise misappropriation of Renesas Electronics product. 

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”.  The 
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.   
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. 
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc. 
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to 
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property 
damages (nuclear reactor control systems, military equipment etc.).  You must check the quality grade of each Renesas 
Electronics product before using it in a particular application.  You may not use any Renesas Electronics product for any 
application for which it is not intended.  Renesas Electronics shall not be in any way liable for any damages or losses incurred 
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas 
Electronics. 

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics.  Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.  Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas 
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and 
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because the evaluation 
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by 
you. 

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility 
of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable laws and 
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.  
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws 
and regulations. 

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose 
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.  You should not use 
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use 
by the military, including but not limited to the development of weapons of mass destruction.  When exporting the Renesas 
Electronics products or technology described in this document, you should comply with the applicable export control laws and 
regulations and follow the procedures required by such laws and regulations. 

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise 
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this 
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of 
unauthorized use of Renesas Electronics products. 

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document 
or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 

(2012.4) 



How to Use This Manual

Readers This manual is intended for users who design and develop application systems using 
RH850 family microcontrollers.

Purpose This manual is intended for users to understand the functions of real-time OS "RV850" 
manufactured by Renesas Electronics, described the organization listed below.

Organization This manual consists of the following major units.

1.GENERAL INFORMATION
2.BUILDING THE SYSTEM
3.TASK MANAGEMENT
4.INTERRUPT HANDLING
5.RESOURCE MANAGEMENT
6.EVENT MANAGEMENT
7.COUNTER MANAGEMENT
8.ALARM MANAGEMENT
9.SCHEDULE TABLE MANAGEMENT
10.OS-APPLICATION MANAGEMENT
11.OS EXECUTION MANAGEMENT
12.SCHEDULE MANAGEMENT
13.SYSTEM INITIALIZATION
14.SYSTEM SERVICES
A.CONFIGURATOR
B.CF FILES (OIL)
C.MEMORY FOOTPRINT

How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of elec-
trical engineering, logic circuits, microcontrollers, C language, and assemblers.

To understand the hardware functions of the RH850 family microcontroller.
-> Refer to the User's Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remarks: Supplementary information
Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX
Prefixes indicating power of 2 (address space and memory capacity):

K (kilo) 210 = 1024
M (mega) 220 = 10242

Related Documents The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Caution The related documents listed above are subject to change without notice. Be 
sure to use the latest edition of each document when designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

Document Name Document No.

English Japanese

RV850 Real-Time Operating System User’s Man-
ual: Functionality

This manual R20UT2768J



TABLE OF CONTENTS

1. GENERAL INFORMATION  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Execution Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Folder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Object release version  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Source release version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. BUILDING THE SYSTEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Writing User-Own Coding Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Generating user-own libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Writing Processing Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Writing CF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Generating information files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Writing the Linker Directive File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Generation of Load Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. TASK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Task states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Stack monitoring facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 Processing in tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.5 Generation of tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.6 Termination of tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. INTERRUPT HANDLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Stack monitoring facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Boot Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Processing in boot process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Interrupt Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Processing in interrupt service routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Registration of interrupt service routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.3 Termination of interrupt service routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



4.5 User-Own Coding Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 Entry process (direct branch method exception vector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.2 Exception/interrupt safety measure process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Multiplex Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. RESOURCE MANAGEMENT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Ceiling values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Scheduler resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Generation of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6. EVENT MANAGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Generation of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7. COUNTER MANAGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1.1 System counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Generation of Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8. ALARM MANAGEMENT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.2 Alarm Callback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.2.1 Processing in alarm callbacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.2.2 Registration of alarm callbacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.3 Generation of Alarms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.3.1 System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9. SCHEDULE TABLE MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Schedule Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2.1 Schedule table states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.3 Generation of schedule tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.4 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10. OS-APPLICATION MANAGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.1.1 Reliability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.1.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.1.3 Memory protection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



10.1.4 Peripheral I/O protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10.2 Trusted Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.2.1 Processing in trusted functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.2.2 Registration of trusted functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.2.3 Inherited data of trusted functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10.3 OS-Application-Specific Hook Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10.3.1 Processing in OS-Application-specific hook routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.3.2 Registration of OS-Application-specific hook routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.4 Generation of OS-Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.5 System Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11. OS EXECUTION MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.2 Common Hook Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.2.1 Processing in common hook routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

11.2.2 Registration of common hook routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11.2.3 System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

12. SCHEDULE MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12.2 Hook Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12.3 Idle Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

12.3.1 Processing in idle handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

13. SYSTEM INITIALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.2  Entry Process (Direct Branch Method Exception Vector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

13.3 Boot Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

13.4 Kernel Initialization Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

13.5 Hook Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14. SYSTEM SERVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14.1.1 Calling of system services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

14.2 Data Macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

14.2.1 Data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

14.2.2 Error status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

14.2.3 Invalid task identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

14.2.4 Task states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

14.2.5 Schedule table states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

14.2.6 Exit with error (abend)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

14.2.7 Access privilege types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

14.2.8 Object types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



14.2.9 Checking for access privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

14.2.10 Restart options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

14.2.11 State of OS-Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

14.2.12 System service identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

14.2.13 Counter information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

14.2.14 Checking for access privileges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

14.3 Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14.3.1 Alarm base information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14.4 System Services Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

14.4.1 Task management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

14.4.2 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

14.4.3 Resource management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

14.4.4 Event management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

14.4.5 Counter management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

14.4.6 Alarm management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

14.4.7 Schedule table management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

14.4.8 OS-Application management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

14.4.9 OS execution management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

14.4.10 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A. CONFIGURATOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2  Activation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2.1 Command file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.3 Sample Command Input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.4 Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.4.1 Fatal errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.4.2 Abort errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.4.3 Warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B. CF FILES (OIL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.2 Configuration Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.3 Include Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.4 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.4.1 Alarm information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.4.2 Application mode information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.4.3 OS-Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.4.4 Counter information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.4.5 Event information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.4.6 Interrupt service routine information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B.4.7 OS information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

B.4.8 Resource information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



B.4.9 Schedule table information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.4.10 Task information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.4.11 System information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C. MEMORY FOOTPRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.2 Standard Code Area (.kernel_system). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.3 Interface Area (.kernel_interface)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.4 Constant Data Area (.kernel_const). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C.5 Constant Data Area (.kernel_identifier) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

C.6 Variable Data Area (.kernel_work) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

C.6.1 Priority buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

C.7 Stack Area (.kernel_stack) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

C.7.1 System stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

C.7.2 OS-Application stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

C.7.3 Task stack (extended task) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

C.8 Interrupt Handler Address Table (.kernel_address) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Revision Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245



RV850 1.  GENERAL INFORMATION

R20UT2768EJ0103  Rev.1.03 Page 9 of 282
Jun 10, 2015

1.  GENERAL INFORMATION

1.1  Overview

The RV850 is real time multitasking OS developed with the aim of providing an efficient real-time process and multitask-
ing environment, and for enlarging the arena of embedded control application running on the target devices.

1.2  Features

The RV850 has the following features.

(1) Compliance with OSEK/VDX and AUTOSAR specifications
It is designed in compliance with the OSEK/VDX specifications (OSEK/VDX Operating System ver. 2.2.3, OSEK/
VDX OSEK Implementation Language ver. 2.5) for the industry-standard open-ended architectures used in in-
vehicle distributed control systems, and the AUTOSAR specification (AUTOSAR Specification of Operating Sys-
tem Ver.5.0.0 R4.0 Rev 3), and provides various functions.

(2) High portability
The hardware-dependent processes required by the RV850 to execute the processes for supporting various exe-
cution environments are extracted as RV850 dependent modules (user-own coding module), and provided as 
sample source files.
This improves the portability towards various execution environments and facilitates customization as well.

(3) ROMization
It is designed for small footprint and ROMability in embedded environments.
When the scalability class is SC1 in the RV850, only system services used by the user in the application system 
are linked at system build-time, enabling the development of a compact real-time multitasking environment that 
best suits the users' needs.

(4) Utilities
The following useful utilities are provided for system development.

- Configurator
This tool reads the CF file as the input file and outputs the information files (SIT file, ENTRY file, and kernel 
macro file) in which is saved the Configuration Information provided by the RV850.

1.3  Structure

The RV850 consists of the two modules given below.

(1) RV850 common module
This processing part is the nucleus of RV850 and offers the following functions.

- Allocates area for objects

- Object initialization process

- Responds to system services

- Selection of processing program corresponding to the events

(2) RV850 dependent module
This is a hardware-dependent process required for executing RV850 processes.
Note that since this processing module is dependent on the execution environment of the processing program, it is
separated out as a user-own coding module and provided as a sample source file.



R20UT2768EJ0103  Rev.1.03 Page 10 of 282
Jun 10, 2015

RV850 1.  GENERAL INFORMATION

1.4  Execution Environment

The execution environment required for executing RV850 processes is as follows:

(1) Devices
The RV850 has the following target devices.

- RH850 family (G3K core, G3M core, G3KH core, G3MH core)

Remark 1. In the RV850, interrupt handling is implemented by using various registers (e.g. PSW, PMR) pro-
vided by the device.

Remark 2. In the RV850 supporting scalability class SC3, illegal memory accesses are prevented by using the 
memory protection function (MPU) provided by the device.

Remark 3. The RV850 does not support the SIMD operation function provided by the device.

(2) Peripheral controllers
In order to support a wide range of execution environments, the RV850 separates out processes dependent on 
the execution environment as user-own coding modules, provides them as sample source files, and tries to 
improve the portability.

Remark 1. In the RV850, table reference method is adopted as the mode to select the interrupt handler 
address.
Therefore, the RV850 does not operate on hardware not equipped with the table reference method.

Remark 2. In the RV850, interrupt handling is implemented by using interrupt controller INTC1 and INTC2.

Remark 3. In the RV850, a safety function working with the SPID bit (system protection identifier) of the 
machine configuration register (MCFG0) is used to implement peripheral protection which is pre-
scribed in scalability class SC3 (only in G3M core, G3KH core, G3MH core) conforming to the 
AUTOSAR specifications.
Consequently, the RV850 does not perform peripheral protection in hardware not equipped with the 
safety function.

The following shows the OS reserved resources which are occupied by the RV850, and manipulating them from pro-
cessing programs is prohibited.

Table 1.1 OS Reserved Resources Occupied by RV850

Resource Name Scalability Class

General-purpose register (r2) SC1 or SC3

SPID bit of machine configuration (MCFG0) SC3 (only in G3M core, 
G3KH core, G3MH core)

Base address (INTBP) of interrupt handler address table SC1 or SC3

SYSCALL operation setting (SCCFG) SC3

SYSCALL base pointer (SCBP) SC3

UM bit of program status word (PSW) SC1 or SC3

Interrupt priority mask (PMR) SC1 or SC3

Interrupt function setting (INTCFG) SC1 or SC3

EITBn bit and EIP3n-0n bit of EI level interrupt control register (EICn) of the interrupt 
controller (INTC1 or INTC2) corresponding to the interrupts which are defined in 
Exception code "OsIsrExceptionCode" or Exception code "OsCounterException-
Code"

SC1 or SC3

Memory protection function (MPU) SC3



RV850 1.  GENERAL INFORMATION

R20UT2768EJ0103  Rev.1.03 Page 11 of 282
Jun 10, 2015

1.5  Folder Structure

The folder structure of files expanded on the host machine differs according to the file distribution formats provided.

- Object release version

- Source release version

1.5.1  Object release version

The figure below shows the folder structure generated when files provided by the RV850 (object release version) are 
expanded on the host machine.

Figure 1.1 Folder Structure (Object Release Version)

Details of each folder are shown below.

(1) <rv_root>
The "RV850 installation destination" you specified upon expansion.

(2) <rv_root>\SC1
The RV850 files (scalability class SC1) are stored in this folder.

(3) <rv_root>\SC3
The RV850 files (scalability class SC3) are stored in this folder.

<rv_root>
SC1

bin
doc
include

lib
rh850

<Sample name>
appli

conf
src

usrown

r32

os

sample

<Target name>

<Target name>

conf
src

SC3
bin
doc
include

lib
rh850

<Sample name>
appli

conf
src

usrown

r32

os

sample

<Target name>

<Target name>

conf
src



R20UT2768EJ0103  Rev.1.03 Page 12 of 282
Jun 10, 2015

RV850 1.  GENERAL INFORMATION

(4) <rv_root>\{SC1, SC3}\bin
The utilities of the RV850 are stored in this folder.

Os_Configurator.exe: Configurator
AUTOSAR_RENESAS_OS_ECUConfigurationParameters.arxml:

OS module definition file (for the configuration editor)

(5) <rv_root>\{SC1, SC3}\doc
The document files of the RV850 are stored in this folder.

(6) <rv_root>\{SC1, SC3}\include
The standard header files of the RV850 are stored in this folder.

Os.h: Standard header file
MemMap.h: AUTOSAR standard header file

(7) <rv_root>\{SC1, SC3}\include\os
The header files of the RV850 are stored in this folder.

(8) <rv_root>\{SC1, SC3}\include\os\rh850
The header files of the RV850 (device dependency: RH850 family) are stored in this folder.

(9) <rv_root>\{SC1, SC3}\lib\<Target name>\r32
The kernel library files (32 register mode) of the RV850 are stored in this folder.

libecc2extsc1.a: ECC2, extended status, SC1, FPU not supported
libecc2extsc1_fpu.a: ECC2, extended status, SC1, FPU supported
libecc2extsc3.a: ECC2, extended status, SC3, FPU not supported (only in G3M, G3KH, G3MH core)
libecc2extsc3_fpu.a: ECC2, extended status, SC3, FPU supported (only in G3M, G3KH, G3MH core)
libecc2extsc3_g3k.a: ECC2, extended status, SC3, FPU not supported (only in G3K core)

(10) <rv_root>\{SC1, SC3}\sample\<Target name>\<Sample name>\appli\conf
The files for generating sample load modules are stored in this folder.

(11) <rv_root>\{SC1, SC3}\sample\<Target name>\<Sample name>\appli\src
The source file and header file of the sample program are stored in this folder.

(12) <rv_root>\{SC1, SC3}\sample\<Target name>\<Sample name>\usrown\conf
The user-own library (32 register mode) and files for generating the user-own library (32 register mode) are stored 
in this folder.

libusr.a: User-own library

(13) <rv_root>\{SC1, SC3}\sample\<Target name>\<Sample name>\usrown\src
The source files of the user-own coding module are stored in this folder.



RV850 1.  GENERAL INFORMATION

R20UT2768EJ0103  Rev.1.03 Page 13 of 282
Jun 10, 2015

1.5.2  Source release version

The figure below shows the folder structure generated when files provided by the RV850 (source release version) are 
expanded on the host machine.

Figure 1.2 Folder Structure (Source Release Version)

Details of each folder are shown below.

(1) <rv_root>
The "RV850 expansion destination" you specified upon expansion.

(2) <rv_root>\SC1
The RV850 files (scalability class SC1) are stored in this folder.

(3) <rv_root>\SC3
The RV850 files (scalability class SC3) are stored in this folder.

(4) <rv_root>\{SC1, SC3}\{bin, doc, include, lib, sample}
This folder has a similar folder configuration and file arrangement as that in "1.5.1Object release version".

(5) <rv_root>\{SC1, SC3}\src\os\conf\<Target name>
The files for generating the kernel library (32 register mode) are stored in this folder.
The kernel library (32 register mode) that is generated using files located in this folder will be stored in the 
<rv_root>\{SC1, SC3}\lib\<Target name>\r32 folder.

(6) <rv_root>\{SC1, SC3}\src\os\ifl
The interface files of the RV850 are stored in this folder.

(7) <rv_root>\{SC1, SC3}\src\os\ifl\rh850
The interface files of the RV850 (device dependency: RH850 family) are stored in this folder.

(8) <rv_root>\{SC1, SC3}\src\os\kernel
The source files of the kernel library (32 register mode) are stored in this folder.

<rv_root>
SC1

bin
doc
include
lib

sample
src

os
conf

<Target name>
ifl

rh850
kernel

rh850
trace

SC3
bin
doc
include
lib

sample
src

os
conf

<Target name>
ifl

rh850
kernel

rh850
trace



R20UT2768EJ0103  Rev.1.03 Page 14 of 282
Jun 10, 2015

RV850 1.  GENERAL INFORMATION

(9) <rv_root>\{SC1, SC3}\src\os\kernel\rh850
The source files of the kernel library (32 register mode) (device dependency: RH850 family) are stored in this 
folder.

(10) <rv_root>\{SC1, SC3}\src\os\trace
The source files of the trace routine are stored in this folder.



RV850 2.  BUILDING THE SYSTEM

R20UT2768EJ0103  Rev.1.03 Page 15 of 282
Jun 10, 2015

2.  BUILDING THE SYSTEM

This chapter describes how to build a system (load module) that uses the functions provided by the RV850.

2.1  Overview

The procedure for building a system is shown below.

Figure 2.1 Procedure for Building System

Remark Since symbol names starting with _kernel or _KERNEL are to be OS reserved symbols in the RV850, 
usage for a purpose other than the specified purpose is inhibited.

2.2  Writing User-Own Coding Modules

In the RV850, the hardware-dependent processes required by the RV850 to execute the processes for supporting vari-
ous execution environments are extracted as RV850 dependent modules ("user-own" (user owned) coding modules), and 
provided as sample source files (direct_vector.850, excent.850). This improves portability to various execution environ-
ments and facilitates customization as well.

The following shows a list of "user-own" coding modules extracted by function.

(1) Entry process (direct branch method exception vector)
The entry process is a routine dedicated to the entry process, extracted to assign the branch process to the rele-
vant process (boot process, exception/interrupt safety measure process, etc.) when reset (RESET), FE level Inter-
rupts (FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code "OsIsrExceptionCode" or Exception 
code "OsCounterExceptionCode", etc.) has been generated.

(2) Exception/interrupt safety measure process
The exception/interrupt safety measure process is a routine dedicated to the safety measure process that is called 
from entry process when FE level interrupts (FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode"), etc. has been generated.

Remark See "4.5.1Entry process (direct branch method exception vector)" and "4.5.2Exception/interrupt 
safety measure process" for details about user-own coding modules.

Object files

Compiler/assembler

Processing programs

User-own coding modules Information files

CF file

Configurator

Compiler/assembler

Object files

Archiver

User-own library Standard library, math library, etc.

Linker directive file

Kernel library

Link editor

Load module (including ROMization information)



R20UT2768EJ0103  Rev.1.03 Page 16 of 282
Jun 10, 2015

RV850 2.  BUILDING THE SYSTEM

2.2.1  Generating user-own libraries

Execute the compiler/assembler/archiver for the source files (exception/interrupt safety measure process: excent.850) 
generated in "2.2Writing User-Own Coding Modules" to generate the library file ("user-own" library).

Remark See the user's manual of your compiler package for details about the compiler/assembler/archiver.

2.3  Writing Processing Programs

Processing programs describe the processing that the system is to carry out.
The RV850 classifies processing programs into the following main types, according to the type of processing they per-

form.

(1) Boot process
This is a routine dedicated to initialization processing, extracted to initialize the minimum hardware that is required 
by the RV850 for executing processes.

(2) Task
This is a process routine that is not executed unless the state is manipulated by issuance of a system service, or if 
conditions defined in a CF file are met.

(3) Interrupt service routine
This is a routine dedicated to the interrupt process that is called when an EI level interrupt (defined in Exception 
code "OsIsrExceptionCode" or Exception code "OsCounterExceptionCode") generates.
The RV850 supports two categories, in consideration of the responsiveness from the occurrence of the interrupt 
until the interrupt service routine is called.

- Category 1

- Category 2

(4) Alarm callback (only in SC1)
This is a routine dedicated to the expiry action that is called when the alarm has expired.

(5) Trusted function (only in SC3)
For OS-Applications whose reliability has been ensured, it is possible to assign specific trusted functions to indi-
vidual OS-Applications.

(6) Common hook routine
In the RV850, six types of hook routines with different usages are supported as common hook routines.

- StartupHook

- ShutdownHook

- PostTaskHook

- PreTaskHook

- ErrorHook

- ProtectionHook (only in SC3)

(7) OS-Application-specific hook routine (only in SC3)
Three types of hook routines with different usages are supported as OS-Application-specific hook routines for indi-
vidual OS-Applications.

- StartupHook_OsApplication

- ShutdownHook_OsApplication

- ErrorHook_OsApplication

(8) Idle handler
This is a routine dedicated to idle processing that is extracted for effectively using the low-power support function 
provided in target devices.

Remark For details on processing programs, see "3.1.3Tasks", "4.2Boot Process", "4.3Interrupt Service Rou-
tines", "8.2Alarm Callback", "10.2Trusted Functions", "11.2Common Hook Routines", "10.3OS-Applica-
tion-Specific Hook Routines", and "12.3Idle Handler".



RV850 2.  BUILDING THE SYSTEM

R20UT2768EJ0103  Rev.1.03 Page 17 of 282
Jun 10, 2015

2.4  Writing CF Files

Write the CF file required for generating information files (SIT file, ENTRY file, and kernel macro file) that store the data 
provided for the RV850.

Remark See "B.CF FILES (OIL)" for details about CF files.

2.4.1  Generating information files

Execute the configurator on the CF file wrote in "2.4Writing CF Files" to generate the information files (SIT file, ENTRY 
file, and kernel macro file).

Remark See "A.CONFIGURATOR" for details about the configurator.

2.5  Writing the Linker Directive File

Write the linker directive file required to fix the memory allocation executed by the link editor.
The allocation location ( name, attribute, and allocation destination) of objects modulated in functional units is desig-

nated by the RV850. Consequently, in addition to the user-coded program, the provided allocation location must be 
defined in the linker directive file.

A list of allocation locations provided by the RV850 is shown below.

Table 2.1  Object Allocation Locations Prescribed by RV850

Remark 1. The keywords in the "Attribute" column have the following meanings.
A: Access is possible
B: No initial value
W: Write is possible
X: Execution is possible

Remark 2. Of the s designated by the RV850, .kernel_interface and .kernel_identifier must be allocated to areas that 
be accesible from all OS-Applications.

Remark 3. The user does not need to code the definition related to .kernel_address for the linker directive file, 
because the configurator outputs to the ENTRY file about the location of the interrupt handler address 
table .kernel_address.
The "address" of .kernel_address was calculated via "Base address "OsInterruptBaseAddress" + 4 * 
Interrupt channel number".

Remark 4. See the user's manual of your compiler package for details about the linker directive file.

 Name Attribute Allocation Destination Description

.kernel_system AX ROM Standard code area

.kernel_interface AX ROM Interface area

.kernel_const A ROM Constant data area (ROM)

.kernel_identifier A ROM Constant data area

.kernel_work ABW RAM Variable data area (RAM)

.kernel_stack ABW RAM Stack area

.kernel_address A ROM Interrupt handler address table



R20UT2768EJ0103  Rev.1.03 Page 18 of 282
Jun 10, 2015

RV850 2.  BUILDING THE SYSTEM

2.6  Generation of Load Module

Generate the load module (including ROMization information) by executing the compiler/assembler/link editor on the 
files generated in "2.2Writing User-Own Coding Modules" to "2.5Writing the Linker Directive File", and the library files pro-
vided by the RV850 and the compiler package.

List of files necessary at the time of generating the load module (including ROMization information) is given below.

(1) Library files generated in "2.2Writing User-Own Coding Modules"

- User-own library

(2) Source files created in "2.3Writing Processing Programs"

- Processing programs (boot process, tasks, interrupt service routines, alarm callback, trusted functions, common 
hook routines, OS-Application-specific hook routines, and idle handlers)

(3) Information files created in "2.4Writing CF Files"
Information files (SIT file, ENTRY file, and kernel macro file)

(4) Linker directive files created in "2.5Writing the Linker Directive File"

- Linker directive file

(5) Library files provided by the RV850

- Kernel library 

(6) Library files provided by the compiler package

- Standard library, math library, etc.

Remark 1. The RV850 has exclusive ownership of the program register r2. Consequently, the "-reserve_r2" option 
must be specified in order to compile/assemble a processing program.

Remark 2. The RV850 disables the tiny data area (TDA). Consequently, the "-notda" option must be specified in 
order to compile/assemble a processing program.

Remark 3. The RV850 does not guarantee correct operation when callt instructions are used. Consequently, the "-
no_callt" option must be specified in order to compile/assemble a processing program.

Remark 4. The RV850's standard header file "Os.h" includes the AUTOSAR standard header files "Std_Types.h" 
and "MemMap.h". Consequently, if you do not need to include these header files, then you must specify 
the "-D__WITHOSONLY" option when compiling/assembling each file.
When no floating-point operations are used at all (when the -fnone option is specified) in the system to be 
build, then in addition to the -D__WITHOSONLY__ option, the -D__NOFLOAT__ option must be speci-
fied.

Remark 5. When compiling the SIT file (Os_Cfg.c), it is recommended to specify the -sda=0 option.
If -sda=0 is not specified, there is a possibility that the RV850 data which is supposed to be stored in the 
.kernel_const section and .kernel_work section as shown in table 2.1 is stored in the .sbss section and 
.rosdata section, respectively.
In particular, when -sda=0 is not specified for an SIT file whose scalability class is SC3, the .sbss section 
and .rosdata section need to be allocated to an area that cannot be written by all non-trusted OS-Applica-
tions.

Remark 6. Registering common hook routines as library routines is prohibited in the RV850.

Remark 7. Hook routines, idle handlers, and user-own libraries need to be linked before the kernel library.

Remark 8. When the RV850 operates on hardware not equipped with the floating-point operation coprocessor 
(FPU), correct operation cannot be guaranteed for load modules linked with kernel libraries  
libecc2extsc1_fpu.a, and libecc2extsc3_fpu.a which support FPU.

Remark 9. See the user's manual of your compiler package for details about the compiler/assembler/link editor.



RV850 3.  TASK MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 19 of 282
Jun 10, 2015

3.  TASK MANAGEMENT

This chapter describes the task management functions provided by the RV850.

3.1  Overview

The RV850 provides task management functions as a mechanism for manipulating task states.
The RV850 supports two types of tasks which are required by the OSEK/VDX specifications, according to the purpose 

of the processing that has to be implemented.

(1) Basic tasks
Tasks to which no events have been assigned (tasks not defined with Event identifier "OsTaskEventRef") can tran-
sit to three types of states: SUSPENDED state, READY state, and RUNNING state.

The stacks used while a basic task is running are as follows.

- When the scalability class is SC1
"System stack" defined in System stack size "OsStackSize"

- When the scalability class is SC3
"OS-Application stack" defined in OS-Application stack size "OsAppStackSize"

(2) Extended tasks
Tasks to which events have been assigned (tasks defined with Event identifier "OsTaskEventRef") can transit to 
four types of states: SUSPENDED state, READY state, RUNNING state, and WAITING state.
The stack used while an extended task is running is the "task stack" defined in Task stack size "OsTaskStackSize".

3.1.1  Task states

Tasks change into various states according to the acquisition state of resources required for task execution and the 
occurrence/non-occurrence of events.

The RV850 classifies and manages the statuses that tasks can take into four main types.

Figure 3.1 Task States

(1) SUSPENDED state
In this state, the task is under the management of the RV850, but it is not subject to scheduling.

(2) READY state
In this state, the task is subject to RV850 scheduling, but it is waiting for allocation of the processor, because 
another task's process is currently running.

(3) RUNNING state
State in which the processor have been allocated to the task, and is currently being processed.
Only one task can be in the running state at one time in the whole system.

(4) WAITING state
Tasks transition to this state when the conditions required to continue processing as a task are not met.

SUSPENDED state

READY state

RUNNING state

WAITING state



R20UT2768EJ0103  Rev.1.03 Page 20 of 282
Jun 10, 2015

RV850 3.  TASK MANAGEMENT

3.1.2  Stack monitoring facilities

The RV850 provides stack monitoring facilities for detecting stack overflows. This facility checks whether there is 
enough remaining amount of stacks (task stack, system stack, and OS-Application stack) needed for RV850 processing 
when control transfers to RV850 processing from task execution. The remaining amount of stacks will be checked at the 
following timing.

- When starting to process a system service issued from a task

- When starting pre-processing of a category 2 interrupt service routine generated during task execution

If a stack overflow is detected during task execution, this function issues ShutdownOS when the scalability class is SC1 
or executes a process (calls the common hook routine ProtectionHook or issues ShutdownOS) according to the definitions 
of ProtectionHook "OsProtectionHook" when the scalability class is SC3.

Remark 1. Stack monitoring facilities "OsStackMonitoring" is used to enable or disable usage of stack monitoring 
facilities.

Remark 2. The stack monitoring facilities of the RV850 cannot detect a stack overflow unless control transfers from 
a task to RV850 processing. If a stack overflow that could occur at a desired timing during task execution 
needs to be detected, use the Memory protection facility provided by non-trusted OS-Applications of 
scalability class SC3.



RV850 3.  TASK MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 21 of 282
Jun 10, 2015

3.1.3  Tasks

Tasks are processing routines that are not executed unless the state is manipulated using a system service, or if condi-
tions defined in a CF file are met.

The basic form for coding a task in the C language is shown below.

Remark OsTask is the task identifier defined in Identifier "OsTask".

3.1.4  Processing in tasks

The RV850 executes its own unique scheduling process when switching tasks. Consequently, note the following points 
when coding tasks.

(1) Saving/Restoring registers
In the RV850, when switching tasks, the save/restore processes of the work registers are executed according to 
the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

(2) Saving/Restoring FPSR
In the RV850, when activating a task, the contents of the floating-point configuration/status register (FPSR) are 
changed to the value defined in FPSR "OsAppDefaultFPSRValue" or FPSR default value "OsDefaultFPSRValue".
Consequently, it is not necessary to code the save/restore processes of FPSR when TRUE is defined in FPSR 
saving/restoring "OsSaveFpuReg".

Remark 1. The save/restore processes of FPSR are executed only when FPU-supporting kernel libraries 
libecc2extsc1_fpu.a, and libecc2extsc3_fpu.a are linked.

Remark 2. If the task executes floating-point operations using imprecise exception and is needed to complete 
the operations before RV850 restores FPSR, it is necessary to issue syncp and synce operation 
just before the end of task (before issuing TerminateTask and ChainTask). 

(3) Stack switching
In the RV850, when switching tasks, it switches to the task stack defined in Task stack size "OsTaskStackSize", 
the system stack defined in System stack size "OsStackSize", or the OS-Application stack defined in OS-Applica-
tion Stack size "OsAppStackSize".
Consequently, it is not necessary to write code to switch the stack.

Remark Switching to the system stack defined in System stack size "OsStackSize" is carried out only when 
the new task after switching is a basic task (SC1).
Switching to the OS-application stack defined in OS-Application Stack size "OsAppStackSize" is 
possible only when the new task after switching is a basic task (SC3).

(4) Interrupt acceptance
In the RV850, when switching tasks, operations related to interrupt acceptance are not carried out.
Consequently, it is necessary to code a process to issue EnableAllInterrupts, DisableAllInterrupts, etc. to explicitly 
change the acceptance status of interrupts.

(5) Issuing system services
Only system services that are allowed to be issued from tasks are issuable.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

3.1.5  Generation of tasks

The RV850 restricts task generation to static generation via the definition of Task information. Consequently, tasks can-
not be generated dynamically, for example by issuing system services from a processing program.

(1) Static generation
A task is statically generated by defining Task information in a CF file.
In the RV850, the kernel initialization module reads the Task information definitions from the information file, and 
initializes these tasks, which are subject to management.

TASK ( OsTask ) {
    ..................
    ..................
}



R20UT2768EJ0103  Rev.1.03 Page 22 of 282
Jun 10, 2015

RV850 3.  TASK MANAGEMENT

3.1.6  Termination of tasks

A task is ended (shifted to SUSPENDED state) by issuing TerminateTask or ChainTask.
In the RV850, a task can end without issuing TerminateTask or ChainTask, and the following operations are performed 

in this case.

[For scalability class SC1]

(1) If the task has acquired any internal resources, the internal resources will be released.

(2) If the task has acquired any internal resources, the current priority will be changed (the current priority of the task 
is returned to Initial priority "OsTaskPriority").

(3) If the common hook routine (PostTaskHook) is registered, PostTaskHook will be called.

(4) The task transits from RUNNING state to SUSPENDED state.

(5) The task is unlinked from the ready queue corresponding to the priority.

(6) If the task is a basic task, the activation request counter will be decremented (0x1 is subtracted from the activation 
request counter).

(7) If the subtraction result of the activation request counter is greater than 0x0, the task transits from SUSPENDED 
state to READY state.

(8) The scheduler is activated.

[For scalability class SC3]

(1) If the task has issued DisableAllInterrupts, SuspendAllInterrupts, or SuspendOSInterrupts but has not yet issued 
the corresponding EnableAllInterrupts, ResumeAllInterrupts, or ResumeOSInterrupts, the process to enable the 
acceptance of interrupts will be performed (process equal to the corresponding EnableAllInterrupts, ResumeAllIn-
terrupts, or ResumeOSInterrupts).

(2) If the task has acquired any normal resources, the normal resources will be released.

(3) If the task has acquired any normal resources, the current priority will be changed (the current priority of the task is 
returned to Initial priority "OsTaskPriority").

(4) If the task has acquired any internal resources, the internal resources will be released.

(5) If the task has acquired any internal resources, the current priority will be changed (the current priority of the task 
is returned to Initial priority "OsTaskPriority").

(6) When the common hook routine (ErrorHook) is registered, if the task has issued DisableAllInterrupts, SuspendAl-
lInterrupts, or SuspendOSInterrupts but has not yet issued the corresponding EnableAllInterrupts, ResumeAllIn-
terrupts, or ResumeOSInterrupts, or if the task has acquired any normal resources, ErrorHook is called with 
E_OS_MISSINGEND (0x14) as the parameter.

(7) When an OS-Application-specific hook routine (ErrorHook_OsApplication) is registered in the OS-Application to 
which the task belongs, if the task has issued DisableAllInterrupts, SuspendAllInterrupts, or SuspendOSInterrupts 
but has not yet issued the corresponding EnableAllInterrupts, ResumeAllInterrupts, or ResumeOSInterrupts, or if 
the task has acquired any normal resources, ErrorHook_OsApplication is called with E_OS_MISSINGEND (0x14) 
as the parameter.

(8) If the common hook routine (PostTaskHook) is registered, PostTaskHook will be called.

(9) The task transits from RUNNING state to SUSPENDED state.

(10) The task is unlinked from the ready queue corresponding to the priority.

(11) If the task is a basic task, the activation request counter will be decremented (0x1 is subtracted from the activation 
request counter).

(12) If the subtraction result of the activation request counter is greater than 0x0, the task transits from SUSPENDED 
state to READY state.

(13) The scheduler is activated.

Remark 1. In the RV850, if the scalability class is SC1, correct operation cannot be guaranteed when a task that has 
acquired normal resources is ended without issuing TerminateTask or ChainTask.

Remark 2. In the RV850, if the scalability class is SC1, correct operation cannot be guaranteed when a task that has 
issued DisableAllInterrupts, SuspendAllInterrupts, or SuspendOSInterrupts but has not yet issued the 



RV850 3.  TASK MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 23 of 282
Jun 10, 2015

corresponding EnableAllInterrupts, ResumeAllInterrupts, or ResumeOSInterrupts is ended without issu-
ing TerminateTask or ChainTask.

Remark 3. The AUTOSAR specifications do not specify the operations to be performed when SC1 is defined in 
Scalability class "OsScalabilityClass" and the task is ended without issuing TerminateTask or ChainTask.
Accordingly, the operations for the case of SC1 which are shown above are unique to the RV850.

3.2  System Services

The system services shown in "14.4.1Task management" are used to manipulate tasks dynamically from processing 
programs.



R20UT2768EJ0103  Rev.1.03 Page 24 of 282
Jun 10, 2015

RV850 4.  INTERRUPT HANDLING

4.  INTERRUPT HANDLING

This chapter describes the interrupt handling functions provided by the RV850.

4.1  Overview

In the RV850, among the interrupts generated by the device, only the interrupt service routines corresponding to the EI 
level interrupts which are defined in Exception code "OsIsrExceptionCode" and Exception code "OsCounterException-
Code" are subject to management.

Consequently, the routines (boot process, exception/interrupt safety measure process, etc.) corresponding to the reset 
(RESET), FE level interrupts (FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code "OsIsrException-
Code" or Exception code "OsCounterExceptionCode"), etc. are special subject to management.

4.1.1  Stack monitoring facilities

The RV850 provides stack monitoring facilities for detecting stack overflows.
This facility checks whether there is enough remaining amount of stacks (system stack and OS-Application stack) 

needed for RV850 processing upon transition to RV850 processing from execution of an interrupt service routine (cate-
gory 2). The remaining amount of stacks will be checked at the following timing.

-  When starting to process a system service issued from an interrupt service routine (category 2)

- When starting pre-processing of a category 2 interrupt service routine generated during execution of an interrupt service 
routine (category 2)

If a stack overflow is detected during execution of an interrupt service routine (category 2), this function issues Shut-
downOS when the scalability class is SC1 and executes a process (calls the common hook routine ProtectionHook or 
issues ShutdownOS) according to the definitions of ProtectionHook "OsProtectionHook" when the scalability class is SC3.

Remark 1. In the RV850, stack monitoring facilities are applied for only category 2 interrupt service routines.

Remark 2. Stack monitoring facilities "OsStackMonitoring" is used to enable or disable usage of stack monitoring 
facilities.

Remark 3. The stack monitoring facilities of the RV850 cannot detect a stack overflow unless control transfers from 
an interrupt service routine (category 2) to RV850 processing. If a stack overflow that could occur at a 
desired timing during execution of an interrupt service routine needs to be detected, use the Memory pro-
tection facility provided by non-trusted OS-Applications of scalability class SC3.

4.2  Boot Process

This is a routine dedicated to initialization processing, extracted to initialize the minimum hardware that is required by 
the RV850 for executing processes. It is called from the branch process (Entry process (direct branch method exception 
vector)) that is assigned to the address of the handler to which the device forcibly transfers control when a hardware reset 
is generated.

In the boot process, the following to be performed as the minimum hardware initialization processing must be described.

(1) Basic system registers

- The EBV and CUn bits of the program status word (PSW)

- The reset vector base address (RBASE)

- The exception handler vector address (EBASE)

- The UIC bit of CPU control (MCTL)

(2) Interrupt function registers (only in G3M core, G3KH core)

- The FPI exception interrupt priority setting (FPIPR)

(3) Interrupt control registers

- The EI level interrupt bind register (EIBDn)

(4) The safety function associated with the SPID bit (system protection identifier) of the machine configuration register 
(MCFG0) (only in G3M core, G3KH core, G3MH core)



RV850 4.  INTERRUPT HANDLING

R20UT2768EJ0103  Rev.1.03 Page 25 of 282
Jun 10, 2015

(5) Peripheral controllers (e.g. timer)

Remark 1. In the RV850, only in cases where the floating-point configuration/status register (FPSR) is to be manipu-
lated, the CUn bit of PSW is manipulated (1 is set to the CU0 bit) and after manipulation of FPSR has 
completed, the CUn bit is returned to the value it had before FPSR manipulation.
Consequently, the RV850 starts operation while inheriting the CUn bit value set in the boot process, and 
even when the CUn bit is dynamically manipulated from a processing program, operation is to be contin-
ued with the value after change being inherited.

Remark 2. In the RV850, table reference method is adopted as the mode to select the interrupt handler address.
Therefore, 0 should be set to the RINT bit of RBASE and the RINT bit of EBASE.

Remark 3. The UIC bit of MCTL needs to be manipulated only when a processing program will issue an EI or DI 
instruction.

Remark 4. A priority higher than that of category 2 interrupt service routines defined in Interrupt service routine infor-
mation should be set in the FPIPR bits of FPIPR.

Remark 5. Manipulations regarding the access privilege for I/O areas are required only when SC3 is defined in Scal-
ability class "OsScalabilityClass".

Remark 6. For the SPID bit value "0" of the MCFG0 register, make a setting to enable all accesses to I/O areas.
See the user's manual of the target device for details about the SPID bit.

Remark 7. The AUTOSAR specifications have a requirement (OS374) specifying that timers should be initialized 
using a real-time OS. With the RV850, however, timers must be initialized before StartOS is issued 
(before the RV850 is started).

The basic form for coding the boot process in the assembly language is shown below.

4.2.1  Processing in boot process

This is a routine dedicated to initialization processing, which is called before the RV850 starts. Consequently, the follow-
ing points must be noted when coding the boot process.

(1) Saving/Restoring registers
There are no registers that must be saved/restored in order to execute the boot process.
Consequently, it is not necessary to code the save/restore processes of registers.

(2) Saving/Restoring FPSR
The floating-point configuration/status register (FPSR) is not set when the boot process is started.
Consequently, it is not necessary to code the save/restore processes of FPSR.

(3) Stack switching
The stack pointer (SP) is not set when the boot process is started.
Consequently, to use the stack dedicated to the boot process, it is necessary to code the SP setup process.

(4) Issuing system services
Only system services that are allowed to be issued from boot process are issuable.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

    .tex
    .align  4
    .globl  _boot
_boot:
    ..................
    ..................



R20UT2768EJ0103  Rev.1.03 Page 26 of 282
Jun 10, 2015

RV850 4.  INTERRUPT HANDLING

4.3  Interrupt Service Routines

This is a routine dedicated to the interrupt process that is called when an EI level interrupt (defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode") generates.

In the RV850, interrupt service routines are independent from tasks. Consequently, when an interrupt is generated, 
even the highest priority task is preempted during execution, and control is transferred to the interrupt service routine.

The RV850 supports two types of categories required in consideration of the response from the time of occurrence of 
the interrupt till the activation of the interrupt service routine.

(1) Category 1
This is a routine dedicated to interrupt processing that is activated without intervening the RV850 when an inter-
rupt is generated.
Category 1 interrupt service routines are called directly from the handler address to which the device forcibly shifts 
control when an interrupt occurs. For this reason, its responsiveness approaches the limits of the hardware.
The basic form for coding a category 1 interrupt service routine in the C language is shown below.

[#pragma ghs interrupt directive is used]

[#pragma ghs interrupt (enable) directive is used]

The basic form for coding a category 1 interrupt service routine in the assembly language is shown below.

Remark Since a category 1 interrupt service routine operates in supervisor mode, the memory protection 
function (MPU) provided by the device cannot be applied.

#pragma ghs interrupt

ISR ( OsIsr ) {
    ..................
    ..................
    return;
}

#pragma ghs interrupt (enable)

ISR ( OsIsr ) {
    ..................
    ..................
    return;
}

    .text
    .align  4
    .globl  _ISROsIsr
_ISROsIsr:
    addi    -16, sp, sp
    st.w    r1, 0[sp]
    ..................
    ..................
    ld.w    0[sp], r1
    addi    16, sp, sp
    eiret



RV850 4.  INTERRUPT HANDLING

R20UT2768EJ0103  Rev.1.03 Page 27 of 282
Jun 10, 2015

(2) Category 2
This is a routine dedicated to interrupt processing that is called after interrupt pre-processing (saving register con-
tents, switching stacks, etc.) is executed by the RV850 when an interrupt is generated.
Category 2 interrupt service routines are called from the handler address to which the device forcibly shifts control 
when an interrupt occurs, via the interrupt pre-processing provided by the RV850. This simplifies processing in the 
interrupt service routine.
The basic form for coding a category 2 interrupt service routine in the C language is shown below.

Remark The identifier of the interrupt service routine defined in Identifier "OsIsr" is written in OsIsr.

ISR ( OsIsr ) {
    ..................
    ..................
    return;
}



R20UT2768EJ0103  Rev.1.03 Page 28 of 282
Jun 10, 2015

RV850 4.  INTERRUPT HANDLING

4.3.1  Processing in interrupt service routines

The RV850 supports two categories, in consideration of the responsiveness from the occurrence of the interrupt until 
the interrupt service routine is activated. Consequently, it is necessary to consider the following points in accordance with 
the category when coding interrupt service routines.

(1) Category 1

(a) Saving/Restoring registers
The RV850 is not involved with the calling of category 1 interrupt service routines.
Consequently, it is necessary to code the save/restore processes of registers, in accordance with the process-
ing contents.

(b) Saving/Restoring FPSR
The RV850 is not involved with the calling of category 1 interrupt service routines.
Consequently, it is necessary to code the save/restore processes of FPSR in order to change the contents of 
FPSR explicitly.

Remark If the category 1 interrupt service routine executes floating-point operations using imprecise 
exception and is needed to complete the operations before transiting into RV850 execution, it is 
necessary to issue syncp and synce operation just before the end of the category 1 interrupt ser-
vice routine. 

(c) Stack switching
The RV850 is not involved with the calling of category 1 interrupt service routines.
Consequently, it is necessary to code the stack pointer (SP) setting process when using a dedicated stack for 
category 1 interrupt service routines.

(d) Interrupt acceptance
The RV850 is not involved with the calling of category 1 interrupt service routines.
Therefore, when a category 1 interrupt occurs, the device manipulates the ID bit in the program status word 
(PSW) to disable the acceptance of interrupts.
Consequently, it is necessary to code the issuance processes, such as EnableAllInterrupts and DisableAllInter-
rupts, in order to change the status of interrupt acceptance explicitly.

(e) Issuing system services
Only system services that are allowed to be issued from interrupt service routines are issuable.

Remark 1. The RV850 does not guarantee correct operation when an unallowable system service is issued 
from an interrupt service routine.

Remark 2. See "14.4System Services Reference" for details about the issue scope of each system service.

(2) Category 2

(a) Saving/Restoring registers
When the RV850 transfers control to a category 2 interrupt service routine, the save/restore processes of the 
work registers are executed according to the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

(b) Saving/Restoring FPSR
When the RV850 transfers control to a category 2 interrupt service routine, the contents of the floating-point 
configuration/status register (FPSR) are changed to the value defined in FPSR "OsAppDefaultFPSRValue" or 
FPSR default value "OsDefaultFPSRValue".
Consequently, it is not necessary to code the save/restore processes of FPSR when TRUE is defined in FPSR 
saving/restoring "OsSaveFpuReg".

Remark 1. The save/restore processes of FPSR are executed only when FPU-supporting kernel libraries 
libecc2extsc1_fpu.a, and libecc2extsc3_fpu.a are linked.

Remark 2. If the category 2 interrupt service routine executes floating-point operations using imprecise 
exception and is needed to complete the operations before tRV850 restores FPSR, it is 
necessary to issue syncp and synce operation just before the end of the category 2 interrupt ser-
vice routine. 

(c) Stack switching
When the RV850 transfers control to a category 2 interrupt service routine, it switches to the system stack 
defined in System stack size "OsStackSize" or the OS-applicatin stack defined in OS-Application Stack size 
"OsAppStackSize".
Consequently, it is not necessary to write code to switch the stack.



RV850 4.  INTERRUPT HANDLING

R20UT2768EJ0103  Rev.1.03 Page 29 of 282
Jun 10, 2015

(d) Interrupt acceptance
When the RV850 transfers control to a category 2 interrupt service routine, the acceptance status of interrupts is 
changed to enabled (ID bit of PSW is manipulated).
Consequently, it is necessary to code the issuance processes, such as DisableAllInterrupts and SuspendAllIn-
terrupts, in order to change the status of interrupt acceptance explicitly.

(e) Issuing system services
Only interrupt service routines or system services that are allowed to be issued from interrupt service routines 
(category 2) are issuable.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

4.3.2  Registration of interrupt service routines

The RV850 restricts registration of interrupt service routines to static registration via the definition of Interrupt service 
routine information. Consequently, interrupt service routines cannot be registered dynamically, for example by issuing sys-
tem services from a processing program.

(1) Static registration
An interrupt service routine is statically registered by defining Interrupt service routine information in a CF file.
In the RV850, the kernel initialization module reads the Interrupt service routine information definitions from the 
information file, and initializes these interrupt service routines, which are subject to management.

In the RV850, among the interrupts generated by the device, only the interrupt service routines corresponding to the EI 
level interrupts which are defined in Exception code "OsIsrExceptionCode" and Exception code "OsCounterException-
Code" are subject to management.

Consequently, using a #pragma directive provided by the compiler, routines dedicated to interrupt processing of inter-
rupts other than EI level interrupts should be registered as processing programs not managed by the RV850.

4.3.3  Termination of interrupt service routines

An interrupt service routine is ended (control is returned to the processing program in which an interrupt was generated) 
by issuing the return instruction (the eiret instruction for the assembly language).

In the RV850, the following operations are performed when an interrupt service routine has issued the return instruction.

(1) For category 1 and scalability class SC1 or SC3

- Control is returned to the processing program in which an interrupt was generated.

(2) For category 2 and scalability class SC1

- Work registers are restored.

- Stacks are switched.

- The floating-point configuration/status register (FPSR) is restored.

- The scheduler is activated.

(3) For category 2 and scalability class SC3

- Work registers are restored.

- Stacks are switched.

- The floating-point configuration/status register (FPSR) is restored.

- If the interrupt service routine has issued DisableAllInterrupts or SuspendAllInterrupts but has not yet issued the 
corresponding EnableAllInterrupts or ResumeAllInterrupts, the process to enable the acceptance of interrupts 
will be performed (process equal to the corresponding EnableAllInterrupts or ResumeAllInterrupts).

- When an OS-Application-specific hook routine (ErrorHook_OsApplication) is registered in the OS-Application to 
which the interrupt service routine belongs, if the interrupt service routine has issued DisableAllInterrupts or 
SuspendAllInterrupts but has not yet issued the corresponding EnableAllInterrupts or ResumeAllInterrupts, 
ErrorHook_OsApplication is called with E_OS_DISABLEDINT (0x15) as the parameter.

- When the common hook routine (ErrorHook) is registered, if the interrupt service routine has issued Disable-
AllInterrupts or SuspendAllInterrupts but has not yet issued the corresponding EnableAllInterrupts or 
ResumeAllInterrupts, ErrorHook is called with E_OS_DISABLEDINT (0x15) as the parameter.



R20UT2768EJ0103  Rev.1.03 Page 30 of 282
Jun 10, 2015

RV850 4.  INTERRUPT HANDLING

- If the interrupt service routine has acquired any normal resources, the normal resources will be released.

- If the interrupt service routine has acquired any normal resources, the current priority will be changed (the cur-
rent priority of the interrupt service routine is returned to Initial priority "OsIsrPriority").

- If the interrupt service routine has acquired any normal resources, the process to enable the acceptance of 
interrupts will be performed (the acceptance of interrupt sources corresponding to Priority "INTPRI0 to ceiling 
value" is enabled).

- When an OS-Application-specific hook routine (ErrorHook_OsApplication) is registered in the OS-Application to 
which the task belongs, if the interrupt service routine has acquired any normal resources, 
ErrorHook_OsApplication is called with E_OS_RESOURCE (0x6) as the parameter.

- When the common hook routine (ErrorHook) is registered, if the interrupt service routine has acquired any nor-
mal resources, ErrorHook is called with E_OS_RESOURCE (0x6) as the parameter.

- The scheduler is activated.

Remark 1. In the RV850, for category 1, correct operation cannot be guaranteed when an interrupt service routine 
that has issued DisableAllInterrupts or SuspendAllInterrupts but has not yet issued the corresponding 
EnableAllInterrupts or ResumeAllInterrupts has issued the return instruction.

Remark 2. The save/restore processes of FPSR are executed only when FPU-supporting kernel libraries 
libecc2extsc1_fpu.a, and libecc2extsc3_fpu.a are linked.

4.4  System Services

The system services shown in "14.4.2Interrupt handling" are used to manipulate interrupts dynamically from processing 
programs.

4.5  User-Own Coding Modules

In the RV850, the hardware-dependent processes required by the RV850 to execute the processes for supporting vari-
ous execution environments are extracted as RV850 dependent modules ("user-own" (user owned) coding modules), and 
provided as sample source files.

This improves portability to various execution environments and facilitates customization as well.

4.5.1  Entry process (direct branch method exception vector)

The entry process is a routine dedicated to the entry process, extracted to assign the branch process to the relevant 
process (boot process, exception/interrupt safety measure process, etc.) when reset (RESET), FE level interrupts 
(FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code "OsIsrExceptionCode" or Exception code 
"OsCounterExceptionCode"), etc. has been generated.

The basic form for coding the entry process in the assembly language is shown below.

[SC1, RBASE/EBASE: 0x0]



RV850 4.  INTERRUPT HANDLING

R20UT2768EJ0103  Rev.1.03 Page 31 of 282
Jun 10, 2015

    .globl  _entry0000
    .globl  _entry0010
    .........
    .globl  _entry0100
    .........

    .org    0x00000000
_entry0000:
    jr      _boot

    .org    0x00000010
_entry0010:
    jr      kernel_e_IllegalExcEntry

    .........

    .org    0x00000100
_entry0100:
    jr      kernel_e_IllegalExcEntry

    .........



R20UT2768EJ0103  Rev.1.03 Page 32 of 282
Jun 10, 2015

RV850 4.  INTERRUPT HANDLING

[SC3, RBASE/EBASE: 0x0]

Remark 1. The user does not need to code the entry process associated with EI level interrupts that are defined in 
Exception code "OsIsrExceptionCode" or Exception code "OsCounterExceptionCode", because the con-
figurator outputs to the ENTRY file about the entry process.

Remark 2. If the scalability class is SC3, code the branch process to process _kernel_e_ProtectEntry which corre-
sponds to the protection exception for a system error exception (+0x10 address), memory protection 
exception (+0x90 address), or privilege instruction exception (+0xA0 address).

    .globl  _entry0000
    .globl  _entry0010
    .globl  _entry0020
    .........
    .globl  _entry0090
    .globl  _entry00A0
    .globl  _entry00B0
    .........
    .globl  _entry0100
    .........

    .org    0x00000000
_entry0000:
    jr      _boot

    .org    0x00000010
_entry0010:
    jr      kernel_e_ProtectEntry

    .org    0x00000020
_entry0020:
    jr      kernel_e_IllegalExcEntry

    .........

    .org    0x00000090
_entry0090:
    jr      kernel_e_ProtectEntry

    .org    0x000000A0
_entry00A0:
    jr      kernel_e_ProtectEntry

    .org    0x000000B0
_entry00B0:
    jr      kernel_e_IllegalExcEntry

    .........

    .org    0x00000100
_entry0100:
    jr      kernel_e_IllegalExcEntry

    .........



RV850 4.  INTERRUPT HANDLING

R20UT2768EJ0103  Rev.1.03 Page 33 of 282
Jun 10, 2015

4.5.2  Exception/interrupt safety measure process

The exception/interrupt safety measure process is a routine dedicated to the safety measure process that is called from 
entry process when FE level interrupts (FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code "OsIsrEx-
ceptionCode" or Exception code "OsCounterExceptionCode"), etc. has been generated.

The basic form for coding an exception/interrupt safety measure process in the C language is shown below.

 The following points should be noted when coding an exception/interrupt safety measure process.

(1) Saving/Restoring registers
The RV850 is not involved with the calling of an exception/interrupt safety measure process routine. Conse-
quently, it is necessary to code the save/restore processes of registers, in accordance with the processing con-
tents of the routine.

(2) Saving/Restoring FPSR
The RV850 is not involved with the calling of an exception/interrupt safety measure process routine. Conse-
quently, it is necessary to code the save/restore processes of FPSR in order to change the contents of FPSR 
explicitly.

(3) Stack switching
The RV850 is not involved with the calling of an exception/interrupt safety measure process routine. Conse-
quently, it is necessary to code the stack pointer (SP) setting process when using a dedicated stack for the excep-
tion/interrupt safety measure process routine.

(4) Interrupt acceptance
When an exception/interrupt safety measure process routine is called, the device manipulates the ID bit in the pro-
gram status word (PSW) to disable the acceptance of interrupts.

(5) Issuing system services
System services cannot be called from an exception/interrupt safety measure process routine.

Remark An exception/interrupt safety measure process is prepared in the RV850.
Consequently, event _kernel_e_IllegalExcEntry is not coded, if the branch process to the exception/inter-
rupt safety measure process was assigned to entry process, and, in the case of the operand of SYSCALL 
instruction is an illegal value, the exception/interrupt safety measure process (the process to issue 
ShutdownOS in which E_OS_SYS_ILLEGAL_EXCEPTION has been specified for parameter Error) will 
be called.

4.6  Multiplex Interrupts

In the RV850, interrupts that are generated more than once during processing of the interrupt service routine are called 
"multiplex interrupts".

#pragma ghs interrupt

void
_kernel_e_IllegalExcEntry ( void ) {
    ..................
    ..................
}



R20UT2768EJ0103  Rev.1.03 Page 34 of 282
Jun 10, 2015

RV850 4.  INTERRUPT HANDLING

Figure 4.1 Multiplex Interrupts

Remark Since a priority (including Priority "OsCounterPriority" that is specified for the hardware counter) higher 
than that of any category 2 interrupt service routine is specified in Initial priority "OsIsrPriority" of the cat-
egory 1 interrupt service routine, the acceptable interrupts during processing of the category 1 interrupt 
service routine are only category 1 interrupts.

Task

return

Interrupt service routine

Disables acceptance of interrupts

Interrupt service routine

return

Enables acceptance of interrupts

Interrupt

Interrupt



RV850 5.  RESOURCE MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 35 of 282
Jun 10, 2015

5.  RESOURCE MANAGEMENT

This chapter describes the resource management functions provided by the RV850.

5.1  Overview

The RV850 provides resource management facilities as a mechanism for achieving mutual exclusion. Resources are 
exclusively controlled using "priority ceiling protocols", and racing over resources by tasks or interrupt service routines 
(category 2) that use the limited number of shared resources (data, peripheral devices, common functions, etc.) or dead-
locks can be prevented.

The RV850 supports three types of resource.

(1) Normal resources
These resources can be acquired and released dynamically by issuing GetResource and ReleaseResource.

(2) Internal resources
These resources are allocated automatically by the RV850 when the task state changes from READY to RUN-
NING.

(3) Linked resources
These resources inherit properties (ceiling values and OS-Application identifiers) from another resource.

5.1.1  Ceiling values

A ceiling value is a priority assigned to the interval between the acquisition and release of a resource by a processing 
program (task or interrupt service routine).

Consequently, if a task with priority 3 acquires a resource with a ceiling value of 10, then it will run as a priority-10 task 
until that resource is released, and therefore control will not be transferred to tasks with priority 0 to 10.

If a task with priority 3 acquires a resource with a ceiling value of INTPRI5, then it will operate at the maximum priority of 
29 until that resource is released, and in addition, the acceptance of INTPRI0 to INTPRI5 interrupts of will be disabled. For 
this reason, control will not be passed to tasks with priority 0 to 29, or INTPRI0 to INTPRI5 interrupt service routines.

Remark Interrupts that were put on hold while a resource with a ceiling value of INTPRI0 to INTPRI5 was 
acquired are accepted after that resource is released.

5.1.2  Scheduler resource

 The OSEK/VDX specifications have a definition of a resource, which have a identifier "RES_SCHEDULER" and the 
ceiling value “29” as a means to dynamically enable and disable the activation of the scheduler from tasks. See 
"5.2Generation of Resources" for how to apply a scheduler resource RES_SCHEDULER on RV850.

This disables the activation of the scheduler from the time the system service is issued via issuance of GetResource by 
the task (parameter ResID set to RES_SCHEDULER), until ReleaseResource is issued (parameter ResID set to 
RES_SCHEDULER).

Remark 1. The RV850 does not define any scheduler resource automatically to conform to the AUTOSAR specifica-
tions. See "5.2 Generation of Resources" for detail about the way to enable the scheduler resource 
"RES_SCHEDULER".

Remark 2. The ceiling value of the scheduler resource is 29 and it cannot be used for exclusive control related to 
interrupt service routines.



R20UT2768EJ0103  Rev.1.03 Page 36 of 282
Jun 10, 2015

RV850 5.  RESOURCE MANAGEMENT

5.2  Generation of Resources

The RV850 restricts resource generation to static generation via the definition of Resource information. Consequently, 
resources cannot be generated dynamically, for example by issuing system services from a processing program.

(1) Static generation
A resource is statically generated by defining Resource information in a CF file.
In the RV850, the kernel initialization module reads the Resource information definitions from the information file, 
and initializes these resources, which are subject to management.

Remark The OSEK/VDX specifications have a rule specifying a scheduler resource to be automatically generated 
by defining TRUE in Scheduler resource "OsUseResScheduler". The AUTOSAR specifications, however, 
have a rule specifying not to perform automatic generation.
Therefore, when generating a scheduler resource in the RV850, make the following definitions in the CF 
file.

- Specify RES_SCHEDULER in Identifier "OsResource" of the Resource information.

- Specify 29 in Ceiling value "OsResourcePriority" of the Resource information.

5.3  System Services

The system services shown in "14.4.3Resource management" are used to manipulate resources dynamically from pro-
cessing programs.



RV850 6.  EVENT MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 37 of 282
Jun 10, 2015

6.  EVENT MANAGEMENT

This chapter describes the event management functions provided by the RV850.

6.1  Overview

The RV850 provides event management functions as a mechanism for queuing tasks that are waiting to execute a pro-
cess until another task outputs the results of its processing.

Figure 6.1 Waiting between Tasks

Remark In the RV850, the distinction between a basic task and an extended task is based on whether an event 
has been assigned (whether Event identifier "OsTaskEventRef" has been defined).
In the RV850, the maximum number of events that can be assigned to an extended task is 32.

6.2  Generation of Events

The RV850 restricts event generation to static generation via the definition of Event information. Consequently, events 
cannot be generated dynamically, for example by issuing system services from a processing program.

(1) Static generation
An event is statically generated by defining Event information in a CF file.
In the RV850, the kernel initialization module reads the Event information definitions from the information file, and 
initializes these events, which are subject to management.

6.3  System Services

The system services shown in "14.4.4Event management" are used to manipulate events dynamically from processing 
programs.

Task
Priority: high

Sets an event mask.

Confirms an event mask.

Queuing period

Task
Priority: low



R20UT2768EJ0103  Rev.1.03 Page 38 of 282
Jun 10, 2015

RV850 7.  COUNTER MANAGEMENT

7.  COUNTER MANAGEMENT

This chapter describes the counter management functions provided by the RV850.

7.1  Overview

The RV850 provides counter management functions as a mechanism to perform processing in accordance with the 
number of times an application specific trigger has occurred, and supports two types of counter.

(1) Software counters
The count value is updated when the system service "IncrementCounter" is called from a processing program.

(2) Hardware counters
The count value is updated when an interrupt occurs corresponding to the Exception code "OsCounterException-
Code" defined in the Counter information.

7.1.1  System counters

Although the RV850 supports the system counter required by the OSEK/VDX specifications, it does not create any dis-
tinctions from the ways of handling and using ordinary counters, other than defining the SYS_COUNTER keyword pre-
scribed in Identifier "OsCounter".

7.2  Generation of Counters

The RV850 restricts counter generation to static generation via the definition of Counter information. Consequently, 
counters cannot be generated dynamically, for example by issuing system services from a processing program.

(1) Static generation
A counter is statically generated by defining Counter information in a CF file.
In the RV850, the kernel initialization module reads the Counter information definitions from the information file, 
and initializes these counters, which are subject to management.

Remark If the target counter is a hardware counter, the RV850 will also register the interrupt service routine (cate-
gory 2) for updating the count value, as part of the generation process.

7.3  System Services

The system services shown in "14.4.5Counter management" are used to manipulate counters dynamically from pro-
cessing programs.



RV850 8.  ALARM MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 39 of 282
Jun 10, 2015

8.  ALARM MANAGEMENT

This chapter describes the alarm management functions provided by the RV850.

8.1  Overview

The RV850 provides alarm management functions as a mechanism to perform processing in synchronization with the 
change of counter values.

The alarm management functions perform the expiry action when the count value of a counter associated in Counter 
identifier "OsAlarmCounterRef" reaches the expiry conditions (expiry count value or cyclic count value). This expiry action 
includes activating tasks, setting event masks, updating count values, and calling an alarm callback (only in SC1).

8.2  Alarm Callback

This is a routine dedicated to the expiry action that is called when the alarm has expired.
In the RV850, alarm callbacks are independent from tasks. Consequently, when an alarm has expired, even the highest 

priority task is preempted during execution, and control is transferred to the alarm callback.
The basic form for coding the alarm callback in the C language is shown below.

Remark The identifier of the alarm callback defined in Alarm information is set in OsAlarmCallbackName.

8.2.1  Processing in alarm callbacks

When the RV850 transfers control from a processing program to an alarm callback, it performs independent pre-pro-
cessing. It also performs independent post-processing before returning control from an alarm callback to a processing pro-
gram. Consequently, the following points should be noted when coding an alarm callback.

(1) Saving/Restoring registers
When the RV850 transfers control to the alarm callback, the save/restore processes of the work registers are exe-
cuted according to the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

(2) Saving/Restoring FPSR
When the RV850 transfers control to the alarm callback, the save/restore processes of the floating-point configu-
ration/status register (FPSR) are not executed.
Consequently, it is necessary to code the save/restore processes of FPSR in order to change the contents of 
FPSR explicitly.

Remark If the alarm callback executes floating-point operations using imprecise exception and is needed to 
complete the operations before transiting into RV850 execution, it is necessary to issue syncp and 
synce operation just before the end of the alarm callback. 

(3) Stack switching
When the RV850 transfers control to the alarm callback, it switches to the system stack defined in System stack 
size "OsStackSize".

(4) Interrupt acceptance
When the RV850 transfers control to the alarm callback, the acceptance status of category 2 interrupts is changed 
to disabled (PMn bits of PMR are manipulated).

(5) Issuing system services
Only system services that are allowed to be issued from alarm callbacks are issuable.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

ALARMCALLBACK ( OsAlarmCallbackName ) {
    ..................
    ..................
    return;
}



R20UT2768EJ0103  Rev.1.03 Page 40 of 282
Jun 10, 2015

RV850 8.  ALARM MANAGEMENT

8.2.2  Registration of alarm callbacks

The RV850 restricts registration of alarm callbacks to static registration via the definition of Alarm callback identifier 
"OsAlarmCallbackName". Consequently, alarm callbacks cannot be registered dynamically, for example by issuing system 
services from a processing program.

(1) Static registration
An alarm callback is statically registered by defining Alarm callback identifier "OsAlarmCallbackName".
In the RV850, the kernel initialization module reads the Alarm callback identifier "OsAlarmCallbackName" defini-
tions from the information file, and initializes these alarm callbacks, which are subject to management.

8.3  Generation of Alarms

The RV850 restricts alarm generation to static generation via the definition of Alarm information. Consequently, alarms 
cannot be generated dynamically, for example by issuing system services from a processing program.

- Static generation
An alarm is statically generated by defining Alarm information in a CF file.
In the RV850, the kernel initialization module reads the Alarm information definitions from the information file, and ini-
tializes these alarms, which are subject to management.

8.3.1  System Services

The system services shown in "14.4.6Alarm management" are used to manipulate alarms dynamically from processing 
programs.



RV850 9.  SCHEDULE TABLE MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 41 of 282
Jun 10, 2015

9.  SCHEDULE TABLE MANAGEMENT

This chapter describes the schedule table management functions provided by the RV850.

9.1  Overview

The RV850 provides schedule table management functions as a mechanism to perform processing in synchronization 
with the change of counter values.

The schedule table management functions perform the expiry action when the count value of a counter associated in 
Counter identifier "OsScheduleTableCounterRef" reaches the expiry conditions (expiry count value). This expiry action 
includes activating tasks and setting event masks.

9.2  Schedule Tables

Although only one expiry count value and one expiry action can be defined for an alarm, multiple expiry count values 
and expiry actions can be defined for a schedule table.

9.2.1  Schedule table states

The RV850 classifies and manages the states that schedule tables can take into five main types.

Figure 9.1 Schedule Table States

(1) STOPPED state
In this state, the schedule table is under the management of the RV850, but it is not subject to schedule counting.

(2) NEXT state
In this state, the schedule table specified in parameter ScheduleTableID_To is to be shifted from STOPPED state 
due to issuance of NextScheduleTable.
A schedule table is shifted from NEXT state to RUNNING state at the timing of when the schedule table (schedule 
table specified in parameter ScheduleTableID_From) currently in RUNNING state has completed schedule count-
ing.

(3) RUNNING state 
In this state, the schedule count is running.

9.3  Generation of schedule tables

The RV850 restricts schedule table generation to static generation via the definition of Schedule table information. Con-
sequently, schedule tables cannot be generated dynamically, for example by issuing system services from a processing 
program.

(1) Static generation
A schedule table is statically generated by defining Schedule table information in a CF file.
In the RV850, the kernel initialization module reads the Schedule table information definitions from the information 
file, and initializes these schedule tables, which are subject to management.

9.4  System Services

The system services shown in "14.4.7Schedule table management" are used to manipulate schedule tables dynamically 
from processing programs.

STOPPED state

RUNNING state

NEXT state



R20UT2768EJ0103  Rev.1.03 Page 42 of 282
Jun 10, 2015

RV850 10.  OS-APPLICATION MANAGEMENT

10.  OS-APPLICATION MANAGEMENT

This chapter describes the OS-Application management functions (only in SC3) provided by the RV850.

10.1  Overview

The RV850 provides OS-Application management functions as a mechanism to group objects (e.g. tasks and counters) 
used on the system and provide access protection (disables or enables manipulation of objects when system services are 
issued).

Note that objects are grouped in individual OS-Applications. Access protection is implemented by allowing unconditional 
access to objects belonging to the same OS-Application and granting individual access to objects belonging to other OS-
Applications using OS-Application identifier "OsTaskAccessingApplication", OS-Application identifier "OsCounterAccess-
ingApplication", etc.

10.1.1  Reliability

In the RV850, OS-Applications are divided into the following two types.

(1) Trusted OS-Applications
In the RV850, OS-Applications that are defined as TRUE in Reliability "OsTrusted" are handled as trusted OS-
Applications (OS-Applications whose reliability is ensured).
Note that in the RV850, since the reliability of processing programs belonging to a trusted OS-Application is 
ensured, they are to be operated in supervisor mode (UM bit of PSW is set to 0) with the system protection 
identifier (SPID bit of MCFG0 register) set to 0, and the memory protection and peripheral I/O protection facilities 
cannot be applied.

(2) Non-Trusted OS-Applications
In the RV850, OS-Applications that are defined as FALSE in Reliability "OsTrusted" are handled as non-trusted 
OS-Applications (OS-Applications whose reliability is not ensured).
Note that in the RV850, since the reliability of processing programs belonging to a non-trusted OS-Application is 
not ensured, they are to be operated in user mode (UM bit of PSW is set to 1) with the system protection identifier 
(SPID bit of MCFG0 register) specified by SPID "OsApplicationSPID", and the memory protection and peripheral 
I/O protection functions can be applied.

10.1.2  States

An OS-Application shifts to various states because a system service (e.g. StartOS, TerminateApplication, 
AllowAccess) was issued from a processing program or because of the value (e.g. APPLICATION_TERMINATED, 

APPLICATION_RESTARTING) set as the return value of a common hook routine (ProtectionHook).
The RV850 classifies and manages the states that OS-Applications can take into three main types.

Figure 10.1 OS-Application States

(1) APPLICATION_ACCESSIBLE state
After StartOS is issued from the boot process, all OS-Applications defined in CF files are first placed in this state.
Even when AllowAccess has been issued from a processing program, the OS-Application to which the processing 
program that has issued AllowAccess belongs is shifted from APPLICATION_RESTARTING state to this state.

(2) APPLICATION_RESTARTING state
When TerminateApplication (restart option: RESTART) is issued from a processing program, the target OS-Appli-
cation in APPLICATION_ACCESIBLE state is shifted to this state.

APPLICATION_ACCESSIBLE state

APPLICATION_RESTARTING state

APPLICATION_TERMINATED state



RV850 10.  OS-APPLICATION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 43 of 282
Jun 10, 2015

Even when APPLICATION_RESTARTING has been set as the return value of a common hook routine (Protection-
Hook), the OS-Application to which the processing program (the processing program in which a protection viola-
tion, such as stack overflow, illegal memory access, and exception takes place) calling ProtectionHook belongs is 
shifted to this state.

(3) APPLICATION_TERMINATED state
When TerminateApplication (restart option: NO_RESTART) is issued from a processing program, the target OS-
Application in APPLICATION_ACCESIBLE state is shifted to this state.
Even when APPLICATION_TERMINATED has been set as the return value of a common hook routine (Protec-
tionHook), the OS-Application to which the processing program (the processing program in which a protection vio-
lation, such as stack overflow, illegal memory access, and exception takes place) calling ProtectionHook belongs 
is shifted to this state.

10.1.3  Memory protection

The RV850 provides a memory protection in order to prevent processing programs (tasks, interrupt service routines, 
and hook routines) belonging to non-trusted OS-Applications from performing illegal memory access.

If a processing program makes an illegal memory access, this function executes a process (calls the common hook rou-
tine ProtectionHook or issues ShutdownOS) according to the definitions of ProtectionHook "OsProtectionHook".

The memory areas that are subject to monitoring by the memory protection of the RV850 are shown below. The memory 
areas that are subject to monitoring are defined in Memory area identifier "OsSystemMemoryArea", and the type (OS-
application specific, common for system) is defined in Memory area identifier "OsAppMemoryAreaNameRef", Memory 
area identifier "OsMemoryAreaNameRef". A memory area that has not been defined for this function will be handled as a 
memory area whose access is inhibited.

Table 10.1 Monitored Memory Areas

Remark 1. For the stack area, no definitions are necessary in Memory area identifier "OsSystemMemoryArea", 
Memory area identifier "OsAppMemoryAreaNameRef", or Memory area identifier "OsMemoryAreaNa-
meRef".
The stack area used by a non-trusted OS-Application is monitored constantly regardless of the specifica-
tion of Stack monitoring facilities "OsStackMonitoring"

Remark 2. The threshold (address) of the stack pointer which is to be considered to detect an overflow in the stack 
area is obtained by adding the maximum value of stack usage by the system services of the RV850 to 
the top address of the stack area used by tasks or interrupt service routines (category 2). 
This is a countermeasure for the memory protection facility not operating while executing a system ser-
vice of the RV850 because of the transition to supervisor mode even for a non-trusted OS-Application.

10.1.4  Peripheral I/O protection function

The RV850 provides a peripheral I/O protection function that uses the SPID bit (system protection identifier) of the 
machine configuration register (MCFG0) in order to prevent processing programs (tasks, interrupt service routines, and 
hook routines) belonging to non-trusted OS-Applications from performing illegal peripheral I/O access.

The RV850 implements the peripheral I/O protection function by rewriting the SPID bit value with the value defined in 
SPID "OsApplicationSPID" when the OS-Applications are switched.

Memory Area Type Access Type

Code area OS-application specific Read/execution

Common for system

Data area OS-application specific Read/write

Common for system

Stack area OS-application specific Read/write

Extended-task specific

I/O area Read/write



R20UT2768EJ0103  Rev.1.03 Page 44 of 282
Jun 10, 2015

RV850 10.  OS-APPLICATION MANAGEMENT

Remark 1. The I/O areas that are subject to monitoring by the peripheral I/O protection function of the RV850 have 
to be defined in Memory area identifier "OsAppMemoryAreaNameRef" as memory areas whose access 
is enabled.

Remark 2. The values to be defined in SPID "OsApplicationSPID" do not have to be on a one-to-one basis with non-
trusted OS-Applications.
Consequently, the same SPID "OsApplicationSPID" can be defined for multiple non-trusted OS-Applica-
tions.



RV850 10.  OS-APPLICATION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 45 of 282
Jun 10, 2015

10.2  Trusted Functions

For trusted OS-Applications, it is possible to assign specific trusted functions to individual OS-Applications.

Trusted functions are called by issuing CallTrustedFunction from the processing program.Since CallTrustedFunction 
can also be called from other non-trusted OS-Applications, trusted functions can be used when a non-trusted OS-Applica-
tion is to temporarily perform processing without the protection facilities applied.

The basic form for coding a trusted function in the C language is shown below.

Remark 1. The identifier of the trusted function defined in Identifier "OsTrustedFunctionName" is written in OsTrust-
edFunctionName.

Remark 2. A trusted function can only access objects (e.g. tasks, resources) that can also be accessed from the 
OS-Application to which the processing program that issued CallTrustedFunction belongs.

Remark 3. Trusted functions operate in supervisor mode; if CallTrustedFunction is issued from a processing pro-
gram that belongs to a non-trusted OS-Application, the mode switching processing (transition from user 
mode to supervisor mode) and system protection identifier (SPID bit of MCFG0 register) switching pro-
cessing (it is set to 0 when a trusted function is being executed) are executed.

Remark 4. Since trusted functions operate in supervisor mode, the memory protection function cannot be applied. 
Also, since trusted functions operate when the system protection identifier (SPID bit of MCFG0 register) 
is set to 0, peripheral I/O protection functions associated with the system protection identifier cannot be 
applied.

Remark 5. The AUTOSAR specifications have a rule specifying not to perform dispatching to other tasks in the 
same OS-Application from a trusted function. In the RV850, however, dispatching to other tasks is per-
formed.

Remark 6. The AUTOSAR specifications have a rule disabling acceptance of category 2 interrupts when control is 
transferred from the processing program that issued CallTrustedFunction to a trusted function. In the 
RV850, however, no manipulations related with interrupt acceptance are performed.

10.2.1  Processing in trusted functions

When the RV850 transfers control from a processing program to a trusted function, it performs independent pre-pro-
cessing. It also performs independent post-processing before returning control from a trusted function to a processing pro-
gram. Consequently, the following points should be noted when coding trusted functions.

(1) Saving/Restoring registers
When the RV850 transfers control to a trusted function, the save/restore processes of the work registers are exe-
cuted according to the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

(2) Saving/Restoring FPSR
The FPSR value is changed to the value defined in FPSR "OsAppDefaultFPSRValue" or FPSR default value 
"OsDefaultFPSRValue".
Consequently, it is not necessary to code the FPSR save/restore processes when TRUE is defined in FPSR sav-
ing/restoring "OsSaveFpuReg".

Remark 1. The FPSR save/restore processes are done only when kernel library libecc2extsc1_fpu.a or 
libecc2extsc3_fpu.a, which supports the FPU, is linked.

Remark 2. If the trusted function executes floating-point operations using imprecise exception and is needed 
to complete the operations before tRV850 restores FPSR, it is necessary to issue syncp and 
synce operation just before the end of the trusted function. 

(3) Stack switching
Since the RV850 characterizes a trusted function as an extension of the processing program that issued CallTrust-
edFunction, stacks are not switched.

TRUSTED ( OsTrustedFunctionName ) {
    ..................
    ..................
}



R20UT2768EJ0103  Rev.1.03 Page 46 of 282
Jun 10, 2015

RV850 10.  OS-APPLICATION MANAGEMENT

Consequently, when estimating the stack size for a processing program that will issue CallTrustedFunction, the 
size required by the trusted function needs to be considered.

(4) Interrupt acceptance
When the RV850 transfers control to a trusted function, no manipulations related with interrupt acceptance are 
performed.
Consequently, it is necessary to code the issuance processes, such as EnableAllInterrupts and DisableAllInter-
rupts, in order to change the status of interrupt acceptance explicitly.

(5) Issuing system services
Since the RV850 characterizes a trusted function as an extension of the processing program that issued CallTrust-
edFunction, the system services that are allowed to be issued from a trusted function depend on the type of the 
processing program that issued CallTrustedFunction.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

10.2.2  Registration of trusted functions

The RV850 restricts registration of trusted functions to static registration via the definition of Identifier "OsTrustedFunc-
tionName". Consequently, trusted functions cannot be registered dynamically, for example by issuing system services 
from a processing program.

(1) Static registration
A trusted function is statically registered by defining Identifier "OsTrustedFunctionName".
In the RV850, the kernel initialization module reads the Identifier "OsTrustedFunctionName" definitions from the 
information file, and initializes these trusted functions, which are subject to management.

10.2.3  Inherited data of trusted functions

The method of inheriting data between the function calling a trusted function and the trusted function itself is described 
here.

Assume that trusted function "TFUNC1" is coded in accordance with the basic form as shown below.

In this instance, macro expansion is performed in the format below at compilation.

The first and second parameters specified in the CallTrustedFunction system service can be referenced from trusted 
function "TFUNC1".

-  First parameter FunctionIndex
This can be referenced in the format of a parameter called FunctionIndex of the TrustedFunctionIndexType type.

- Inherited data pointed to by second parameter FunctionParams
This can be referenced in the format of referencing the pointer of a parameter called FunctionParams of the Trusted-
FunctionParameterRefType type.

An example of referencing the inherited data when task "TASK1" calls trusted function "TFUNC1" is shown in the follow-
ing.

TRUSTED (TFUNC1) {
    ………………
    return;
}

void 
TRUSTED_TFUNC1(TrustedFunctionIndexType FunctionIndex,   
               TrustedFunctionParameterRefType FunctionParams) {
    ………………
    return;
}



RV850 10.  OS-APPLICATION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 47 of 282
Jun 10, 2015

/* Structure of inherited data of trusted function TFUNC1 */
struct TFUNC1_parameter_struct {
    int param1;/* Input data */
    int param2;/* Input data */
    int ret_code; /* Input data */
};

/* Allocate inherited data area of trusted function TFUNC1 */
struct TFUNC1_parameter_struct Tfunc1_paramaters; 

/* Task */
TASK(TASK1) {
    ………………
    ………………
     /* Input data to trusted function */
    local_struct.param1 = 1; 
    local_struct.param2 = 2; 

    /* Calling of trusted function */
    CallTrustedFunction(TFUNC1,\\  
                        (TrustedFunctionParameterRefType)&Tfunc1_paramaters);
    /* Acquire output data from trusted function */
    ret_code = Tfunc1_paramaters.value_return;
    ………………
    ………………
    TerminateTask(); 
}

/* Trusted function */
TRUSTED (TFUNC1) {
    int p1, p2;

    /* Acquire input data */
    p1 = FunctionParams->param1;
    p2 = FunctionParams->param2;
    ………………
    ………………
    /* Output data to calling function */
    FunctionParams->value_return = 0x100;

    return;
}



R20UT2768EJ0103  Rev.1.03 Page 48 of 282
Jun 10, 2015

RV850 10.  OS-APPLICATION MANAGEMENT

10.3  OS-Application-Specific Hook Routines

Three types of hook routines with different usages are supported as OS-Application-specific hook routines in individual 
OS-Applications.

Remark Non-trusted OS-Application-specific hook routines are to be operated in user mode (UM bit of PSW is set 
to 1) with the system protection identifier (SPID bit of MCFG0 register) specified by SPID "OsApplication-
SPID", and the memory protection and peripheral I/O protection facilities associated with the system 
protection identifier can be applied.
Trusted OS-Application-specific hook routines are to be operated in supervisor mode (UM bit of PSW is 
set to 0) with the system protection identifier (SPID bit of MCFG0 register) set to 0, and the memory pro-
tection and peripheral I/O protection facilities associated with the system protection identifier cannot be 
applied.

(1) StartupHook_OsApplication
This is a dedicated hook routine for initialization processing that is called when StartOS is issued from a process-
ing program.
The basic form for coding StartupHook_OsApplication in the C language is shown below.

Remark 1. The identifier of the OS-Application defined in Identifier "OsApplication" is written in OsApplication.

Remark 2. When StartupHook_OsApplication "OsAppStartupHook" is specified as TRUE in multiple sets of 
OS-Application information, StartupHook_OsApplication is called in the order of appearance in the 
CF file.

(2) ShutdownHook_OsApplication
This is a dedicated hook routine for shutdown processing that is called from a processing program when Shut-
downOS is issued.
The basic form for coding ShutdownHook_OsApplication in the C language is shown below.

Remark 1. The identifier of the OS-Application defined in Identifier "OsApplication" is written in OsApplication.

Remark 2. Set parameter FatalError to the inherited data specified in parameter Error of ShutdownOS.
Note that when the processing program that called this hook routine is the exception/interrupt 
safety measure process, E_OS_ILLEGAL_EXCEPTION is set to parameter FatalError.

Remark 3. When parameter Fatalerror is set to E_OS_SYS_ILLEGAL_EXCEPTION, the EIIC or FEIC register 
value can be obtained by issuing OSIllegalException_SystemRegister_ExcCode in this hook rou-
tine, or the EIPC or FEPC register value can be obtained by issuing 
OSIllegalException_SystemRegister_ExcPC.

Remark 4. When ShutdownHook_OsApplication "OsAppShutdownHook" is specified as TRUE in multiple sets 
of OS-Application information, ShutdownHook_OsApplication is called in the order of appearance 
in the CF file.

void
StartupHook_OsApplication ( void ) {
    ..................
    ..................
}

void
ShutdownHook_OsApplication ( StatusType Fatalerror ) {
    ..................
    ..................
}



RV850 10.  OS-APPLICATION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 49 of 282
Jun 10, 2015

(3) ErrorHook_OsApplication
This is a dedicated hook routine for error processing that is called when a system service issued from a process-
ing program terminates abnormally.
The basic form for coding ErrorHook_OsApplication in the C language is shown below.

Remark 1. The identifier of the OS-Application defined in Identifier "OsApplication" is written in OsApplication.

Remark 2. Set parameter Error to the error status of the system service that terminated abnormally.

Remark 3. This hook routine is specific to the OS-Application to which the processing program whose system 
service terminated abnormally belongs.

Remark 4. When the system service issued from ErrorHook_OsApplication terminates abnormally, ErrorHook 
and ErrorHook_OsApplication is not called again.

10.3.1  Processing in OS-Application-specific hook routines

When the RV850 transfers control from a processing program to an OS-Application-specific hook routine, it performs 
independent pre-processing. It also performs independent post-processing before returning control from an OS-Applica-
tion-specific hook routine to a processing program. Consequently, the following points should be noted when coding an 
OS-Application-specific hook routine.

(1) Saving/Restoring registers
When the RV850 transfers control to an OS-Application-specific hook routine, the save/restore processes of the 
work registers are executed according to the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

(2) Saving/Restoring FPSR
When the RV850 transfers control to an OS-Application-specific hook routine, the save/restore processes of the 
floating-point configuration/status register (FPSR) are not executed.
Consequently, it is necessary to code the save/restore processes of FPSR in order to change the contents of 
FPSR explicitly.

Remark If the OS-Application-specific hook routine executes floating-point operations using imprecise 
exception and is needed to complete the operations before transiting into RV850 execution, it is 
necessary to issue syncp and synce operation just before the end of the OS-Application-specific 
hook routine.

(3) Stack switching
When the RV850 transfers control to an OS-Application-specific hook routine, it switches to the OS-Application 
stack defined in OS-Application Stack size "OsAppStackSize".
Consequently, it is not necessary to write code to switch the stack.

(4) Interrupt acceptance
When the RV850 transfers control to an OS-Application-specific hook routine, the acceptance status of category 2 
interrupts is changed to disabled (PMn bits of PMR are manipulated).

Remark 1. It is prohibited to explicitly manipulate the category 2 interrupt acceptance status from within an OS-
Application-specific hook routine.

Remark 2. When the RV850 transfers control to ShutdownHook_OsApplication, the ID bit of PSW is manipu-
lated as well as the PMn bits of PMR to disable the acceptance of interrupts.

(5) Issuing system services
Only system services that are allowed to be issued from OS-Application-specific hook routines are issuable.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

void
ErrorHook_OsApplication ( StatusType Error ) {
    ..................
    ..................
}



R20UT2768EJ0103  Rev.1.03 Page 50 of 282
Jun 10, 2015

RV850 10.  OS-APPLICATION MANAGEMENT

10.3.2  Registration of OS-Application-specific hook routines

The RV850 restricts registration of OS-Application-specific hook routines to static registration via the following defini-
tions. Consequently, OS-Application-specific hook routines cannot be registered dynamically, for example by issuing sys-
tem services from a processing program.

- StartupHook_OsApplication "OsAppStartupHook"

- ShutdownHook_OsApplication "OsAppShutdownHook"

- ErrorHook_OsApplication "OsAppErrorHook"

(1) Static registration
An OS-Application-specific hook routine is statically registered by defining TRUE in the following definitions.

- StartupHook_OsApplication "OsAppStartupHook"

- ShutdownHook_OsApplication "OsAppShutdownHook"

- ErrorHook_OsApplication "OsAppErrorHook"

In the RV850, the kernel initialization module reads the definitions from the information file, and initializes these 
OS-Application-specific hook routines, which are subject to management.

10.4  Generation of OS-Applications

The RV850 restricts OS-Application generation to static generation via the definition of OS-Application information. Con-
sequently, OS-Applications cannot be generated dynamically, for example by issuing system services from a processing 
program.

(1) Static generation
An OS-Application is statically generated by defining OS-Application information in a CF file.
In the RV850, the kernel initialization module reads the OS-Application information definitions from the information 
file, and initializes these OS-Applications, which are subject to management.

10.5  System Services

The system services shown in "14.4.8OS-Application management" are used to manipulate OS-Applications dynami-
cally from processing programs.



RV850 11.  OS EXECUTION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 51 of 282
Jun 10, 2015

11.  OS EXECUTION MANAGEMENT

This chapter describes the OS execution management functions provided by the RV850.

11.1  Overview

The RV850 provides OS execution management functions as a mechanism to perform processing when the RV850 
starts up and shuts down.

11.2  Common Hook Routines

In the RV850, six types of hook routines with different usages are supported as common hook routines.

Remark Since common hook routines operate in supervisor mode, the memory protection facility cannot be 
applied. Also, since common hook routines operate when the system protection identifier (SPID bit of 
MCFG0 register) is set to 0, peripheral I/O protection facilities associated with the system protection 
identifier cannot be applied.

(1) StartupHook
This is a dedicated hook routine for initialization processing that is called when StartOS is issued from a process-
ing program.
The basic form for coding StartupHook in the C language is shown below.

(2) ShutdownHook
This is a dedicated hook routine for shutdown processing that is called when ShutdownOS is issued.
The basic form for coding ShutdownHook in the C language is shown below.

Remark 1. Set parameter FatalError to the inherited data specified in parameter Error of ShutdownOS.
Note that when the processing program that called this hook routine is the exception/interrupt 
safety measure process, E_OS_ILLEGAL_EXCEPTION is set to parameter FatalError.

Remark 2. When parameter Fatalerror is set to E_OS_SYS_ILLEGAL_EXCEPTION, the EIIC or FEIC register 
value can be obtained by issuing OSIllegalException_SystemRegister_ExcCode in this hook rou-
tine, or the EIPC or FEPC register value can be obtained by issuing 
OSIllegalException_SystemRegister_ExcPC.

(3) PostTaskHook
This is a dedicated hook routine for pre-scheduling processing which is called from the scheduler.
The basic form for coding PostTaskHook in the C language is shown below.

(4) PreTaskHook
This is a dedicated hook routine for post-scheduling processing which is called from the scheduler.
The basic form for coding PreTaskHook in the C language is shown below.

void
StartupHook ( void ) {
    ..................
    ..................
}

void
ShutdownHook ( StatusType Fatalerror ) {
    ..................
    ..................
}

void
PostTaskHook ( void ) {
    ..................
    ..................
}



R20UT2768EJ0103  Rev.1.03 Page 52 of 282
Jun 10, 2015

RV850 11.  OS EXECUTION MANAGEMENT

void
PreTaskHook ( void ) {
    ..................
    ..................
}



RV850 11.  OS EXECUTION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 53 of 282
Jun 10, 2015

(5) ErrorHook
This is a dedicated hook routine for error processing that is called when a system service issued from a process-
ing program terminates abnormally.
The basic form for coding ErrorHook in the C language is shown below.

Remark 1. Set parameter Error to the error status of the system service that terminated abnormally.
See "14.2.2Error status" for details on the error status.

Remark 2. When the system service issued from ErrorHook terminates abnormally, ErrorHook and 
ErrorHook_OsApplication is not called again.

(6) ProtectionHook
This is a dedicated hook routine for the protection-violation handling process called when the RV850 detects a 
protection violation (e.g. stack overflow, illegal memory access, exception).
The basic form for coding ProtectionHook in the C language is shown below.

Remark 1. The protection violation type is set in parameter FatalError.
The values set in FatalError are shown below.

[E_OS_STACKFAULT (0x16)]
A stack overflow was detected.

[E_OS_PROTECTION_MEMORY (0x17)]
An illegal memory access was detected.

Remark 2. In the area specified by parameter adr, "0" is stored if parameter Fatalerror is E_OS_STACKFAULT 
or the value of "the status save register when acknowledging FE-level-interrupt (FEPC)" when a 
protection violation was detected if Fatalerror is E_OS_PROTECTION_MEMORY.

Remark 3. In return value ReturnType, specify the processing to be performed by the RV850 after the common 
hook routine completes its processing.
The values that can be set in ReturnType are shown below.

[PRO_TERMINATETASKISR (0x1)]
The process will differ as follows depending on the type of processing program that has generated 
a protection violation.

[Task]
Shifts the task to SUSPENDED state.
Releases the resources that have been acquired by the task. 
Issues EnableAllInterrupts if the task has issued DisableAllInterrupts.
Issues ResumeAllInterrupts if the task has issued SuspendAllInterrupts.
Issues ResumeOSInterrupts if the task has issued SuspendOSInterrupts.
Activates the scheduler.

[Interrupt service routine]
Releases the resources that have been acquired by the task. 
Issues EnableAllInterrupts if the task has issued DisableAllInterrupts.
Issues ResumeAllInterrupts if the task has issued SuspendAllInterrupts.
Issues ResumeOSInterrupts if the task has issued SuspendOSInterrupts.
Activates the scheduler.

void
ErrorHook ( StatusType Error ) {
    ..................
    ..................
}

ProtectionReturnType
ProtectionHook ( StatusType Fatalerror, void *adr ) {
    ..................
    ..................
    return (ProtectionReturnType ReturnType );
}



R20UT2768EJ0103  Rev.1.03 Page 54 of 282
Jun 10, 2015

RV850 11.  OS EXECUTION MANAGEMENT

[Others]
Same processing as PRO_TERMINATEAPPL.

[PRO_TERMINATEAPPL (0x2)]
Executes the process equivalent to TerminateApplication (with the restart option set to 
NO_RESTART) for the OS-Application to which the processing program that has generated a pro-
tection violation belongs.
If no OS-Application is in APPLICATION_ACCESSIBLE state or Task identifier "OsRestartTask" 
has not been defined, ShutdownOS (with the inherited data set to Fatalerror) is issued.

[PRO_SHUTDOWN (0x4)]
ShutdownOS (inherited data: Fatalerror) is issued.

[PRO_TERMINATEAPPL_RESTART (0x12)]
Executes the process equivalent to TerminateApplication (with the restart option set to RESTART) 
for the OS-Application to which the processing program that has generated a protection violation 
belongs.
If no OS-Application is in APPLICATION_ACCESSIBLE state or Task identifier "OsRestartTask" 
has not been defined, ShutdownOS (with the inherited data set to Fatalerror) is issued.

[Others]
ShutdownOS (inherited data: Fatalerror) is issued.

Remark 4. The parameter adr is not specified by the AUTOSAR specifications.
This parameter have been uniquely added to the RV850.

11.2.1  Processing in common hook routines

When the RV850 transfers control from a processing program to a common hook routine, it performs independent pre-
processing. It also performs independent post-processing before returning control from a common hook routine to a pro-
cessing program. Consequently, the following points should be noted when coding a common hook routine.

(1) Saving/Restoring registers
When the RV850 transfers control to a common hook routine, the save/restore processes of the work registers are 
executed according to the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

Remark When the RV850 transfers control to ProtectionHook, the working register for use with FE levels 
(FEWR) is used without being saved and restored.
Consequently, after control moves to ProtectionHook, the FEWR value becomes undefined.

(2) Saving/Restoring FPSR
When the RV850 transfers control to a common hook routine, the save/restore processes of the floating-point con-
figuration/status register (FPSR) are not executed.
Consequently, it is necessary to code the save/restore processes of FPSR in order to change the contents of 
FPSR explicitly.

Remark If the common hook routine executes floating-point operations using imprecise exception and is 
needed to complete the operations before transiting into RV850 execution, it is necessary to issue 
syncp and synce operation just before the end of the common hook routine.

(3) Stack switching
When the RV850 transfers control to a common hook routine, it switches to the system stack defined in System 
stack size "OsStackSize".
Consequently, it is not necessary to write code to switch the stack.

Remark If the scalability class is SC3, when the RV850 transfers control to PostTaskHook, PreTaskHook, 
or ErrorHook, it switches to the OS-Application stack defined in OS-Application Stack size 
"OsAppStackSize".

(4) Interrupt acceptance
When the RV850 transfers control to a common hook routine, the acceptance status of category 2 interrupts is 
changed to disabled (PMn bits of PMR are manipulated).

Remark 1. It is prohibited to explicitly manipulate the category 2 interrupt acceptance status from within a com-
mon hook routine.



RV850 11.  OS EXECUTION MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 55 of 282
Jun 10, 2015

Remark 2. When the RV850 transfers control to ShutdownHook and ProtectionHook, in addition to manipulat-
ing the PMn bits of PMR, the ID bit of PSW is manipulated as the process to disable acceptance of 
interrupts.



R20UT2768EJ0103  Rev.1.03 Page 56 of 282
Jun 10, 2015

RV850 11.  OS EXECUTION MANAGEMENT

(5) Issuing system services
Only system services that are allowed to be issued from common hook routines are issuable.

Remark See "14.4System Services Reference" for details about the issue scope of each system service.

11.2.2  Registration of common hook routines

The RV850 restricts registration of common hook routines to static registration via the following definitions. Conse-
quently, common hook routines cannot be registered dynamically, for example by issuing system services from a process-
ing program.

- StartupHook "OsStartupHook"

- ShutdownHook "OsShutdownHook"

- PostTaskHook "OsPostTaskHook"

- PreTaskHook "OsPreTaskHook"

- ErrorHook "OsErrorHook"

- ProtectionHook "OsProtectionHook" (only in SC3)

(1) Static registration
A common hook routine is statically registered by defining TRUE in the following definitions.

- StartupHook "OsStartupHook"

- ShutdownHook "OsShutdownHook"

- PostTaskHook "OsPostTaskHook"

- PreTaskHook "OsPreTaskHook"

- ErrorHook "OsErrorHook"

- ProtectionHook "OsProtectionHook" (only in SC3)

In the RV850, the kernel initialization module reads the definitions from the information file, and initializes these 
common hook routines, which are subject to management.

11.2.3  System Services

The system services shown in "14.4.9OS execution management" are used to manipulate OS execution dynamically 
from processing programs.



RV850 12.  SCHEDULE MANAGEMENT

R20UT2768EJ0103  Rev.1.03 Page 57 of 282
Jun 10, 2015

12.  SCHEDULE MANAGEMENT

This chapter describes the schedule-management functions provided by the RV850.

12.1  Overview

The RV850 provides schedule-management functions as a mechanism for managing and determining the order of task 
execution, and assigning processor for the appropriate task to use a device, by directly referencing dynamically changing 
task status.

The RV850 supports the two types of scheduling methods described below.

(1) Non-preemptive
The scheduler is activated when the task executing processing explicitly discards processor. The start-up condi-
tions of the non-preemptive scheduler are as follows:

- TerminateTask issued

- ChainTask issued

- Schedule issued

- WaitEvent issued

- TerminateApplication issued

- Protection exception (system error exception, memory protection exception, or privilege instruction exception) 
generated

Remark The scheduler can only be activated by issuing WaitEvent if an event mask that satisfies the 
request conditions is not set in the target event.

(2) Preemptive
The scheduler is launched in response to some event (trigger). The start-up conditions of the preemptive sched-
uler are as follows:

- ActivateTask issued

- TerminateTask issued

- ChainTask issued

- Schedule issued

- ReleaseResource issued

- SetEvent issued

- WaitEvent issued

- TerminateApplication issued

- Protection exception (system error exception, memory protection exception, privileged instruction exception) 
occurred

- An instruction to return from a category 2 interrupt service routine is issued

- Alarm or schedule table expired

12.2  Hook Routines

In the RV850, hook routines are called as pre and post-processing for scheduling processes.

(1) PostTaskHook
This is a dedicated hook routine for pre-scheduling processing which is called from the scheduler.

(2) PreTaskHook
This is a dedicated hook routine for post-scheduling processing which is called from the scheduler.

Remark See "11.2Common Hook Routines" for details about PostTaskHook and PreTaskHook.



R20UT2768EJ0103  Rev.1.03 Page 58 of 282
Jun 10, 2015

RV850 12.  SCHEDULE MANAGEMENT

12.3  Idle Handler

This is a routine dedicated to idle processing that is extracted for effectively using the low-power support function pro-
vided in target devices. It is called from the Scheduler when there are no tasks (READY state or RUNNING state tasks) 
targeted for RV850 scheduling.

The basic form for coding the idle handler in the C language is shown below.

Remark 1. Since the idle handler operates in supervisor mode, the memory protection facility cannot be applied. 
Also, since the idle handler operates when the system protection identifier (SPID bit of MCFG0 register) 
is set to 0, peripheral I/O protection facilities associated with the system protection identifier cannot be 
applied.

Remark 2. A default idle handler is prepared in the RV850.
Consequently, if IdleHandler is not coded, the default idle handler (an empty infinite loop process) will be 
called.

12.3.1  Processing in idle handler

An independent pre-processing is executed when control is transferred to the idle handler in the RV850. Consequently, 
the following points should be noted when coding an idle handler.

(1) Saving/Restoring registers
When the RV850 transfers control to an idle handler, the save/restore processes of the work registers are exe-
cuted according to the C compiler's rules for calling functions.
Consequently, it is not necessary to code the save/restore processes of registers.

(2) Saving/Restoring FPSR
When the RV850 transfers control to an idle handler, the save/restore processes of the floating-point configura-
tion/status register (FPSR) are not executed.
Consequently, it is necessary to code the save/restore processes of FPSR in order to change the contents of 
FPSR explicitly.

(3) Stack switching
When the RV850 transfers control to an idle handler, it switches to the system stack defined in System stack size 
"OsStackSize".
Consequently, it is not necessary to write code to switch the stack.

(4) Interrupt acceptance
When the RV850 transfers control to an idle handler, the acceptance status of interrupts is changed to enabled (ID 
bit of PSW is manipulated).

Remark The RV850 prohibits the acceptance status of interrupts from being changed to disabled from an 
idle handler.

(5) Issuing system services
Issuance of system services is disabled.

void
IdleHandler ( void ) {
    ..................
    ..................
}



RV850 13.  SYSTEM INITIALIZATION

R20UT2768EJ0103  Rev.1.03 Page 59 of 282
Jun 10, 2015

13.  SYSTEM INITIALIZATION

This chapter describes the system initialization process provided by the RV850.

13.1  Overview

The RV850 provides hardware/software initialization processes that are necessary for the RV850 to execute process-
ing. These processes must be executed between the occurrence of a hardware reset and the transfer of control to a pro-
cessing program (task).

The figure below shows the flow of processes executed from the time of hardware reset occurrence until control is trans-
ferred to the processing program (task).

Figure 13.1 System Initialization Processing Sequence

Remark The RV850 does not guarantee correct operation if the user manipulates the EI level interrupt mask reg-
ister (IMRm) to enable the acceptance of the EL-level interrupts defined in Exception code "OsIsrExcep-
tionCode" or Exception code "OsCounterExceptionCode" before the hook routines are called through 
StartOS.

Entry process

StartOS

Boot process

Kernel initialization module

Task
Scheduler

Hook routine

Activates objects
Creates and registers objects

Enables acceptance of interrupts

Disables acceptance of interrupts
Initializes the OS reserved resources
Calls the kernel initialization module

Enables acceptance of interrupts in category 1
Calls hook routines

Activates the scheduler

Issues StartOS

Jumps boot process



R20UT2768EJ0103  Rev.1.03 Page 60 of 282
Jun 10, 2015

RV850 13.  SYSTEM INITIALIZATION

13.2   Entry Process (Direct Branch Method Exception Vector)

The entry process is a routine dedicated to the entry process, extracted to assign the branch process to the relevant 
process (boot process, exception/interrupt safety measure process, etc.) when reset (RESET), FE level interrupts 
(FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code "OsIsrExceptionCode" or Exception code 
"OsCounterExceptionCode"), etc. has been generated.

Remark See "4.5.1Entry process (direct branch method exception vector)" for details about the FE level exception 
entry process.

13.3  Boot Process

This is a routine dedicated to initialization processing, extracted to initialize the minimum hardware that is required by 
the RV850 for executing processes. It is called from the branch process (entry process) that is assigned to the address of 
the handler to which the device forcibly transfers control when a hardware reset is generated.

Remark See "4.2Boot Process" for details about the boot process.

13.4  Kernel Initialization Module

This is a routine dedicated to initialization process extracted for performing the minimum software initialization required 
by the RV850 to execute processes. It is called within the boot process by issuing StartOS.

The following processes are performed in the kernel initialization module.

(1) Object generation/registration
Generates and registers objects (e.g. tasks, interrupt service routines, and resources), based on information 
defined in the Task information, Interrupt service routine information, Resource information, and the like.

(2) Object activation
Activates objects (e.g. tasks, alarms, and schedule tables), based on information defined in the Task information, 
Alarm information, Schedule table information, and the like.

Remark The user does not need to code a kernel initialization module, because the kernel initialization module is 
included in the functions provided by the RV850.

13.5  Hook Routines

Hook routines are called by the kernel initialization module, and are hook routines dedicated to initialization processing.

Remark 1. When Scalability class "OsScalabilityClass" is scalability class 3 (SC3) in the RV850, common hook rou-
tine StartupHook is to be called before OS-Application-specific hook routine StartupHook_OsApplication  
is called.

Remark 2. See "11.2Common Hook Routines" for details about StartupHook, and "10.3OS-Application-Specific 
Hook Routines" for details about StartupHook_OsApplication.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 61 of 282
Jun 10, 2015

14.  SYSTEM SERVICES

This chapter describes the system service functions provided by the RV850.

14.1  Overview

The system services provided by the RV850 are service routines reserved for indirectly operating resources (e.g. man-
agement objects and memory area) that are directly managed by the RV850 from processing programs coded by the user.

The following shows the system services provided by the RV850.

(1) Task management
ActivateTask, TerminateTask, ChainTask, Schedule, GetTaskID, GetTaskState

(2) Interrupt handling
EnableAllInterrupts, DisableAllInterrupts, ResumeAllInterrupts, SuspendAllInterrupts, ResumeOSInterrupts, Sus-
pendOSInterrupts

(3) Resource management
GetResource, ReleaseResource

(4) Event management
SetEvent, ClearEvent, GetEvent, WaitEvent

(5) Counter management
IncrementCounter, GetCounterValue, GetElapsedValue

(6) Alarm management
GetAlarmBase, GetAlarm, SetRelAlarm, SetAbsAlarm, CancelAlarm

(7) Schedule table management
StartScheduleTableRel, StartScheduleTableAbs, StopScheduleTable, NextScheduleTable, GetScheduleTableSta-
tus

(8) OS-Application management
GetApplicationID, GetISRID, CallTrustedFunction, CheckISRMemoryAccess, CheckTaskMemoryAccess, Check-
ObjectAccess, CheckObjectOwnership, TerminateApplication, AllowAccess, GetApplicationState

(9) OS execution management
StartOS, ShutdownOS, GetActiveApplicationMode

(10) Utility functions
InitApplicationInterrupts, _kernel_fv0_InitializeIntService, OSIllegalException_SystemRegister_ExcCode, 
OSIllegalException_SystemRegister_ExcPC, OSErrorGetServiceId, OSError_SystemService_Parameter

Remark The utility functions InitApplicationInterrupts, _kernel_fv0_InitializeIntService, 
OSIllegalException_SystemRegister_ExcCode and OSIllegalException_SystemRegister_ExcPC are not 
specified by the AUTOSAR specifications.
These utility functions have been uniquely added to the RV850.



R20UT2768EJ0103  Rev.1.03 Page 62 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.1.1  Calling of system services

The system services provided by the RV850 are implemented as C language functions. Therefore, when a system ser-
vice is issued from a processing program coded in the C language, the process is performed by calling the system service 
in a method similar to that for a normal C language function.

Note that when issuing a system service from a processing program coded in the assembly language, the process is 
performed by setting the parameters and return address in accord with the rules for calling functions of the C compiler 
package in use immediately before issuing the system service.

If a system service of Interrupt handling is issued before the system initialization process is finished, 
_kernel_fv0_InitializeIntService needs to be issued before the system service is issued.

Remark 1. The header file definition (include) shown below is necessary in a processing program that issues a sys-
tem service.

- Os.h: Standard header file

Remark 2. In the RV850, when a system service is issued, a process to switch to the stack (task stack, system 
stack, etc.) in accord with the processing program type that issued the system service is performed.
Accordingly, a process to switch stacks when a system service is issued does not have to be included in 
the processing program.

Remark 3. If the illegal value is set when SYSCALL instruction is issued, Exception/interrupt safety measure pro-
cess "_kernel_e_IllegalExcEntry" is called.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 63 of 282
Jun 10, 2015

14.2  Data Macros

The following shows the data macros used when system services provided by the RV850 are issued.

14.2.1  Data types

Below is described the data type used when system service is issued.
The data types are defined in the header file "Os_types.h" that is called from standard header file "Os.h".

Table 14.1 Data Types

Macro Type Description

AccessType unsigned short Access privilege

AlarmBaseRefType AlarmBaseType * Pointer to the area where the alarm base infor-
mation is to be stored.

AlarmBaseType struct _AlarmBaseType Alarm base information

AlarmType signed short Alarm identifier

ApplicationStateRefType ApplicationStateType * Pointer to the area where the state of the OS-
Application is to be stored.

ApplicationStateType signed short State of the OS-Application

ApplicationType signed short OS-Application identifier

AppModeType signed short Application mode

boolean unsigned char Boolean value (TRUE or FALSE)

CounterType signed short Counter identifier

EventMaskRefType EventMaskType * Pointer to the area where the event mask is to 
be stored.

EventMaskType unsigned long Event mask

float32 float 32-bit floating-point number

float64 double 64-bit floating-point number

ISRType signed short Interrupt service routine identifier

MemorySizeType unsigned long Size of the memory area

MemoryStartAddressType unsigned long Start address of the memory area

ObjectAccessType signed short Access privilege

ObjectTypeType signed short Object type

OSServiceIdType signed char System service identifier

PhysicalTimeType unsigned long Time

ProtectionReturnType signed short Return value of common hook routine Protec-
tionHook

RestartType signed short Restart option

ResourceType signed short Resource identifier

ScheduleTableStatusRefType ScheduleTableStatusType * Pointer to the area where the state of the sched-
ule table is to be stored.

ScheduleTableStatusType signed short State of the schedule table



R20UT2768EJ0103  Rev.1.03 Page 64 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

Remark The AUTOSAR specifications have a rule specifying that EventMaskType and TickType are to be 64-bit 
values. In the RV850, however, EventMaskType and TickType are handled as 32-bit values.

ScheduleTableType signed short Schedule table identifier

sint8 signed char Signed 8-bit integer

sint8_least signed long Signed integer (at least 8-bit)

sint16 signed short Signed 16-bit integer

sint16_least signed long Signed integer (at least 16-bit)

sint32 signed long Signed 32-bit integer

sint32_least signed long Signed integer (at least 32-bit)

sint64 signed long long Signed 64-bit integer

StatusType unsigned char Return value of system service

SystemRegisterType unsigned long Value of system register

TaskRefType TaskType * Pointer to the area where the task identifier is to 
be stored.

TaskType signed short Task identifier

TaskStateRefType TaskStateType * Pointer to the area where the state of the task is 
to be stored.

TaskStateType signed short State of the task

TickRefType TickType * Pointer to the area where the count value is to 
be stored or has been stored.

TickType unsigned long Count value

TrustedFunctionIndexType signed short Trusted function identifier

TrustedFunctionParameterRe-
fType

unsigned long * Pointer to the area where inherited data is 
stored.

uint8 unsigned char Unsigned 8-bit integer

uint8_least unsigned long Unsigned integer (at least 8-bit)

uint16 unsigned short Unsigned 16-bit integer

uint16_least unsigned long Unsigned integer (at least 16-bit)

uint32 unsigned long Unsigned 32-bit integer

uint32_least unsigned long Unsigned integer (at least 32-bit)

uint64 unsigned long long Unsigned 64-bit integer

Macro Type Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 65 of 282
Jun 10, 2015

14.2.2  Error status

Below are the macros corresponding to the return values (error status) from system services.
The error status is defined in the header file "Os_error.h" that is called from standard header file "Os.h".

Table 14.2 Error Status

Remark 1. The AUTOSAR specifications have rules (OS088 and OS093) specifying that error status 
E_OS_CALLEVEL and E_OS_DISABLEDINT are to be returned when Scalability class "OsScalability-
Class" is scalability class 3 (SC3) or scalability class 4 (SC4). In the RV850, however, this error status is 
also to be returned when not only the scalability class is SC3 but the scalability class is SC1 with the sta-
tus type as the extended status.

Remark 2. The error status E_OS_SYS_ILLEGAL_EXCEPTION is not specified by the AUTOSAR specifications.
This macro has been uniquely added to the RV850.

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 The target object cannot be accessed.

E_OS_CALLEVEL 0x2 Issued from a processing program outside the 
scope of issue.

E_OS_ID 0x3 Identifier specification is invalid.

E_OS_LIMIT 0x4 The maximum activation request count has been 
exceeded.

E_OS_NOFUNC 0x5 The target object cannot be manipulated.

E_OS_RESOURCE 0x6 A disabled operation was performed while acquir-
ing the resource.

E_OS_STATE 0x7 The state of the target object is invalid.

E_OS_VALUE 0x8 Specification of a parameter is invalid.

E_OS_SERVICEID 0x11 Specification of the trusted function identifier is 
invalid.

E_OS_PARAM_POINTER 0x12 Specification of a parameter is invalid (NULL 
pointer).

E_OS_ILLEGAL_ADDRESS 0x13 Does not have access privilege for the area speci-
fied by the parameter.

E_OS_MISSINGEND 0x14 Task ended without issuing TerminateTask or 
ChainTask.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

E_OS_STACKFAULT 0x16 Overflow of a stack is detected.

E_OS_PROTECTION_MEMORY 0x17 Invalid memory access is detected.

E_OS_SYS_ILLEGAL_EXCEPTION 0x1F Generation of an undefined interrupt is detected in 
the Interrupt service routine information.



R20UT2768EJ0103  Rev.1.03 Page 66 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.2.3  Invalid task identifier

Below are the macros corresponding to the numerical values stored in parameter TaskID when GetTaskID is issued.
The invalid task identifier is defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.3 Invalid Task Identifier

14.2.4  Task states

Below are the macros corresponding to the numerical values stored in parameter State when GetTaskState is issued.
The task states are defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.4 Task States

14.2.5  Schedule table states

Below are the macros corresponding to the numerical values stored in parameter ScheduleStatus when GetScheduleT-
ableStatus is issued.

The schedule table states are defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.5 Schedule Table States

14.2.6  Exit with error (abend)

Below are the macros corresponding to the return values (error codes) from GetApplicationID, GetISRID, and CheckO-
bjectOwnership.

The exit with error is defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.6 Exit with Error (Abend)

Macro Numerical Value Description

INVALID_TASK 0x7FFF Target task does not exist.

Macro Numerical Value Description

SUSPENDED 0x0 SUSPENDED state

READY 0x1 READY state

RUNNING 0x2 RUNNING state

WAITING 0x4 WAITING state

Macro Numerical Value Description

SCHEDULETABLE_STOPPED 0x0 STOPPED state

SCHEDULETABLE_NEXT 0x1 NEXT state

SCHEDULETABLE_RUNNING 0x4 RUNNING state

Macro Numerical Value Description

INVALID_ISR 0x7FFF Exit with error

INVALID_OSAPPLICATION 0x7FFF Exit with error



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 67 of 282
Jun 10, 2015

14.2.7  Access privilege types

Below are the macros corresponding to the return values (access privilege types) from CheckISRMemoryAccess and 
CheckTaskMemoryAccess.

The access privilege types are defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.7 Access Privilege Types

Remark If there are multiple access privileges, then the return value (access privilege type) will be the logical sum 
of the values.

14.2.8  Object types

Below are the macros that can be set in parameter ObjectType when CheckObjectAccess or CheckObjectOwnership is 
issued.

The object types are defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.8 Object Types

14.2.9  Checking for access privileges

Below are the macros corresponding to the return values (access privilege check results) from CheckObjectAccess.
The access privilege check results are defined in the header file "Os_constant.h" that is called from standard header file 

"Os.h".

Table 14.9 Checking for Access Privileges

Macro Numerical Value Description

T_u2_NOACCESS 0x0 No access privileges

T_u2_EXECUTABLE 0x2 Executable

T_u2_READABLE 0x4 Readable

T_u2_WRITEABLE 0x8 Writable

T_u2_STACKSPACE 0x10 Stack area

Macro Numerical Value Description

OBJECT_TASK 0x1 Task

OBJECT_ISR 0x2 Interrupt service routine

OBJECT_ALARM 0x3 Alarm

OBJECT_RESOURCE 0x4 Resource

OBJECT_COUNTER 0x5 Counter

OBJECT_SCHEDULETABLE 0x6 Schedule table

Macro Numerical Value Description

NO_ACCESS 0x0 No access privileges

ACCESS 0x1 Has access privileges.



R20UT2768EJ0103  Rev.1.03 Page 68 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.2.10  Restart options

Below are the macros that can be set in the parameter RestartOption when TerminateApplication is issued.
The restart options are defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.10 Restart Options

14.2.11  State of OS-Application

Below are the macros corresponding to the values stored in parameter Value when GetApplicationState is issued.
The OS-Application state is defined in the header file "Os_constant.h" that is called from standard header file "Os.h".

Table 14.11  State of OS-Application

Macro Numerical Value Description

NO_RESTART 0x0 Shutdown processing is performed.

RESTART 0x1 The following operations are performed after shut-
down processing has been performed.

- Shifts the task specified in Task identifier 
"OsRestartTask" from SUSPENDED state to 
READY state.

- Shifts the target OS-Application from 
APPLICATION_ACCESSIBLE state to 
APPLICATION_RESTARTING state.

Macro Numerical Value Description

APPLICATION_ACCESSIBLE 0x0 APPLICATION_ACCESSIBLE state

APPLICATION_RESTARTING 0x1 APPLICATION_RESTARTING state

APPLICATION_TERMINATED 0x2 APPLICATION_TERMINATED state



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 69 of 282
Jun 10, 2015

14.2.12  System service identifiers

Below are the macros corresponding to the return values (system service identifiers) from OSErrorGetServiceId.
The system service identifiers are defined in the header file "Os_service.h" that is called from standard header file 

"Os.h".

Table 14.12 System Service Identifiers

Macro Numerical Value Description

OSServiceID_GetApplicationID 0x0 System service identifier of GetApplicationID

OSServiceID_GetISRID 0x1 System service identifier of GetISRID

OSServiceID_CallTrustedFunction 0x2 System service identifier of CallTrustedFunction

OSServiceId_CheckISRMemoryAccess 0x3 System service identifier of CheckISRMemoryAc-
cess

OSServiceId_CheckTaskMemoryAccess 0x4 System service identifier of CheckTaskMemoryAc-
cess

OSServiceId_CheckObjectAccess 0x5 System service identifier of CheckObjectAccess

OSServiceId_CheckObjectOwnership 0x6 System service identifier of CheckObjectOwner-
ship

OSServiceId_StartScheduleTableRel 0x7 System service identifier of StartScheduleT-
ableRel

OSServiceId_StartScheduleTableAbs 0x8 System service identifier of StartScheduleT-
ableAbs

OSServiceId_StopScheduleTable 0x9 System service identifier of StopScheduleTable

OSServiceId_NextScheduleTable 0xA System service identifier of NextScheduleTable

OSServiceId_GetScheduleTableStatus 0xE System service identifier of GetScheduleTableSta-
tus

OSServiceId_IncrementCounter 0xF System service identifier of IncrementCounter

OSServiceId_GetCounterValue 0x10 System service identifier of GetCounterValue

OSServiceId_GetElapsedValue 0x11 System service identifier of GetElapsedValue

OSServiceId_TerminateApplication 0x12 System service identifier of TerminateApplication

OSServiceID_AllowAccess 0x13 System service identifier of AllowAccess

OSServiceID_GetApplicationState 0x14 System service identifier of GetApplicationState

OSServiceId_StartOS 0x40 System service identifier of StartOS

OSServiceId_ShutdownOS 0x41 System service identifier of ShutdownOS

OSServiceId_GetActiveApplicationMode 0x42 System service identifier of GetActiveApplication-
Mode

OSServiceId_ActivateTask 0x43 System service identifier of ActivateTask

OSServiceId_TerminateTask 0x44 System service identifier of TerminateTask

OSServiceId_ChainTask 0x45 System service identifier of ChainTask

OSServiceId_Schedule 0x46 System service identifier of Schedule

OSServiceId_GetTaskID 0x47 System service identifier of GetTaskID

OSServiceId_GetTaskState 0x48 System service identifier of GetTaskState



R20UT2768EJ0103  Rev.1.03 Page 70 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

OSServiceId_EnableAllInterrupts 0x49 System service identifier of EnableAllInterrupts

OSServiceId_DisableAllInterrupts 0x4A System service identifier of DisableAllInterrupts

OSServiceId_ResumeAllInterrupts 0x4B System service identifier of ResumeAllInterrupts

OSServiceId_SuspendAllInterrupts 0x4C System service identifier of SuspendAllInterrupts

OSServiceId_ResumeOSInterrupts 0x4D System service identifier of ResumeOSInterrupts

OSServiceId_SuspendOSInterrupts 0x4E System service identifier of SuspendOSInterrupts

OSServiceId_GetResource 0x4F System service identifier of GetResource

OSServiceId_ReleaseResource 0x50 System service identifier of ReleaseResource

OSServiceId_SetEvent 0x51 System service identifier of SetEvent

OSServiceId_ClearEvent 0x52 System service identifier of ClearEvent

OSServiceId_GetEvent 0x53 System service identifier of GetEvent

OSServiceId_WaitEvent 0x54 System service identifier of WaitEvent

OSServiceId_GetAlarmBase 0x55 System service identifier of GetAlarmBase

OSServiceId_GetAlarm 0x56 System service identifier of GetAlarm

OSServiceId_SetRelAlarm 0x57 System service identifier of SetRelAlarm

OSServiceId_SetAbsAlarm 0x58 System service identifier of SetAbsAlarm

OSServiceId_CancelAlarm 0x59 System service identifier of CancelAlarm

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 71 of 282
Jun 10, 2015

14.2.13  Counter information

Below are the macros corresponding to the Counter information.
The counter information is defined in the information file (kernel macro file) that is generated when the configurator exe-

cutes CF files.

Table 14.13 Counter Information

Macro Description

OSMAXALLOWEDVALUE_OsCounter Maximum count value "OsCounterMaxAllowedValue" (unit: tick)

OSMINCYCLE_OsCounter Minimum cycle value "OsCounterMinCycle" (unit: tick)

OSTICKSPERBASE_OsCounter Basic count value "OsCounterTicksPerBase" (unit: tick)

OSMAXALLOWEDVALUE Maximum count value "OsCounterMaxAllowedValue" (unit: tick) of 
system counter (when SYS_COUNTER is specified for Identifier 
"OsCounter")

OSMINCYCLE Minimum cycle value "OsCounterMinCycle" (unit: tick) of system 
counter (when SYS_COUNTER is specified for Identifier "OsCounter")

OSTICKSPERBASE Basic count value "OsCounterTicksPerBase" (unit: tick) of system 
counter (when SYS_COUNTER is specified for Identifier "OsCounter")

OSTICKDURATION Basic time (unit: ns) of system counter (when SYS_COUNTER is 
specified for Identifier "OsCounter")
Calculation result of <109 * Number of seconds per tick "OsSecond-
sPerTick" * Basic count value "OsCounterTicksPerBase">

OS_TICK2NS_OsCounter ( Value ) Converts parameter Value (unit: tick) into a value in nanoseconds.
Calculation result of <Value * 109 * Number of seconds per tick 
"OsSecondsPerTick">

OS_TICK2US_OsCounter ( Value ) Converts parameter Value (unit: tick) into a value in microseconds.
Calculation result of <Value * 106 * Number of seconds per tick 
"OsSecondsPerTick">

OS_TICK2MS_OsCounter ( Value ) Converts parameter Value (unit: tick) into a value in milliseconds.
Calculation result of <Value * 103 * Number of seconds per tick 
"OsSecondsPerTick">

OS_TICK2SEC_OsCounter ( Value ) Converts parameter Value (unit: tick) into a value in seconds.
Calculation result of <Value * Number of seconds per tick "OsSecond-
sPerTick">



R20UT2768EJ0103  Rev.1.03 Page 72 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.2.14  Checking for access privileges

Below are the macros corresponding to the access privileges.
The access privileges are defined in the header file "Os_constant.h" that is called from the standard header file "Os.h".

Table 14.14 Checking for Access Privileges

Macro Description

OSMEMORY_IS_EXECUTEABLE ( 
AccessType Type )

Checks whether the memory area is executable with parameter Type 
set to the value returned from CheckISRMemoryAccess or CheckTask-
MemoryAccess.

OSMEMORY_IS_READABLE ( Acces-
sType Type )

Checks whether the memory area is readable with parameter Type set 
to the value returned from CheckISRMemoryAccess or CheckTask-
MemoryAccess.

OSMEMORY_IS_WRITEABLE ( Acces-
sType Type )

Checks whether the memory area is writable with parameter Type set 
to the value returned from CheckISRMemoryAccess or CheckTask-
MemoryAccess.

OSMEMORY_IS_STACKSPACE ( Acces-
sType Type )

Checks whether the memory area is a stack area with parameter Type 
set to the value returned from CheckISRMemoryAccess or CheckTask-
MemoryAccess.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 73 of 282
Jun 10, 2015

14.3  Data Structures

The data structure used when a system service provided from the processing program by the RV850 is issued is 
described below.

14.3.1  Alarm base information

Below is the alarm base information stored in parameter Info when GetAlarmBase is issued.
The alarm base information is defined in the header file "Os_types.h" that is called from standard header file "Os.h".

Figure 14.1 Alarm Base Information

(1) maxallowedvalue
This stores the Maximum count value "OsCounterMaxAllowedValue" of the counter associated with the alarm 
specified in the GetAlarmBase parameter AlarmID.

(2) mincycle
This stores the Minimum cycle value "OsCounterMinCycle" of the counter associated with the alarm specified in 
the GetAlarmBase parameter AlarmID.

(3) ticksperbase
This stores the Basic count value "OsCounterTicksPerBase" of the counter associated with the alarm specified in 
the GetAlarmBase parameter AlarmID.

struct _AlarmBaseType {
    TickType maxallowedvalue; /* Maximum count value "OsCounterMaxAllowedValue" */
    TickType mincycle;        /* Minimum cycle value "OsCounterMinCycle" */
    TickType ticksperbase;    /* Basic count value "OsCounterTicksPerBase" */
};

typedef struct _AlarmBaseType AlarmBaseType;
typedef AlarmBaseType *AlarmBaseRefType;



R20UT2768EJ0103  Rev.1.03 Page 74 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.4  System Services Reference

This  describes the system services provided by the RV850, using the following format.

Figure 14.2 Description Format of System Services

(1) Name
Indicates the name of the system service.

(2) [Overview] 
Provides an overview of the system service.

(3) [Issue scope] 
This shows the types of processing programs that can issue the system service, and where they can do so.

(a) Boot process
This is a routine dedicated to initialization processing, extracted to initialize the minimum hardware that is 
required by the RV850 for executing processes.

(b) Tasks
Tasks are processing routines that are not executed unless the state is manipulated using a system service, or 
if conditions defined in a CF file are met.
If the ability to issue the system service depends on the type of the task, then the tasks able to issue it are 
shown in the following notation.

- If the system service can only be issued from an extended task
Task (extended)

I/O Parameter Description

Macro DescriptionNumerical Value

..................

..................

[Issue scope]

..................

...   ..................

..................

...   .....................

.................. ......

..................

..................

(1)

(2)

(3)

(4)

(5)

(6)

(7)

[Overview]

[Syntax]

[Parameters]

[Function]

[Return values]



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 75 of 282
Jun 10, 2015

(c) Interrupt service routines 
Interrupt service routines are dedicated to interrupt processes that are called when an interrupt is generated.
If the ability to issue the system service depends on the category of the interrupt service routine, then the inter-
rupt service routines that can issue it are shown in the following notation.

- If the system service can only be issued from category 2 interrupt service routines
Interrupt service routine (category 2)

(d) Alarm callback
This is a routine dedicated to the expiry action, called when the alarm has expired.

(e) Common hook routines
Common hook routines for all OS-Applications.
If the ability to issue the system service depends on the type of the common hook routine (StartupHook, Shut-
downHook, PostTaskHook, PreTaskHook, ErrorHook, ProtectionHook), then the common hook routines able to 
issue it are shown in the following notation.

- If the system service can only be issued from PostTaskHook, PreTaskHook, ErrorHook, ProtectionHook
Common hook routine (PostTaskHook, PreTaskHook, ErrorHook, ProtectionHook)

(f) OS-Application-specific hook routine
Hook routines specific to each OS-Application.
If the ability to issue the system service depends on the type of the OS-Application-specific hook routine 
(StartupHook_OsApplication, ShutdownHook_OsApplication, ErrorHook_OsApplication), then the OS-Applica-
tion-specific hook routines able to issue it are shown in the following notation.

- If the system service can only be issued from StartupHook_OsApplication, ErrorHook_OsApplication
OS-Application-specific hook routine (StartupHook_OsApplication, ErrorHook_OsApplication)

(g) Critical sections
Scope for which acceptance of the following interrupts is disabled

- From issuance of DisableAllInterrupts until issuance of EnableAllInterrupts

- From issuance of SuspendAllInterrupts until issuance of ResumeAllInterrupts

- From issuance of SuspendOSInterrupts until issuance of ResumeOSInterrupts

(4) [Syntax]
Gives the specification format when the system service is issued from a processing program coded in the C lan-
guage.

(5) [Parameters] 
The parameters of the system service are shown in the following format.

(a) I/O column
Parameter type

- I ... Input parameter to RV850

- O ... Output parameter from RV850

(b) Parameter column
Data type of the parameter

(c) Description column
Description of the parameter

(6) [Function]
Provides an overview of the function of the system service.

(7) [Return values]
The return value from the system service is shown in the following format.

I/O Parameter Description

(a) (b) (c)

Macro Numerical Value Description

(a) (b) (c)



R20UT2768EJ0103  Rev.1.03 Page 76 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

(a) Macro column
Macro return value

(b) Numerical Value column
Numeric return value

(c) Description column
Description of the return value



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 77 of 282
Jun 10, 2015

14.4.1  Task management

The following shows the system services for task management provided by the RV850.

Table 14.15 System Services for Task Management

Name of System Service Function Overview

ActivateTask Activates the task.

TerminateTask Terminates the task.

ChainTask Terminates and activates tasks.

Schedule Activates the scheduler.

GetTaskID Gets the task identifier of the task that has been shifted to RUNNING 
state.

GetTaskState Gets the current state of the task.



R20UT2768EJ0103  Rev.1.03 Page 78 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Activates the task.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Shifts the target task (the task specified in parameter TaskID) from SUSPENDED state to READY state.
As the target task is shifted from SUSPENDED state to READY state, the target task is queued at the end of the ready 

queue corresponding to the priority.

Remark 1. If this system service is issued from a task whose Scheduling attribute "OsTaskSchedule" is a preemptive 
property (FULL), the scheduler is activated when the state of the task has been manipulated (the target 
task is shifted from SUSPENDED state to READY state).

Remark 2. When the type of the target task is basic task, the state of the task will be manipulated (the target task is 
shifted from SUSPENDED state to READY state) and the activation request counter will be incremented 
(0x1 will be added to the activation request counter).
When the target task is shifted to a state other than SUSPENDED state (i.e., READY state or RUNNING 
state), then the state of the task will not be manipulated, the task will be queued at the end of the ready 
queue corresponding to the priority, and the activation request counter will be incremented.

[Return values]

ActivateTask

StatusType ActivateTask ( TaskType TaskID );

I/O Parameter Description

I TaskType  TaskID; Task identifier

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target task. (Only in SC3)

- The OS-Application to which the target task belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter TaskID is invalid.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 79 of 282
Jun 10, 2015

E_OS_LIMIT 0x4 Exit with error

- The target task is an extended task in READY state, RUN-
NING state, or WAITING state.

- The activation request count has exceeded Maximum acti-
vation request count "OsTaskActivation" of the target task.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 80 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Terminates the task.

[Issue scope]

Tasks

[Syntax]

[Parameters]

None

[Function]

Shifts the current task (the task that issued this system service) from RUNNING state to SUSPENDED state.
As the current task is shifted from RUNNING state to SUSPENDED state, the current task is unlinked from the ready 

queue corresponding to the priority. The scheduler is activated when the state of the task has been manipulated (the cur-
rent task is shifted from RUNNING state to SUSPENDED state).

Remark 1. When the type of the current task is basic task, the state of the task will be manipulated (the current task 
is shifted from RUNNING state to SUSPENDED state) and the activation request counter will be decre-
mented (0x1 is subtracted from the activation request counter).
When the subtraction result of the activation request counter is other than 0x0, the state of the task will 
be manipulated (the current task is shifted from SUSPENDED state to READY state) and the current task 
will be shifted to the READY state again. The scheduler is activated when the state of the task has been 
manipulated (the current task is shifted from SUSPENDED state to READY state).

Remark 2. If the current task had acquired any internal resources, the state of the task will be manipulated (the cur-
rent task is shifted from RUNNING state to SUSPENDED state), internal resources will be released, and 
the current priority will be changed (current priority of current task is returned to Initial priority "OsTaskPri-
ority").
When the ceiling value of the internal resource is INTPRIx, the process to enable the acceptance of inter-
rupts will also be performed (PMn bits of PMR are manipulated).

Remark 3. When a task for which scalability class 3 (SC3) is defined for Scalability class "OsScalabilityClass" is ter-
minated without this system service or ChainTask being issued, if a common hook routine (ErrorHook) or 
OS-Application-specific hook routine (ErrorHook_OsApplication) has been registered in the task, a hook 
routine will be called with E_OS_MISSINGEND (0x14) used as the parameter.

[Return values]

TerminateTask

StatusType TerminateTask ( void );

Macro Numerical Value Description

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_RESOURCE 0x6 Current task has acquired normal resources.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 81 of 282
Jun 10, 2015

[Overview]

Terminates and activates tasks.

[Issue scope]

Tasks

[Syntax]

[Parameters]

[Function]

Shifts the current task (the task that issued this system service) from RUNNING state to SUSPENDED state and shifts 
the target task (the task specified in parameter TaskID) from SUSPENDED state to READY state.

As the current task is shifted from RUNNING state to SUSPENDED state, the current task is unlinked from the ready 
queue corresponding to the priority. As the target task is shifted from SUSPENDED state to READY state, the target task 
is queued at the end of the ready queue corresponding to the priority.

The scheduler is activated when the state of the tasks has been manipulated (the current task is shifted from RUNNING 
state to SUSPENDED state and target task is shifted from SUSPENDED state to READY state).

Remark 1. When the current task is specified in parameter TaskID, the current task is shifted from RUNNING state 
to READY state without being shifted to SUSPENDED state.
The scheduler is activated when the state of the task has been manipulated (the current task is shifted 
from RUNNING state to READY state).

Remark 2. When the type of the current task is basic task, the state of the task will be manipulated (the current task 
is shifted from RUNNING state to SUSPENDED state) and the activation request counter will be decre-
mented (0x1 is subtracted from the activation request counter).
When the subtraction result of the activation request counter is other than 0x0, the state of the task will 
be manipulated (the current task is shifted from SUSPENDED state to READY state) and the current task 
will be shifted to the READY state again.
The scheduler is activated when the state of the task has been manipulated (the current task is shifted 
from SUSPENDED state to READY state).

Remark 3. When the type of the target task is basic task, the state of the task will be manipulated (the target task is 
shifted from SUSPENDED state to READY state) and the activation request counter will be incremented 
(0x1 is added to the counter).
When the target task has already been shifted from SUSPENDED state to READY state or RUNNING 
state, the state of the task will not be manipulated, the task will be queued at the end of the ready queue 
corresponding to the priority, and the activation request counter will be incremented.

Remark 4. If the current task had acquired any internal resources, the state of the task will be manipulated (the cur-
rent task is shifted from RUNNING state to SUSPENDED state or current task is shifted from RUNNING 
state to READY state), internal resources will be released, and the current priority will be changed (the 
current priority of current task is returned to Initial priority "OsTaskPriority").
When the ceiling value of the internal resource is INTPRIx, the process to enable the acceptance of inter-
rupts will also be performed (PMn bits of PMR are manipulated).

ChainTask

StatusType ChainTask ( TaskType TaskID );

I/O Parameter Description

I TaskType TaskID; Task identifier



R20UT2768EJ0103  Rev.1.03 Page 82 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

Remark 5. When a task for which scalability class 3 (SC3) is defined for Scalability class "OsScalabilityClass" is ter-
minated without TerminateTask or this system service being issued, if a common hook routine (Error-
Hook) or OS-Application-specific hook routine (ErrorHook_OsApplication) has been registered in the 
task, a hook routine will be called with E_OS_MISSINGEND (0x14) used as the parameter.

[Return values]

Macro Numerical Value Description

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the current task belongs does 
not have access privileges for the target task. (Only in SC3)

- The OS-Application to which the target task belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter TaskID is invalid.

E_OS_LIMIT 0x4 Exit with error

- The target task is an extended task in READY state, RUN-
NING state, or WAITING state.

- The activation request count has exceeded Maximum acti-
vation request count "OsTaskActivation" of the target task.

E_OS_RESOURCE 0x6 Current task has acquired normal resources.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 83 of 282
Jun 10, 2015

[Overview]

Activates the scheduler.

[Issue scope]

Tasks

[Syntax]

[Parameters]

None

[Function]

Activates the scheduler.

Remark If the current task had acquired any internal resources, internal resources will be released and the cur-
rent priority will be changed (current priority of current task is returned to the priority that was set before 
acquiring the resource). After this, the scheduler will be activated.
When the ceiling value of the internal resource is INTPRIx, the process to enable the acceptance of inter-
rupts will also be performed (PMn bits of PMR are manipulated).

[Return values]

Schedule

StatusType Schedule ( void );

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_RESOURCE 0x6 Current task has acquired normal resources.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



R20UT2768EJ0103  Rev.1.03 Page 84 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the task identifier of the task that has been shifted to RUNNING state.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (PostTaskHook, PreTaskHook, ErrorHook, Protec-
tionHook), OS-Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Gets the task identifier of the target task (the task that changes to RUNNING state when this system service is issued) 
and stores it in the area specified in parameter TaskID.

Remark 1. If there is no target task when this system service is issued, INVALID_TASK (0x7FFF) is stored in the 
area specified in parameter TaskID.

Remark 2. The correspondence between the number acquired by issuing this system service and Identifier 
"OsTask" defined in the Task information during configuration is defined in the SIT file.

[Return values]

GetTaskID

StatusType GetTaskID ( TaskRefType TaskID );

I/O Parameter Description

O TaskRefType TaskID; Pointer to the area where the acquired task identifier is to be stored

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_PARAM_POINTER 0x12 Specification of parameter TaskID is invalid (NULL pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter 
TaskID. (Only in SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 85 of 282
Jun 10, 2015

[Overview]

Gets the current state of the task.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (PostTaskHook, PreTaskHook, ErrorHook), OS-
Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Gets the current state of the target task (the task specified in parameter TaskID) and stores it in the area specified in 
parameter State.

The value stored in parameter State depends on the type of the current state, as shown below.

Remark The current state stored in the area specified in parameter State is not affected by the value held in the 
activation request counter of the target task.

[Return values]

GetTaskState

StatusType GetTaskState ( TaskType TaskID, TaskStateRefType State );

I/O Parameter Description

I TaskType TaskID; Task identifier

O TaskStateRefType State; Pointer to the area where the acquired current state is to be stored

Macro Numerical Value Description

SUSPENDED 0x0 SUSPENDED state

READY 0x1 READY state

RUNNING 0x2 RUNNING state

WAITING 0x4 WAITING state

Macro Numerical Value Description

E_OK 0x0 Normal Termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target task. (Only in SC3)

- The OS-Application to which the target task belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)



R20UT2768EJ0103  Rev.1.03 Page 86 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter TaskID is invalid.

E_OS_PARAM_POINTER 0x12 Specification of parameter State is invalid (NULL pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter State. 
(Only in SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 87 of 282
Jun 10, 2015

14.4.2  Interrupt handling

The following shows the system services for interrupt handling provided by the RV850.

Table 14.16 System Services for Interrupt Handling

Name of System Service Function Overview

EnableAllInterrupts Enables the acceptance of interrupts (without nesting management).

DisableAllInterrupts Disables the acceptance of interrupts (without nesting management).

ResumeAllInterrupts Enables the acceptance of interrupts (with nesting management).

SuspendAllInterrupts Disables the acceptance of interrupts (with nesting management).

ResumeOSInterrupts Enables the acceptance of category 2 interrupts (with nesting manage-
ment).

SuspendOSInterrupts Disables the acceptance of category 2 interrupts (with nesting manage-
ment).



R20UT2768EJ0103  Rev.1.03 Page 88 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Enables the acceptance of interrupts (without nesting management).

[Issue scope]

Boot process, tasks, interrupt service routines, alarm callbacks, common hook routines, OS-Application-specific hook 
routines, critical sections

[Syntax]

[Parameters]

None

[Function]

This allows the acceptance of interrupts that were disabled by issuing DisableAllInterrupts.

Remark 1. This system service manipulates the ID bit of the program status word (PSW), as a process to enable the 
acceptance of interrupts.

Remark 2. Issuing this system service terminates the critical section that was started by issuing DisableAllInterrupts.

Remark 3. If this system service is issued from the common hook routine (ProtectionHook), it will not be handled as 
an error and no processing will be performed.

Remark 4. If this system service is issued between issuance of SuspendAllInterrupts and issuance of ResumeAllIn-
terrupts, it will not be handled as an error and no processing will be performed.

Remark 5. If this system service is issued during the boot process (before issuing StartOS) or after issuing Shut-
downOS, the process to enable the acceptance of interrupts will be forcibly performed (ID bit of PSW is 
manipulated).
To issue this system service during the boot process (before issuing StartOS), 
_kernel_fv0_InitializeIntService needs to be issued before this system service is issued.

Remark 6. The AUTOSAR specifications have a rule (OS092) specifying that if DisableAllInterrupts is not issued 
before issuance of this system service when Scalability class "OsScalabilityClass" is scalability class 3 
(SC3) or scalability class 4 (SC4), it will not be handled as an error and no processing will be performed. 
In the RV850, however, if DisableAllInterrupts is not issued before issuance of this system service, 
regardless of the definitions in Scalability class "OsScalabilityClass", it will not be handled as an error 
and no processing will be performed.

[Return values]

None

EnableAllInterrupts

void EnableAllInterrupts ( void );



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 89 of 282
Jun 10, 2015

[Overview]

Disables the acceptance of interrupts (without nesting management).

[Issue scope]

Boot process, tasks, interrupt service routines, alarm callbacks, common hook routines, OS-Application-specific hook 
routines, critical sections

[Syntax]

[Parameters]

None

[Function]

Disables the acceptance of interrupts.

Remark 1. This system service manipulates the ID bit of the program status word (PSW), as a process to disable the 
acceptance of interrupts.

Remark 2. Issuing this system service starts a critical section.

Remark 3. If this system service is issued from the common hook routine (ProtectionHook), it will not be handled as 
an error and no processing will be performed.

Remark 4. If this system service is issued between issuance of SuspendAllInterrupts and issuance of ResumeAllIn-
terrupts, it will not be handled as an error and no processing will be performed.

Remark 5. It is assumed that this system service will be used with EnableAllInterrupts.
After this system service has been issued, EnableAllInterrupts should be issued in the same processing 
program.
If this system service is re-issued before issuance of EnableAllInterrupts, it will not be handled as an error 
and no processing will be performed.

Remark 6. The operation when this system service was issued from a processing program but the processing pro-
gram terminated before EnableAllInterrupts could be issued will be different according to the definitions in 
Scalability class "OsScalabilityClass", as follows:

- Scalability class 1 (SC1)
Correct operation cannot be guaranteed.

- Scalability class 3 (SC3)
The process will differ as follows depending on the type of processing program.

[Task]
Executes the process to enable the acceptance of interrupts (manipulates the ID bit in PSW) and termi-
nates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine ErrorHook_OsApplication 
has been registered, the hook routine will be called with E_OS_MISSINGEND (0x14) used as the 
parameter.

[Interrupt service routine (category 2)]
Executes the process to enable the acceptance of interrupts (manipulates the ID bit in PSW) and termi-
nates the critical section.

DisableAllInterrupts

void DisableAllInterrupts ( void );



R20UT2768EJ0103  Rev.1.03 Page 90 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

If common hook routine ErrorHook or OS-Application-specific hook routine ErrorHook_OsApplication 
has been registered, the hook routine will be called with E_OS_DISABLEDINT (0x15) used as the 
parameter.

[OS-Application-specific hook routine StartupHook_OsApplication]
Executes the process to enable the acceptance of interrupts (manipulates the ID bit in PSW) and termi-
nates the critical section.

[OS-Application-specific hook routine ShutdownHook_OsApplication]
Terminates the critical section.

[Others]
Correct operation is not guaranteed.

The AUTOSAR specifications do not specify the operations to be performed when the processing pro-
gram is an OS-Application-specific hook routine. In the RV850, however, the above operations are per-
formed when the processing program is StartupHook_OsApplication or ShutdownHook_OsApplication.

Remark 7. If this system service is issued during the boot process (before issuing StartOS) or after issuing Shut-
downOS, the process to enable the acceptance of interrupts will be forcibly performed (ID bit of PSW is 
manipulated).
To issue this system service during the boot process (before issuing StartOS), 
_kernel_fv0_InitializeIntService needs to be issued before this system service is issued.

[Return values]

None



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 91 of 282
Jun 10, 2015

[Overview]

Enables the acceptance of interrupts (with nesting management).

[Issue scope]

Boot process, tasks, interrupt service routines, alarm callbacks, common hook routines, OS-Application-specific hook 
routines, critical sections

[Syntax]

[Parameters]

None

[Function]

Subtracts 0x1 from the disable request counter (dedicated to this system service and SuspendAllInterrupts).
When the subtraction result of the disable request counter is 0x0, the disable request counter will be decremented (0x1 

is subtracted from the disable request counter) and the acceptance of interrupts that was disabled by issuance of Suspen-
dAllInterrupts will be enabled.

Remark 1. This system service manipulates the ID bit of the program status word (PSW), as a process to enable the 
acceptance of interrupts.

Remark 2. When the subtraction result of the disable request counter is 0x0, the critical section that was started by 
issuing SuspendAllInterrupts is terminated.

Remark 3. If this system service is issued from the common hook routine (ProtectionHook), it will not be handled as 
an error and no processing will be performed.

Remark 4. If this system service is issued between issuance of DisableAllInterrupts and issuance of EnableAllInter-
rupts, it will not be handled as an error and no processing will be performed.

Remark 5. If this system service is issued during the boot process (before issuing StartOS) or after issuing Shut-
downOS, only the process to enable the acceptance of interrupts will be performed (ID bit of PSW is 
manipulated) and the disable request counter will not be decremented (0x1 is not subtracted from the 
disable request counter).
To issue this system service during the boot process (before issuing StartOS), 
_kernel_fv0_InitializeIntService needs to be issued before this system service is issued.

Remark 6. The AUTOSAR specifications have a rule (OS092) specifying that if SuspendAllInterrupts is not issued 
before issuance of this system service when Scalability class "OsScalabilityClass" is scalability class 3 
(SC3) or scalability class 4 (SC4), it will not be handled as an error and no processing will be performed. 
In the RV850, however, if SuspendAllInterrupts is not issued before issuance of this system service, 
regardless of the definitions in Scalability class "OsScalabilityClass", it will not be handled as an error 
and no processing will be performed.

[Return values]

None

ResumeAllInterrupts

void ResumeAllInterrupts ( void );



R20UT2768EJ0103  Rev.1.03 Page 92 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Disables the acceptance of interrupts (with nesting management).

[Issue scope]

Boot process, tasks, interrupt service routines, alarm callbacks, common hook routines, OS-Application-specific hook 
routines, critical sections

[Syntax]

[Parameters]

None

[Function]

Adds 0x1 to the disable request counter (dedicated to this system service and ResumeAllInterrupts, maximum disable 
request count: 127).

If the disable request counter is 0x0 when this system service is issued, the disable request counter will be incremented 
(0x1 is added to the disable request counter) and the acceptance of interrupts will be disabled.

Remark 1. This system service manipulates the ID bit of the program status word (PSW), as a process to disable the 
acceptance of interrupts.

Remark 2. When the disable request counter is 0x0 when this system service is issued, issuance of this system ser-
vice starts a critical section.

Remark 3. If this system service is issued from the common hook routine (ProtectionHook), it will not be handled as 
an error and no processing will be performed.

Remark 4. If this system service is issued between issuance of DisableAllInterrupts and issuance of EnableAllInter-
rupts, it will not be handled as an error and no processing will be performed.

Remark 5. It is assumed that this system service will be used with ResumeAllInterrupts.
After this system service has been issued, ResumeAllInterrupts should be issued in the same processing 
program.
If this system service is re-issued before issuance of ResumeAllInterrupts, only the disable request coun-
ter will be incremented (0x1 is added to the disable request counter) and the process to disable the 
acceptance of interrupts will not be performed (ID bit of PSW is not manipulated).
If the re-issuance of this system service causes the disable request counter (maximum disable request 
count: 127) to overflow, it will not be handled as an error and no processing will be performed.

Remark 6. The operation when this system service was issued from a processing program but the processing pro-
gram terminated before ResumeAllInterrupts could be issued will be different according to the definitions 
in Scalability class "OsScalabilityClass", as follows:

- Scalability class 1 (SC1)
Correct operation cannot be guaranteed.

- Scalability class 3 (SC3)
The process will differ as follows depending on the type of processing program.

[Task]
Executes the process to enable the acceptance of interrupts (manipulates the ID bit in PSW), clears 
the disable request counter (sets the counter to 0x0), and terminates the critical section.

SuspendAllInterrupts

void SuspendAllInterrupts ( void );



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 93 of 282
Jun 10, 2015

If common hook routine ErrorHook or OS-Application-specific hook routine ErrorHook_OsApplication 
has been registered, the hook routine will be called with E_OS_MISSINGEND (0x14) used as the 
parameter.

[Interrupt service routine (category 2)]
Executes the process to enable the acceptance of interrupts (manipulates the ID bit in PSW), clears 
the disable request counter (sets the counter to 0x0), and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine ErrorHook_OsApplication 
has been registered, the hook routine will be called with E_OS_DISABLEDINT (0x15) used as the 
parameter.

[OS-Application-specific hook routine StartupHook_OsApplication]
Executes the process to enable the acceptance of interrupts (manipulates the ID bit in PSW), clears 
the disable request counter (sets the counter to 0x0), and terminates the critical section.

[OS-Application-specific hook routine ShutdownHook_OsApplication]
Terminates the critical section.

[Others]
Correct operation is not guaranteed.

The AUTOSAR specifications do not specify the operations to be performed when the processing pro-
gram is an OS-Application-specific hook routine. In the RV850, however, the above operations are per-
formed when the processing program is StartupHook_OsApplication or ShutdownHook_OsApplication.

Remark 7. If this system service is issued during the boot process (before issuing StartOS) or after issuing Shut-
downOS, only the process to disable the acceptance of interrupts will be performed (ID bit of PSW is 
manipulated) and the disable request counter will not be incremented (0x1 is not added to the disable 
request counter).
To issue this system service during the boot process (before issuing StartOS), 
_kernel_fv0_InitializeIntService needs to be issued before this system service is issued.

[Return values]

None



R20UT2768EJ0103  Rev.1.03 Page 94 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Enables the acceptance of category 2 interrupts (with nesting management).

[Issue scope]

Tasks, interrupt service routines, alarm callbacks, common hook routines, OS-Application-specific hook routines, critical 
sections

[Syntax]

[Parameters]

None

[Function]

Subtracts 0x1 from the disable request counter (dedicated to this system service and SuspendOSInterrupts).
When the subtraction result of the disable request counter is 0x0, the disable request counter will be decremented (0x1 

is subtracted from the disable request counter) and the acceptance of interrupts that was disabled by issuance of Suspen-
dOSInterrupts will be enabled.

Remark 1. This system service manipulates the PMn bits of the priority mask register (PMR), as a process to enable 
the acceptance of interrupts.
The PMn bits to be manipulated are bits corresponding to the following priorities and bits corresponding 
to priorities lower than the following priorities.

- Initial priority "OsIsrPriority" which is defined to be used for an interrupt service routine (category 2)

- Priority "OsCounterPriority" which is defined to be used for a hardware counter

Remark 2. When the subtraction result of the disable request counter is 0x0, the critical section that was started by 
issuing SuspendOSInterrupts is terminated.

Remark 3. If this system service is issued from the common hook routine (ProtectionHook), it will not be handled as 
an error and no processing will be performed.

Remark 4. If this system service is issued from an alarm callback, common hook routine (StartupHook, Shutdown-
Hook, PostTaskHook, PreTaskHook, or ErrorHook), or OS-Application-specific hook routine, only the dis-
able request counter will be decremented (0x1 is subtracted from the disable request counter) and the 
acceptance of interrupts will not be enabled (PMn bits of PMR are not manipulated).

Remark 5. If this system service is issued when GetResource (with the ceiling value set to INTPRIx) has been 
issued before SuspendOSInterrupts is issued, the priority mask register (PMR) is set to the value before 
SuspendOSInterrupts is issued (the value indicating that the acceptance of the interrupt sources corre-
sponding to INTPRI0 to INTPRIx is disabled).

Remark 6. The AUTOSAR specifications have a rule (OS092) specifying that if SuspendOSInterrupts is not issued 
before issuance of this system service when Scalability class "OsScalabilityClass" is scalability class 3 
(SC3) or scalability class 4 (SC4), it will not be handled as an error and no processing will be performed. 
In the RV850, however, if SuspendOSInterrupts is not issued before issuance of this system service, 
regardless of the definitions in Scalability class "OsScalabilityClass", it will not be handled as an error 
and no processing will be performed.

ResumeOSInterrupts

void ResumeOSInterrupts ( void );



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 95 of 282
Jun 10, 2015

[Return values]

None



R20UT2768EJ0103  Rev.1.03 Page 96 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Disables the acceptance of category 2 interrupts (with nesting management).

[Issue scope]

Tasks, interrupt service routines, alarm callbacks, common hook routines, OS-Application-specific hook routines, critical 
sections

[Syntax]

[Parameters]

None

[Function]

Adds 0x1 to the disable request counter (dedicated to this system service and ResumeOSInterrupts, maximum disable 
request count: 127).

If the disable request counter is 0x0 when this system service is issued, the disable request counter will be incremented 
(0x1 is added to the disable request counter) and the acceptance of interrupts will be disabled.

Remark 1. This system service manipulates the PMn bits of the priority mask register (PMR), as a process to disable 
the acceptance of interrupts.
The PMn bits to be manipulated are bits corresponding to the following priorities and bits corresponding 
to priorities lower than the following priorities.

- Initial priority "OsIsrPriority" which is defined to be used for an interrupt service routine (category 2)

- Priority "OsCounterPriority" which is defined to be used for a hardware counter

Remark 2. When the disable request counter is 0x0 when this system service is issued, issuance of this system ser-
vice starts a critical section.

Remark 3. If this system service is issued from the common hook routine (ProtectionHook), it will not be handled as 
an error and no processing will be performed.

Remark 4. If this system service is issued from an alarm callback, common hook routine (StartupHook, Shutdown-
Hook, PostTaskHook, PreTaskHook, or ErrorHook), or OS-Application-specific hook routine, only the dis-
able request counter will be incremented (0x1 is added to the disable request counter) and the 
acceptance of interrupts will not be disabled (PMn bits of PMR are not manipulated).

Remark 5. It is assumed that this system service will be used with ResumeOSInterrupts.
After this system service has been issued, ResumeOSInterrupts should be issued in the same process-
ing program.
If this system service is re-issued before issuance of ResumeOSInterrupts, only the disable request 
counter will be incremented (0x1 is added to the disable request counter) and the process to disable the 
acceptance of interrupts will not be performed (PMn bits of PMR are not manipulated).
If the re-issuance of this system service causes the disable request counter (maximum disable request 
count: 127) to overflow, it will not be handled as an error and no processing will be performed.

Remark 6. The operation when this system service was issued from a processing program but the processing pro-
gram terminated before ResumeOSInterrupts could be issued will be different according to the definitions 
in Scalability class "OsScalabilityClass", as follows:

- Scalability class 1 (SC1)
Correct operation cannot be guaranteed.

SuspendOSInterrupts

void SuspendOSInterrupts ( void );



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 97 of 282
Jun 10, 2015

- Scalability class 3 (SC3)
The process will differ as follows depending on the type of processing program.

[Task]
Executes the process to enable the acceptance of interrupts (manipulates the PMn bits in PMR), clears 
the disable request counter (sets the counter to 0x0), and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine ErrorHook_OsApplication 
has been registered, the hook routine will be called with E_OS_MISSINGEND (0x14) used as the 
parameter.

[Interrupt service routine (category 2)]
Executes the process to enable the acceptance of interrupts (manipulates the PMn bits in PMR), clears 
the disable request counter (sets the counter to 0x0), and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine ErrorHook_OsApplication 
has been registered, the hook routine will be called with E_OS_DISABLEDINT (0x15) used as the 
parameter.

[OS-Application-specific hook routine StartupHook_OsApplication]
Executes the process to enable the acceptance of interrupts (manipulates the PMn bits in PMR), clears 
the disable request counter (sets the counter to 0x0), and terminates the critical section.

[OS-Application-specific hook routine ShutdownHook_OsApplication]
Terminates the critical section.

[Others]
Correct operation is not guaranteed.

The AUTOSAR specifications do not specify the operations to be performed when the processing pro-
gram is an OS-Application-specific hook routine. In the RV850, however, the above operations are per-
formed when the processing program is StartupHook_OsApplication or ShutdownHook_OsApplication.

[Return values]

None



R20UT2768EJ0103  Rev.1.03 Page 98 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.4.3  Resource management

The following shows the system services for resource management provided by the RV850.

Table 14.17 System Services for Resource Management

Name of System Service Function Overview

GetResource Acquires a resource.

ReleaseResource Releases a resource.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 99 of 282
Jun 10, 2015

[Overview]

Acquires a resource.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Acquires the target resource (the resource specified in parameter ResID). In this system service, a resource is acquired 
(the target resource is occupied between issuance of this system service and issuance of ReleaseResource) and the cur-
rent priority is changed.

Remark 1. The process to change the current priority will be different according to the type of the processing pro-
gram from which this system service was issued, as follows:

- Task
The current priority of the current task is changed to Ceiling value "OsResourcePriority" of the 
resource. As the current priority of the current task is changed, the current task is re-queued at the top 
of the ready queue corresponding to the changed priority.
When the ceiling value of the resource is INTPRIx, the current priority of the current task is changed to 
the highest priority (29) and the process to disable the acceptance of interrupts will be performed (the 
acceptance of interrupt sources corresponding to Priority "INTPRI0 to ceiling value" is disabled).

- Interrupt service routine (category 2)
The current priority of the interrupt service routine is changed to Ceiling value "OsResourcePriority" of 
the resource and the process to disable the acceptance of interrupts will be performed (the acceptance 
of interrupt sources corresponding to Priority "INTPRI0 to ceiling value" is disabled).

Remark 2. If a single processing program has acquired multiple resources, then the resources must be released in 
last-in-first-out order (the most recently acquired resource is released first).

Remark 3. When the ceiling value of the acquired resource is higher than the initial priority (Initial priority "OsTask-
Priority" or Initial priority "OsIsrPriority") of the processing program that issued this system service and 
also lower than the current priority of the processing program that issued this system service, the current 
priority will not be changed and the process to disable the acceptance of interrupts will not be performed.
Therefore, even if a task (initial priority: 1) that has already acquired a resource with a ceiling value of 10 
acquires a resource with a ceiling value of 5, the current priority remains to be 10.

Remark 4. The operation when an interrupt service routine (category 2) issues this system service but the interrupt 
service routine processing finishes without issuing ReleaseResource will be different according to the 
definitions in Scalability class "OsScalabilityClass", as follows:

- Scalability class 1 (SC1)
Correct operation cannot be guaranteed.

GetResource

StatusType GetResource ( ResourceType ResID );

I/O Parameter Description

I ResourceType ResID; Resource identifier



R20UT2768EJ0103  Rev.1.03 Page 100 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

- Scalability class 3 (SC3)
At the restore process from the interrupt service routine, the resource is released (the occupied target 
resource is released between issuance of this system service and issuance of ReleaseResource) and 
the current priority is changed (the current priority of the interrupt service routine is returned to Initial 
priority "OsIsrPriority").
If a common hook routine (ErrorHook) or OS-Application-specific hook routine 
(ErrorHook_OsApplication) has been registered in the interrupt service routine, the resource will be 
released, the current priority will be changed, and a hook routine will be called with 
E_OS_RESOURCE (0x6) used as the parameter.

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- Another processing program has already acquired the tar-
get resource.

- The ceiling value of the target resource is lower than the ini-
tial priority (Initial priority "OsTaskPriority" or Initial priority 
"OsIsrPriority") of the processing program that issued this 
system service.

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target resource. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter ResID is invalid.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 101 of 282
Jun 10, 2015

[Overview]

Releases a resource.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Releases the target resource (the resource specified in parameter ResID). In this system service, a resource is released 
(the occupied target resource is released between issuance of GetResource and issuance of this system service) and the 
current priority is changed.

Remark 1. The process to change the current priority will be different according to the type of the processing pro-
gram from which this system service was issued, as follows:

- Task
The current priority of the current task is returned to the priority that was set before the resource was 
acquired. As the current priority of the current task is changed, the current task is re-queued at the top 
of the ready queue corresponding to the changed priority.
When the ceiling value of the resource is INTPRIx, the current priority of the current task is returned to 
the priority that was set before the resource was acquired and the process to enable the acceptance of 
interrupts will be performed (the acceptance of interrupt sources corresponding to Priority "INTPRI0 to 
ceiling value" is enabled).
If this system service is issued from a task whose Scheduling attribute "OsTaskSchedule" is a preemp-
tive property (FULL), the scheduler is activated when the current priority has been changed.

- Interrupt service routine (category 2)
The current priority of the interrupt service routine is returned to the priority that was set before the 
resource was acquired and the process to enable the acceptance of interrupts will be performed (the 
acceptance of interrupt sources corresponding to Priority "INTPRI0 to ceiling value" is enabled).

Remark 2. If a single processing program has acquired multiple resources, then the resources must be released in 
last-in-first-out order (the most recently acquired resource is released first).

[Return values]

ReleaseResource

StatusType ReleaseResource ( ResourceType ResID );

I/O Parameter Description

I ResourceType ResID; Resource identifier

Macro Numerical Value Description

E_OK 0x0 Normal termination



R20UT2768EJ0103  Rev.1.03 Page 102 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_ACCESS 0x1 Exit with error

- Another processing program has already acquired the tar-
get resource.

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target resource. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter ResID is invalid.

E_OS_NOFUNC 0x5 Exit with error

- Resources were released in an invalid order.

- The resource specified in parameter ResID has not been 
acquired by any processing program.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 103 of 282
Jun 10, 2015

14.4.4  Event management

The following shows the system services for event management provided by the RV850.

Table 14.18 System Services for Event Management

Name of System Service Function Overview

SetEvent Sets an event mask.

ClearEvent Clears an event mask.

GetEvent Acquires an event mask.

WaitEvent Confirms an event mask (also shifted to the WAITING state).



R20UT2768EJ0103  Rev.1.03 Page 104 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Sets an event mask.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Sets the event mask specified in parameter Mask to the event (32-bit width) assigned to the target task (the extended 
task specified in parameter TaskID).

Remark 1. If the current pattern of the event that is assigned to the target task is B'1100 and the pattern to be set 
which is specified in parameter Mask is B'1010 when this system service is issued, the event mask is set 
and the current pattern of the event is B'1110.

Remark 2. If multiple events have been assigned to the target task, then the event mask setting process is executed 
for each event.

Remark 3. When the result of setting the event mask satisfies the request pattern of the target task (WAITING state), 
then the event mask is set and the state of the task will be manipulated (the target task is shifted from 
WAITING state to READY state).
The condition of the request pattern is satisfied when comparing "result of setting the event mask" and 
"request pattern of the target task (the event mask specified in parameter Mask when the target task 
issued WaitEvent)", even a single bit matches (e.g. result of setting is B'0001 and request pattern is 
B'1111).
When the target task is shifted from WAITING state to READY state, the target task will be queued at the 
end of the ready queue corresponding to the priority.
If this system service is issued from a task whose Scheduling attribute "OsTaskSchedule" is a preemptive 
property (FULL), the scheduler is activated when the state of the task has been manipulated (the target 
task is shifted from WAITING state to READY state).

[Return values]

SetEvent

StatusType SetEvent ( TaskType TaskID, EventMaskType Mask );

I/O Parameter Description

I TaskType TaskID; Task identifier

I EventMaskType Mask; Event mask to be set

Macro Numerical Value Description

E_OK 0x0 Normal termination



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 105 of 282
Jun 10, 2015

E_OS_ACCESS 0x1 Exit with error

- The type of the target task is basic task.

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target task. (Only in SC3)

- The OS-Application to which the target task belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter TaskID is invalid.

E_OS_STATE 0x7 Target task is in SUSPENDED state.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 106 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Clears an event mask.

[Issue scope]

Tasks (extended)

[Syntax]

[Parameters]

[Function]

Clears the current pattern of the event (32-bit width) assigned to the current task (the extended task that issued this sys-
tem service), using the event mask specified in parameter Mask.

Remark 1. If the current pattern of the event that is assigned to the current task is B'1100 and the pattern to be 
cleared which is specified in parameter Mask is B'1010 when this system service is issued, the event 
mask is cleared and the current pattern of the event is B'0100.

Remark 2. If multiple events have been assigned to the current task, then the event mask clearing process is exe-
cuted for each event.

[Return values]

ClearEvent

StatusType ClearEvent ( EventMaskType Mask );

I/O Parameter Description

I EventMaskType Mask; Event mask to be cleared

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Issued from a basic task.

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 107 of 282
Jun 10, 2015

[Overview]

Acquires an event mask.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (PostTaskHook, PreTaskHook, ErrorHook), OS-
Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Gets the current pattern of the event assigned to the target task (the task specified in parameter TaskID), and stores it in 
the area specified in parameter Event.

Remark If multiple events have been assigned to the target task, then the logical sum of the current pattern of 
each event is stored in the area specified in parameter Event.

[Return values]

GetEvent

StatusType GetEvent ( TaskType TaskID, EventMaskRefType Event );

I/O Parameter Description

I TaskType TaskID; Task identifier

O EventMaskRefType Event; Pointer to the area where an acquired event mask is to be stored

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- Target task is a basic task.

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target task. (Only in SC3)

- The OS-Application to which the target task belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter TaskID is invalid.

E_OS_STATE 0x7 Target task is in SUSPENDED state.

E_OS_PARAM_POINTER 0x12 Specification of parameter Event is invalid (NULL pointer).



R20UT2768EJ0103  Rev.1.03 Page 108 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_ILLEGAL_ADDRERSS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter 
Event. (Only in SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 109 of 282
Jun 10, 2015

[Overview]

Confirms an event mask (also shifted to the WAITING state).

[Issue scope]

Tasks (extended)

[Syntax]

[Parameters]

[Function]

Checks whether the current pattern of the event assigned to the current task (the task that issued this system service) 
meets the conditions of the request pattern specified in parameter Mask.

Remark 1. If multiple events have been assigned to the current task, then confirmation processing of the event mask 
is executed for the logical sum of the current pattern of each event.

Remark 2. The condition of the request pattern is satisfied when comparing "current pattern of the event assigned to 
the current task" and "request pattern specified in parameter Mask", even a single bit matches (e.g. cur-
rent pattern is B'0001 and request pattern is B'1111).
Accordingly, when the current pattern of the event assigned to the current task is B'1000 and the request 
pattern is B'0111, the condition is not satisfied.

Remark 3. The processing contents of this system service will be different according to the confirmed result of the 
event mask, as follows:

- Condition is satisfied
E_OK (0x0) is returned as the return value of this system service and the current task remains in RUN-
NING state.

- Condition is not satisfied
The current task is shifted from RUNNING state to WAITING state.
As the current task is shifted from RUNNING state to WAITING state, the current task is unlinked from 
the ready queue corresponding to the priority.
The scheduler is activated when the state of the task has been manipulated (the current task is shifted 
from RUNNING state to WAITING state).

Remark 4. If the current task had acquired any internal resources, only in the case of the condition for the confirmed 
result of the event mask not being satisfied, the state of the task will be manipulated (the current task is 
shifted from RUNNING state to WAITING state), internal resources will be released, and the current pri-
ority will be changed (current priority of current task is returned to the priority that was set before acquir-
ing the resource). After this, the scheduler will be activated.
When the ceiling value of the internal resource is INTPRIx, the process to enable the acceptance of inter-
rupts will also be performed (the acceptance of interrupt sources corresponding to Priority "INTPRI0 to 
ceiling value" is enabled).

WaitEvent

StatusType WaitEvent ( EventMaskType Mask );

I/O Parameter Description

I EventMaskType Mask; Request pattern



R20UT2768EJ0103  Rev.1.03 Page 110 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Issued from a basic task.

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_RESOURCE 0x6 Current task has acquired normal resources.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 111 of 282
Jun 10, 2015

14.4.5  Counter management

The following shows the system services for counter management provided by the RV850.

Table 14.19 System Services for Counter Management

Name of System Service Function Overview

IncrementCounter Updates the count value.

GetCounterValue Gets the current count value.

GetElapsedValue Gets the current/relative count value.



R20UT2768EJ0103  Rev.1.03 Page 112 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Updates the count value.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Increments the target counter (software counter specified by parameter CounterID, unit: tick) by 0x1.

Remark 1. If the expiry conditions of the alarm/schedule table associated with the target counter are satisfied, then 
in addition to incrementing the counter value (adding 0x1 to the counter), the expiry action (e.g. activating 
tasks) defined during configuration in the Alarm information/Schedule table information is also performed.

Remark 2. When an error (e.g. Activation request count for the task exceeded Maximum activation request count 
"OsTaskActivation") occurs in the expiry action (e.g. activating tasks) that was performed when this sys-
tem service was issued, a common hook routine (ErrorHook) or OS-Application-specific hook routine 
(ErrorHook_OsApplication) will be called but the return value of this system service will be E_OK (0x0).

Remark 3. If addition causes the counter to overflow (Maximum count value "OsCounterMaxAllowedValue" is 
exceeded), it will not be handled as an error and 0x0 will be set in the target counter.

[Return values]

IncrementCounter

StatusType IncrementCounter ( CounterType CounterID );

I/O Parameter Description

I CounterType CounterID; Counter identifier

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target counter. (Only in SC3)

- The OS-Application to which the target counter belongs is 
in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Exit with error

- Specification of parameter CounterID is invalid.

- Target counter is a hardware counter.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 113 of 282
Jun 10, 2015

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 114 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the current count value.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Gets the current count value (unit: tick) of the target counter (counter specified by parameter CounterID), and stores it in 
the area specified by parameter Value.

Remark The AUTOSAR specifications have a rule (OS531) specifying that the value to be stored in the area 
specified by parameter Value should have a unit complying with the counter type (software counter or 
hardware counter) specified in parameter CounterID. In the RV850, however, the unit is unified to tick, 
regardless of the counter type.

[Return values]

GetCounterValue

StatusType GetCounterValue ( CounterType CounterID, TickRefType Value );

I/O Parameter Description

I CounterType CounterID; Counter identifier

O TickRefType Value; Pointer to the area where the acquired current count value is to be 
stored

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target counter. (Only in SC3)

- The OS-Application to which the target counter belongs is 
in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter CounterID is invalid.

E_OS_PARAM_POINTER 0x12 Specification of parameter Value is invalid (NULL pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter 
Value. (Only in SC3)



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 115 of 282
Jun 10, 2015

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 116 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the current/relative count value.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Gets the current count value (unit: tick) of the target counter (counter specified by parameter CounterID), and stores that 
current count value in the area specified by parameter Value. Also, the difference between the starting count value (unit: 
tick) specified in parameter Value and the current count value (relative count value, unit: tick) is stored in the area speci-
fied by parameter ElapsedValue.

Remark 1. When this system service is issued, if the current count value of the target counter is 0x5 and the starting 
count value specified by parameter Value is 0x3, then the relative count value that will be stored in the 
area specified by parameter ElapsedValue is 0x2 and the current count value that will be stored in the 
area specified by parameter Value is 0x5.

Remark 2. In the RV850, the number of times a counter has overflowed (Maximum count value "OsCounterMaxAl-
lowedValue" is exceeded) is not held. Therefore, if the target counter overflows during the period starting 
from the starting count value specified by parameter Value until issuance of this system service, the 
value that will be stored in the area specified by parameter ElapsedValue is invalid.

Remark 3. The AUTOSAR specifications have a rule (OS531) specifying that the values to be stored in the areas 
specified by parameters Value and ElapsedValue should have a unit complying with the counter type 
(software counter or hardware counter) specified in parameter CounterID. In the RV850, however, the 
unit is unified to tick, regardless of the counter type.

[Return values]

GetElapsedValue

StatusType GetElapsedValue ( CounterType CounterID, TickRefType Value, TickRefType 
ElapsedValue );

I/O Parameter Description

I CounterType CounterID; Counter identifier

I/O TickRefType Value; Pointer to the area storing the starting count value, and pointer to the 
area storing the current count value

O TickRefType ElapsedValue; Pointer to the area where the acquired relative count value is to be 
stored

Macro Numerical Value Description

E_OK 0x0 Normal termination



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 117 of 282
Jun 10, 2015

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target counter. (Only in SC3)

- The OS-Application to which the target counter belongs is 
in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter CounterID is invalid.

E_OS_VALUE 0x8 The specification by parameter Value is invalid (Value > Maxi-
mum count value "OsCounterMaxAllowedValue").

E_OS_PARAM_POINTER 0x12 The specification by parameter Value or parameter Elapsed-
Value is invalid (NULL pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter Value 
or the area specified in parameter ElapsedValue. (Only in 
SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 118 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

14.4.6  Alarm management

The following shows the system services for alarm management provided by the RV850.

Table 14.20 System Services for Alarm Management

Name of System Service Function Overview

GetAlarmBase Acquires alarm base information.

GetAlarm Acquires the remainder count value.

SetRelAlarm Activates the relative alarm.

SetAbsAlarm Activates the absolute alarm.

CancelAlarm Cancels the alarm.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 119 of 282
Jun 10, 2015

[Overview]

Acquires alarm base information.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (PostTaskHook, PreTaskHook, ErrorHook), OS-
Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Alarm base information: AlarmBaseRefType]

[Function]

Gets the alarm base information (Maximum count value "OsCounterMaxAllowedValue", Minimum cycle value "OsCoun-
terMinCycle", and Basic count value "OsCounterTicksPerBase" of the counter associated with the target alarm) for the tar-
get alarm (alarm specified in parameter AlarmID), and stores it in the area specified by parameter Info.

Remark See "14.3.1Alarm base information" for details about the alarm base information (AlarmBaseRefType).

[Return values]

GetAlarmBase

StatusType GetAlarmBase ( AlarmType AlarmID, AlarmBaseRefType Info );

I/O Parameter Description

I AlarmType AlarmID; Alarm identifier

O AlarmBaseRefType Info; Pointer to the area where the acquired alarm base information is to be 
stored

struct _AlarmBaseType {
    TickType maxallowedvalue; /* Maximum count value "OsCounterMaxAllowedValue" */
    TickType mincycle;        /* Minimum cycle value "OsCounterMinCycle" */
    TickType ticksperbase;    /* Basic count value "OsCounterTicksPerBase" */
};

typedef struct _AlarmBaseType AlarmBaseType;
typedef AlarmBaseType *AlarmBaseRefType;

Macro Numerical Value Description

E_OK 0x0 Normal termination



R20UT2768EJ0103  Rev.1.03 Page 120 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target alarm. (Only in SC3)

- The OS-Application to which the target alarm belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter AlarmID is invalid.

E_OS_PARAM_POINTER 0x12 Specification of parameter Info is invalid (NULL pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter Info. 
(Only in SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 121 of 282
Jun 10, 2015

[Overview]

Acquires the remainder count value.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (PostTaskHook, PreTaskHook, ErrorHook), OS-
Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Gets the remainder count value (unit: tick) until expiry conditions of the target alarm (alarm specified in parameter Alar-
mID) are met, and stores it in the area specified by parameter Tick.

Remark 1. After this system service is issued, when the count value of the counter associated with the target alarm 
is updated for the number of values stored in the area specified in parameter Tick and the expiry condi-
tions of the target alarm are met, the expiry action (e.g. activating tasks) defined in Expiry action "OsAla-
rmAction" is performed. When the counter associated with the target alarm is a software counter, after 
this system service is issued, the expiry conditions of the target alarm are met by issuing Increment-
Counter for the number of values stored in the area specified in parameter Tick.

Remark 2. When this system service is issued from an interrupt service routine (e.g. interrupt service routine that 
was called by an interrupt occurring in the middle of the RV850 executing a process associated with 
IncrementCounter), the acquired remainder count value may be invalid.

[Return values]

GetAlarm

StatusType GetAlarm ( AlarmType AlarmID, TickRefType Tick );

I/O Parameter Description

I AlarmType AlarmID; Alarm identifier

O TickRefType Tick; Pointer to the area where the acquired remainder count value is to be 
stored

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target alarm. (Only in SC3)

- The OS-Application to which the target alarm belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.



R20UT2768EJ0103  Rev.1.03 Page 122 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_ID 0x3 Specification of parameter AlarmID is invalid.

E_OS_NOFUNC 0x5 The target alarm is in the inactive state.

E_OS_PARAM_POINTER 0x12 Specification of parameter Tick is invalid (NULL pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter Tick. 
(Only in SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 123 of 282
Jun 10, 2015

[Overview]

Activates the relative alarm.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Sets the expiry conditions specified by parameters increment and cycle in the target alarm (alarm specified in parameter 
AlarmID) and switches the target alarm from the inactive state to the active state.

Remark 1. If 0x0 is set in parameter cycle, the target alarm behaves as a one-shot alarm. If a value other than 0x0 is 
set, then it behaves as a cyclic alarm.

Remark 2. If the target alarm behaves as a one-shot alarm, after this system service is issued, the expiry action is 
executed when the count value (count value of the counter associated with the target alarm) has been 
updated for the number of times of "Value specified in parameter increment + 1", and the target alarm is 
shifted from the active state to the inactive state.
The sequence for increment = 6 is shown below.

Remark 3. If the target alarm behaves as a cyclic alarm, after this system service is issued, the first-time expiry 
action is executed when the count value (count value of the counter associated with the target alarm) has 
been updated for the number of times of "Value specified in parameter increment + 1", and after the first-
time expiry action has been executed, the expiry action is repeated each time the count value (count 
value of the counter associated with the target alarm) is updated for the number of times specified in 
parameter cycle.
The sequence for increment = 6 and cycle = 3 is shown below.

SetRelAlarm

StatusType SetRelAlarm ( AlarmType AlarmID, TickType increment, TickType cycle );

I/O Parameter Description

I AlarmType AlarmID; Alarm identifier

I TickType increment; Relative count value (unit: tick)

I TickType cycle; Cycle count value (unit: tick)

Issues this system service
Expiry conditions are met

increment

Issues StartOS



R20UT2768EJ0103  Rev.1.03 Page 124 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target alarm. (Only in SC3)

- The OS-Application to which the target alarm belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter AlarmID is invalid.

E_OS_STATE 0x7 The target alarm is in the active state.

E_OS_VALUE 0x8 Exit with error

- Specification of parameter increment is invalid (increment = 
0x0).

- Specification of parameter increment is invalid (increment > 
Maximum count value "OsCounterMaxAllowedValue").

- Specification of parameter cycle is invalid (cycle < Minimum 
cycle value "OsCounterMinCycle").

- Specification of parameter cycle is invalid (cycle > Maxi-
mum count value "OsCounterMaxAllowedValue").

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Issues this system service

Expiry conditions are met

Issues StartOS

increment cycle cycle cycle



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 125 of 282
Jun 10, 2015

[Overview]

Activates the absolute alarm.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Sets the expiry conditions specified by parameters start and cycle in the target alarm (alarm specified in parameter Alar-
mID) and switches the target alarm from the inactive state to the active state.

Remark 1. If 0x0 is set in parameter cycle, the target alarm behaves as a one-shot alarm. If a value other than 0x0 is 
set, then it behaves as a cyclic alarm.

Remark 2. If the target alarm behaves as a one-shot alarm, after this system service is issued, the expiry action is 
executed when the absolute count value specified in parameter start matches the count value (count 
value of the counter associated with the target alarm), and the target alarm is shifted from the active state 
to the inactive state.
The sequence for start = 6 is shown below.

In the RV850, when incrementation of the counter (adding 0x1 to the counter) causes the counter to 
overflow (Maximum count value "OsCounterMaxAllowedValue" is exceeded), it will not be handled as an 
error and 0x0 will be set in the target counter.
Therefore, if the value specified in parameter start is smaller than the count value (count value of the 
counter associated with the target alarm), the one-shot alarm will operate as shown below.
The sequence for start = 6 and OsCounterMaxAllowedValue = 11 is shown below.

SetAbsAlarm

StatusType SetAbsAlarm ( AlarmType AlarmID, TickType start, TickType cycle );

I/O Parameter Description

I AlarmType AlarmID; Alarm identifier

I TickType start; Absolute count value (unit: tick)

I TickType cycle; Cycle count value (unit: tick)

Issues this system service
Expiry conditions are met

start

Issues StartOS

0 6



R20UT2768EJ0103  Rev.1.03 Page 126 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

Remark 3. If the target alarm behaves as a cyclic alarm, after this system service is issued, the first-time expiry 
action is executed when the absolute count value specified in parameter start matches the current count 
value (count value of the counter associated with the target alarm), and after the first-time expiry action 
has been executed, the expiry action is repeated each time the count value (count value of the counter 
associated with the target alarm) is updated for the number of times specified in parameter cycle.
The sequence for start = 6 and cycle = 3 is shown below.

In the RV850, when incrementation of the counter (adding 0x1 to the counter) causes the counter to 
overflow (Maximum count value "OsCounterMaxAllowedValue" is exceeded), it will not be handled as an 
error and 0x0 will be set in the target counter.
Therefore, if the value specified in parameter start is smaller than the count value (count value of the 
counter associated with the target alarm), the cyclic alarm will operate as shown below.
The sequence for start = 6, cycle = 3, and OsCounterMaxAllowedValue = 11 is shown below.
\

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target alarm. (Only in SC3)

- The OS-Application to which the target alarm belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter AlarmID is invalid.

E_OS_STATE 0x7 The target alarm is in the active state.

Issues this system service
Expiry conditions are met

start

Issues StartOS

0 6 11 17

startOsCounterMaxAllowedValue

Issues this system service
Expiry conditions are met

start

Issues StartOS

0 6 12 159

cycle cycle cycle

Issues this system service

start

Issues StartOS

0 6 11 17

startOsCounterMaxAllowedValue

20 23 26

cycle cycle cycle

Expiry conditions are met



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 127 of 282
Jun 10, 2015

E_OS_VALUE 0x8 Exit with error

- Specification of parameter start is invalid (start > Maximum 
count value "OsCounterMaxAllowedValue").

- Specification of parameter cycle is invalid (cycle < Minimum 
cycle value "OsCounterMinCycle").

- Specification of parameter cycle is invalid (cycle > Maxi-
mum count value "OsCounterMaxAllowedValue").

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 128 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Cancels the alarm.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Shifts the target alarm (alarm specified in parameter AlarmID) from the active state to the inactive state.

Remark 1. Even if the count value of the counter associated with the alarm shifted into the inactive state is updated, 
the remainder count value will not be decremented until the expiry conditions are met, and no determina-
tion will be made as to whether the expiry conditions are met.
Consequently, the expiry conditions for an alarm that has been shifted to the inactive state cannot be 
met.

Remark 2. An alarm that has been shifted to the inactive state can be shifted to the active state by issuing 
SetRelAlarm or SetAbsAlarm from a processing program.

[Return values]

CancelAlarm

StatusType CancelAlarm ( AlarmType AlarmID );

I/O Parameter Description

I AlarmType AlarmID; Alarm identifier

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target alarm. (Only in SC3)

- The OS-Application to which the target alarm belongs is in 
APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter AlarmID is invalid.

E_OS_NOFUNC 0x5 The target alarm is in the inactive state.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 129 of 282
Jun 10, 2015

14.4.7  Schedule table management

The following shows the system services for schedule table management provided by the RV850.

Table 14.21 System Services for Schedule Table Management

Name of System Service Function Overview

StartScheduleTableRel Starts the relative schedule table.

StartScheduleTableAbs Starts the absolute schedule table.

StopScheduleTable Stops the schedule table.

NextScheduleTable Switches the schedule table.

GetScheduleTableStatus Gets the current state.



R20UT2768EJ0103  Rev.1.03 Page 130 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Starts the relative schedule table.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Shifts the target schedule table (the relative schedule table specified in parameter ScheduleTableID) from STOPPED 
state to RUNNING state.

Remark 1. If this system service is issued for a schedule table whose Cyclic property "OsScheduleTableRepeating" 
is non-cyclic property (FALSE), the schedule table behaves as a one-shot schedule table. If this system 
service is issued for a schedule table of the cyclic property (TRUE), the schedule table behaves as a 
cyclic schedule table.

Remark 2. If the target schedule table behaves as a one-shot schedule table, after this system service is issued, the 
schedule count is started when the count value (count value of the counter associated with the target 
schedule table) has been updated for the number of times of "Value specified in parameter Offset + 1". 
Then after the final expiry action has been executed, the target schedule table is shifted from RUNNING 
state to STOPPED state.
The sequence for Offset = 6 and expiry action count = 2 (OsScheduleTblExpPointOffset = 3 for the first 
processing and OsScheduleTblExpPointOffset = 6 for the second processing) is shown below.

StartScheduleTableRel

StatusType StartScheduleTableRel ( ScheduleTableType ScheduleTableID, TickType Offset );

I/O Parameter Description

I ScheduleTableType Sched-
uleTableID;

Schedule table identifier

I TickType Offset; Relative count value

Issues this system service

First processing

Offset

Issues StartOS

Starts schedule count

Second processing



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 131 of 282
Jun 10, 2015

Remark 3. If the target schedule table behaves as a cyclic schedule table, after this system service is issued, the 
schedule count is started when the count value (count value of the counter associated with the target 
schedule table) has been updated for the number of times of "Value specified in parameter Offset + 1". 
Then, the schedule count is repeated each time the count value is updated for the number of times of the 
value defined in Schedule count value "OsScheduleTableDuration".
The sequence for Offset = 6, OsScheduleTableDuration = 11, and expiry action count = 2 (OsScheduleT-
blExpPointOffset = 3 for the first processing and OsScheduleTblExpPointOffset = 6 for the second pro-
cessing) is shown below.

[Return values]

Note If more than one Expiry count value "OsScheduleTblExpPointOffset" has been defined for the target 
schedule table, then Expiry count value "OsScheduleTblExpPointOffset" in the above formula is the min-
imum value.

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target schedule table. (Only in SC3)

- The OS-Application to which the target schedule table 
belongs is in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter ScheduleTableID is invalid.

E_OS_STATE 0x7 The target schedule table is in RUNNING state or NEXT state.

E_OS_VALUE 0x8 Exit with error

- Specification of parameter Offset is invalid (Offset <= 0x0).

- Specification of parameter Offset is invalid (Offset > Maxi-
mum count value "OsCounterMaxAllowedValue" - Expiry 
count value "OsScheduleTblExpPointOffset"Note).

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Issues this system service

First processing

Offset

Issues StartOS

Starts schedule count

Second processing
Starts schedule count

OsScheduleTableDuration



R20UT2768EJ0103  Rev.1.03 Page 132 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Starts the absolute schedule table.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Shifts the target schedule table (the absolute schedule table specified in parameter ScheduleTableID) from STOPPED 
state to RUNNING state.

Remark 1. If this system service is issued for a schedule table whose Cyclic property "OsScheduleTableRepeating" 
is non-cyclic property (FALSE), the schedule table behaves as a one-shot schedule table. If this system 
service is issued for a schedule table of the cyclic property (TRUE), the schedule table behaves as a 
cyclic schedule table.

Remark 2. If the target schedule table behaves as a one-shot schedule table, after this system service is issued, the 
schedule count is started when the absolute count value specified in parameter Start matches the count 
value (count value of the counter associated with the target schedule table). Then after the final expiry 
action has been executed, the target schedule table is shifted from RUNNING state to STOPPED state.
The sequence for Start = 6 and expiry action count = 2 (OsScheduleTblExpPointOffset = 3 for the first 
processing and OsScheduleTblExpPointOffset = 6 for the second processing) is shown below.

In the RV850, when incrementation of the counter (adding 0x1 to the counter) causes the counter to 
overflow (Maximum count value "OsCounterMaxAllowedValue" is exceeded), it will not be handled as an 
error and 0x0 will be set in the target counter.
Therefore, if the value specified in parameter Start is smaller than the count value (count value of the 
counter associated with the target schedule table), the one-shot schedule table will operate as shown 
below.

StartScheduleTableAbs

StatusType StartScheduleTableAbs ( ScheduleTableType ScheduleTableID, TickType Start );

I/O Parameter Description

I ScheduleTableType Sched-
uleTableID;

Schedule table identifier

I TickType Start; Absolute count value

Issues this system service

First processing

Start

Issues StartOS

Starts schedule count

Second processing

0 6 9 12



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 133 of 282
Jun 10, 2015

The sequence for Start = 6, OsCounterMaxAllowedValue = 80, and expiry action count = 2 (OsSchedu-
leTblExpPointOffset = 3 for the first processing and OsScheduleTblExpPointOffset = 6 for the second 
processing) is shown below.

Remark 3. If the target schedule table behaves as a cyclic schedule table, after this system service is issued, the 
schedule count is started when the absolute count value specified in parameter Start matches the count 
value (count value of the counter associated with the target schedule table). Then the schedule count is 
repeated each time the count value is updated for the number of times of the value defined in Schedule 
count value "OsScheduleTableDuration".
The sequence for Start = 6, OsScheduleTableDuration = 11, and expiry action count = 2 (OsScheduleT-
blExpPointOffset = 3 for the first processing and OsScheduleTblExpPointOffset = 6 for the second pro-
cessing) is shown below.

In the RV850, when incrementation of the counter (adding 0x1 to the counter) causes the counter to 
overflow (Maximum count value "OsCounterMaxAllowedValue" is exceeded), it will not be handled as an 
error and 0x0 will be set in the target counter.
Therefore, if the value specified in parameter Start is smaller than the count value (count value of the 
counter associated with the target schedule table), the cyclic schedule table will operate as shown below.
The sequence for Start = 6, OsCounterMaxAllowedValue = 80, OsScheduleTableDuration = 11, and 
expiry action count = 2 (OsScheduleTblExpPointOffset = 3 for the first processing and OsScheduleT-
blExpPointOffset = 6 for the second processing) is shown below.

Issues this system service

First processing

Start

Issues StartOS

0 6 80

OsCounterMaxAllowedValue

86 89 92

Start

Starts schedule count

Second processing

Issues this system service

First processing

Start

Issues StartOS

0 6 12

OsScheduleTableDuration

17

Starts schedule count

9

Second processing
Starts schedule count

Issues this system service

First processing

Start

Issues StartOS

0 6 80

OsScheduleTableDuration

86 89 92

Starts schedule count

97

StartOsCounterMaxAllowedValue

Second processing
Starts schedule
count



R20UT2768EJ0103  Rev.1.03 Page 134 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target schedule table. (Only in SC3)

- The OS-Application to which the target schedule table 
belongs is in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter ScheduleTableID is invalid.

E_OS_STATE 0x7 The target schedule table is in RUNNING state or NEXT state.

E_OS_VALU 0x8 Specification of parameter Start is invalid (Start > Maximum 
count value "OsCounterMaxAllowedValue").

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 135 of 282
Jun 10, 2015

[Overview]

Stops the schedule table.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Shifts the target schedule table (the schedule table specified in parameter ScheduleTableID) from RUNNING state or 
NEXT state to STOPPED state.

Remark If the target schedule table was the schedule table before the switch (the schedule table specified in 
parameter ScheduleTableID_From when issuing NextScheduleTable), then both the target schedule 
table and the schedule table specified in parameter ScheduleTableID_To upon issuance of NextSchedu-
leTable are shifted to STOPPED state.

[Return values]

StopScheduleTable

StatusType StopScheduleTable ( ScheduleTableType ScheduleTableID );

I/O Parameter Description

I ScheduleTableType Sched-
uleTableID;

Schedule table identifier

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target schedule table. (Only in SC3)

- The OS-Application to which the target schedule table 
belongs is in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter ScheduleTableID is invalid.

E_OS_NOFUNC 0x5 The target schedule table is in STOPPED state.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



R20UT2768EJ0103  Rev.1.03 Page 136 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Switches the schedule table.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Switches from the schedule table specified by parameter ScheduleTableID_From to the schedule table specified by 
parameter ScheduleTableID_To.

Note that the timing of switching schedule tables depends on the timing with which this system service is issued.

- This system service is issued before the final expiry action is executed.
The switch is made when the schedule count of schedule table ScheduleTableID_From is complete.
Consequently, as shown in the figure below, if two expiry actions have been defined for schedule table 
ScheduleTableID_From, and this system service was issued before the second expiry action (final expiry action) was 
executed, then the shift will be made to schedule table ScheduleTableID_To when the schedule count of schedule 
table ScheduleTableID_From is complete.

NextScheduleTable

StatusType NextScheduleTable ( ScheduleTableType ScheduleTableID_From, ScheduleTableType 
ScheduleTableID_To );

I/O Parameter Description

I ScheduleTableType 
ScheduleTableID_From;

Schedule table identifier

I ScheduleTableType 
ScheduleTableID_To;

Schedule table identifier

Issues this system service

First processing
Starts schedule count "ScheduleTableID_From"

Second processing
Starts schedule count "ScheduleTableID_To"



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 137 of 282
Jun 10, 2015

- This system service is issued after the final expiry action is executed.
When the schedule count of schedule table ScheduleTableID_From is complete, the schedule count of schedule table 
ScheduleTableID_From is started again, and after the final expiry action is executed, the switch to schedule table 
ScheduleTableID_To is made.
Consequently, as shown in the figure below, if two expiry actions have been defined for schedule table 
ScheduleTableID_From, and this system service is issued after the second expiry action (final expiry action) is exe-
cuted, then when the schedule count of schedule table ScheduleTableID_From is complete, the schedule count 
ScheduleTableID_From of the schedule table is started again, and after that second schedule count of schedule table 
ScheduleTableID_From is complete, the switch is made to schedule table ScheduleTableID_To.

Remark 1. The schedule table specified by parameter ScheduleTableID_From is changed to STOPPED state after 
the schedule tables are switched.
After the shift to NEXT state via issuance of this system service, the schedule table specified by parame-
ter ScheduleTableID_To is changed to RUNNING state after the schedule tables are switched.

Remark 2. If this system service is issued again between issuance of this system service and the switch of schedule 
tables, then the schedule table specified by parameter ScheduleTableID_To at the earlier issuance of this 
system service will be changed from NEXT state to STOPPED state.

Remark 3. The AUTOSAR specifications do not have rules regarding Cyclic property "OsScheduleTableRepeating" 
of schedule tables that can be specified by parameters ScheduleTableID_From and 
ScheduleTableID_To.
In the RV850, however, Cyclic property "OsScheduleTableRepeating" of schedule tables that can be 
specified by the above parameters is limited to "Assign cyclic property (TRUE)". If a schedule table with a 
property other than cyclic property is specified, error status E_OS_ID is returned.

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target schedule table. (Only in SC3)

- The OS-Application to which the target schedule table 
belongs is in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

Issues this system service

First processing
Starts schedule count "ScheduleTableID_From"

Second processing

Starts schedule count "ScheduleTableID_To"

First processing
Second processing

Starts schedule count "ScheduleTableID_From"



R20UT2768EJ0103  Rev.1.03 Page 138 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_ID 0x3 Exit with error

- Specification of parameter ScheduleTableID_From is 
invalid.

- Specification of parameter ScheduleTableID_To is invalid.

- Cyclic property "OsScheduleTableRepeating" of the sched-
ule table specified by parameter ScheduleTableID_From is 
"Do not assign cyclic property (FALSE)".

- Cyclic property "OsScheduleTableRepeating" of the sched-
ule table specified by parameter ScheduleTableID_To is 
"Do not assign cyclic property (FALSE)".

- The counter associated with the schedule table specified by 
parameter ScheduleTableID_From is different from the 
counter associated with the schedule table specified by 
parameter ScheduleTableID_To.

E_OS_NOFUNC 0x5 The target schedule table specified by parameter 
ScheduleTableID_From is in STOPPED state or NEXT state.

E_OS_STATE 0x7 The target schedule table specified by parameter 
ScheduleTableID_To is in NEXT state or RUNNING state.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 139 of 282
Jun 10, 2015

[Overview]

Gets the current state.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Gets the current state of the target schedule table (the schedule table specified in parameter ScheduleTableID), and 
stores it in the area specified in parameter ScheduleStatus.

The value stored in parameter ScheduleStatus depends on the current state type, as shown below.

[Return values]

GetScheduleTableStatus

StatusType GetScheduleTableStatus ( ScheduleTableType ScheduleTableID, ScheduleTableSta-
tusRefType ScheduleStatus );

I/O Parameter Description

I ScheduleTableType  
ScheduleTableID;

Schedule table identifier

O ScheduleTableStatusRefT
ype ScheduleStatus;

Pointer to the area where the acquired current state is to be stored

Macro Numerical Value Description

SCHEDULETABLE_STOPPED 0x0 STOPPED state

SCHEDULETABLE_NEXT 0x1 NEXT state

SCHEDULETABLE_RUNNING 0x4 RUNNING state

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 Exit with error

- The OS-Application to which the processing program that 
issued this system service belongs does not have access 
privileges for the target schedule table. (Only in SC3)

- The OS-Application to which the target schedule table 
belongs is in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state. (Only in SC3)

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter ScheduleTableID is invalid.



R20UT2768EJ0103  Rev.1.03 Page 140 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_PARAM_POINTER 0x12 Specification of parameter ScheduleStatus is invalid (NULL 
pointer).

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter 
ScheduleStatus. (Only in SC3)

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 141 of 282
Jun 10, 2015

14.4.8  OS-Application management

The following shows the system services for OS-Application management provided by the RV850.

Table 14.22 System Services for OS-Application Management

Name of System Service Function Overview

GetApplicationID Gets the OS-Application identifier.

GetISRID Gets the interrupt service routine identifier.

CallTrustedFunction Calls a trusted function.

CheckISRMemoryAccess Checks access privileges (interrupt service routine).

CheckTaskMemoryAccess Checks access privileges (task).

CheckObjectAccess Checks access privileges (object).

CheckObjectOwnership Gets the OS-Application identifier.

TerminateApplication Terminates the OS-Application.

AllowAccess Activates the OS-Application.

GetApplicationState Gets the current state.



R20UT2768EJ0103  Rev.1.03 Page 142 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the OS-Application identifier.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (StartupHook, ShutdownHook, PostTaskHook, 
PreTaskHook, ErrorHook, ProtectionHook), OS-Application-specific hook routines (StartupHook_OsApplication, 
ShutdownHook_OsApplication, ErrorHook_OsApplication)

[Syntax]

[Parameters]

None

[Function]

Gets the identifier of the target OS-Application (the OS-Application to which the processing program that issued this 
system service belongs), and returns the OS-Application identifier.

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. When this system service is issued from a common hook routine (PostTaskHook, PreTaskHook, Error-
Hook, ProtectionHook) or an OS-Application-specific hook routine (ErrorHook_OsApplication), the identi-
fier of the OS-Application to which the processing program that called the hook routine belongs is 
returned.

Remark 3. The correspondence between the acquired numerical value and Identifier "OsApplication" is defined in 
the SIT file output from the configurator.

[Return values]

Remark If this system service is issued from the common hook routine (ProtectionHook) called from a processing 
program that is neither a task nor an interrupt service routine (category 2), INVALID_OSAPPLICATION 
(0x7FFF) will be returned.

GetApplicationID

ApplicationType GetApplicationID ( void );

Macro Numerical Value Description

- Other than 
0x7FFF

Acquired OS-Application identifier

INVALID_OSAPPLICATION 0x7FFF Issued from a processing program outside the scope of issue.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 143 of 282
Jun 10, 2015

[Overview]

Gets the interrupt service routine identifier.

[Issue scope]

Interrupt service routines (category 2), common hook routines (ErrorHook, ProtectionHook), OS-Application-specific 
hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

None

[Function]

Gets the identifier of the target interrupt service routine (the interrupt service routine that issued this system service, or 
the interrupt service routine that called the hook routine that issued this system service), and returns the interrupt service 
routine identifier.

Remark 1. If this system service is issued from a hook routine called from a task, INVALID_ISR (0x7FFF) will be 
returned.

Remark 2. The correspondence between the acquired numerical value and Identifier "OsIsr" is defined in the SIT file 
output from the configurator.

[Return values]

Remark If this system service is issued from the common hook routine (ErrorHook or ProtectionHook) called by a 
task or is issued from the OS-Application-specific hook routine (ErrorHook_OsApplication), INVALID_ISR 
(0x7FFF) will be returned.

GetISRID

ISRType GetISRID ( void );

Macro Numerical Value Description

- Other than 
0x7FFF

Acquired interrupt service routine identifier

INVALID_ISR 0x7FFF Issued from a processing program outside the scope of issue.



R20UT2768EJ0103  Rev.1.03 Page 144 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Calls a trusted function.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

[Function]

Calls the target trusted function (the trusted function specified in parameter FunctionIndex).
When a trusted function is called from processing of this system service, the value specified in parameter FunctionIndex 

is passed as the first argument to the trusted function and the value (pointer) specified in parameter FunctionParams is 
passed as the second argument to the trusted function.

For details on the data (parameters) inherited to the trusted function, see "10.2.3 Inherited data of trusted functions"

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. When calling a trusted function that has no arguments, set parameter FunctionParams to NULL.

Remark 3. Trusted functions operate in supervisor mode; if this system service is issued from a processing program 
that belongs to a non-trusted OS-Application, the mode switching processing (transition from user mode 
to supervisor mode) is executed.

Remark 4. This system service does not check the validity of the inherited data indicated by parameter Function-
Params. When the validity of the inherited data needs to be checked, check it in the trusted function 
called by issuing this system service.

Remark 5. See "10.2Trusted Functions" for details on trusted functions.

[Return values]

CallTrustedFunction

StatusType CallTrustedFunction ( TrustedFunctionIndexType FunctionIndex, TrustedFunc-
tionParameterRefType FunctionParams );

I/O Parameter Description

I TrustedFunctionIndexTyp
e FunctionIndex;

Trusted function identifier

I TrustedFunctionParamete
rRefType FunctionParams;

Pointer to the area where inherited data is stored.

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 The OS-Application to which the target trusted function 
belongs is in APPLICATION_RESTARTING state or 
APPLICATION_TERMINATED state.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 145 of 282
Jun 10, 2015

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_SERVICEID 0x11 Specification of parameter FunctionIndex is invalid.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 146 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Checks access privileges (interrupt service routine).

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (ErrorHook, ProtectionHook), OS-Application-spe-
cific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Checks whether the target interrupt service routine (the interrupt service routine specified in parameter ISRID) has 
access privileges for the target memory area (the memory area specified by parameters Address and Size) and whether 
the target memory area is a stack area, and returns a value indicating the results.

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. The return value from this system service is the valid access privileges for the entire target memory area.
Consequently, if part of the memory area is non-writable, the return value will indicate that the entire tar-
get memory area is non-writable.

Remark 3. A processing program can issue this system service regardless of whether the program has an access 
privilege for the OS-Application to which the target interrupt service routine belongs.

Remark 4. A processing program can issue this system service regardless of the state of the OS-Application to 
which the target interrupt service routine belongs.

CheckISRMemoryAccess

AccessType CheckISRMemoryAccess ( ISRType ISRID, MemoryStartAddressType Address, Memo-
rySizeType Size );

I/O Parameter Description

I ISRType ISRID; Interrupt service routine identifier

I MemoryStartAddressType 
Address;

Start address of the memory area

I MemorySizeType Size; Size of the memory area (in bytes)



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 147 of 282
Jun 10, 2015

[Return values]

Remark The ORed value of the check results (the type of access privileges owned by the target interrupt service 
routine and whether the area is a stack area) is returned. When the type of access privileges owned by 
the target interrupt service routine is executable, readable, and non-writable and the target memory area 
is a non-stack area, the return value will be "0x6".

Macro Numerical Value Description

T_u2_NOACCESS 0x0 Normal termination

- No access privileges

Exit with error

- Issued from a processing program outside the scope of 
issue.

- Specification of parameter ISRID is invalid.

- Issued from a critical section.

T_u2_EXECUTABLE 0x2 Executable

T_u2_READABLE 0x4 Readable

T_u2_WRITEABLE 0x8 Writable

T_u2_STACKSPACE 0x10 Stack area



R20UT2768EJ0103  Rev.1.03 Page 148 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Checks access privileges (task).

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (ErrorHook, ProtectionHook), OS-Application-spe-
cific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Checks whether the target task (the task specified in parameter TaskID) has access privileges for the target memory 
area (the memory area specified by parameters Address and Size) and whether the target memory area is a stack area, 
and returns a value indicating the results.

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. The return value from this system service is the valid access privileges for the entire target memory area.
Consequently, if part of the memory area is non-writable, the return value will indicate that the entire tar-
get memory area is non-writable.

Remark 3. A processing program can issue this system service regardless of whether the program has an access 
privilege for the OS-Application to which the target task belongs.

Remark 4. A processing program can issue this system service regardless of the state of the OS-Application to 
which the target task belongs.

CheckTaskMemoryAccess

AccessType CheckTaskMemoryAccess ( TaskType TaskID, MemoryStartAddressType Address, Mem-
orySizeType Size );

I/O Parameter Description

I TaskType TaskID; Task identifier

I MemoryStartAddressType 
Address;

Start address of the memory area

I MemorySizeType Size; Size of the memory area (in bytes)



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 149 of 282
Jun 10, 2015

[Return values]

Remark The ORed value of the check results (the type of access privileges owned by the target task and whether 
the area is a stack area) is returned. When the type of access privileges owned by the target task is non-
executable, readable, and writable and the target memory area is a stack area, the return value will be 
"0x1C".

Macro Numerical Value Description

T_u2_NOACCESS 0x0 Normal termination

- No access privileges

Exit with error

- Issued from a processing program outside the scope of 
issue.

- Specification of parameter TaskID is invalid.

- Issued from a critical section.

T_u2_EXECUTABLE 0x2 Executable

T_u2_READABLE 0x4 Readable

T_u2_WRITEABLE 0x8 Writable

T_u2_STACKSPACE 0x10 Stack area



R20UT2768EJ0103  Rev.1.03 Page 150 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Checks access privileges (object).

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (ErrorHook, ProtectionHook), OS-Application-spe-
cific hook routine (ErrorHook_OsApplication)

[Syntax]

Remark The variable type (<Object>Type) of parameter ObjectID will differ depending on the type of object spec-
ified (e.g. TaskType, ISRType, or AlarmType).

[Parameters]

[Function]

Checks whether objects (tasks, interrupt service routines, alarms, etc.) belonging to the target OS-Application (the OS-
Application specified in parameter ApplID) have access privileges for the object specified by parameters ObjectType and 
ObjectID, and returns a value indicating the result.

Specify parameter ObjectType as follows, depending on the object type.

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. A processing program can issue this system service regardless of whether the program has an access 
privilege for the OS-Application to which the target object belongs.

Remark 3. A processing program can issue this system service regardless of the state of the OS-Application to 
which the target object belongs.

CheckObjectAccess

ObjectAccessType CheckObjectAccess ( ApplicationType ApplID, ObjectTypeType ObjectType, 
<Object>Type ObjectID );

I/O Parameter Description

I ApplicationType ApplID; OS-Application identifier

I ObjectTypeType Object-
Type;

Object type

I <Object>Type ObjectID; Object identifier

Macro Numerical Value Description

OBJECT_TASK 0x1 Task

OBJECT_ISR 0x2 Interrupt service routine

OBJECT_ALARM 0x3 Alarm

OBJECT_RESOURCE 0x4 Resource

OBJECT_COUNTER 0x5 Counter

OBJECT_SCHEDULETABLE 0x6 Schedule table



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 151 of 282
Jun 10, 2015

[Return values]

Macro Numerical Value Description

NO_ACCESS 0x0 Normal termination

- No access privileges

Exit with error

- Issued from a processing program outside the scope of 
issue.

- Specification of parameter ApplID is invalid.

- Specification of parameter ObjectType is invalid.

- Specification of parameter ObjectID is invalid.

- Issued from a critical section.

ACCESS 0x1 Has access privileges.



R20UT2768EJ0103  Rev.1.03 Page 152 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the OS-Application identifier.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (ErrorHook, ProtectionHook), OS-Application-spe-
cific hook routine (ErrorHook_OsApplication)

[Syntax]

Remark The variable type (<Object>Type) of parameter ObjectID will differ depending on the type of object spec-
ified (e.g. TaskType, ISRType, or AlarmType).

[Parameters]

[Function]

Gets the identifier of the OS-Application to which the target object (the object specified by parameters ObjectType and 
ObjectID) belongs, and returns a value indicating the result.

Specify parameter ObjectType as follows, depending on the object type.

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. A processing program can issue this system service regardless of the state of the OS-Application to 
which the target object belongs.

CheckObjectOwnership

ApplicationType CheckObjectOwnership ( ObjectTypeType ObjectType, <Object>Type ObjectID );

I/O Parameter Description

I ObjectTypeType Object-
Type;

Object type

I <Object>Type ObjectID; Object identifier

Macro Numerical Value Description

OBJECT_TASK 0x1 Task

OBJECT_ISR 0x2 Interrupt service routine

OBJECT_ALARM 0x3 Alarm

OBJECT_RESOURCE 0x4 Resource

OBJECT_COUNTER 0x5 Counter

OBJECT_SCHEDULETABLE 0x6 Schedule table



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 153 of 282
Jun 10, 2015

[Return values]

Macro Numerical Value Description

- Other than 
0x7FFF

Acquired OS-Application identifier

INVALID_OSAPPLICATION 0x7FFF Exit with error

- The processing program that issued this system service 
has no access privileges for the OS-Application to which 
the target object belongs.

- Issued from a processing program outside the scope of 
issue.

- Specification of parameter ObjectType is invalid.

- Specification of parameter ObjectID is invalid.

- Issued from a critical section.



R20UT2768EJ0103  Rev.1.03 Page 154 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Terminates the OS-Application.

[Issue scope]

Tasks, interrupt service routines (category 2), OS-Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Executes the operation specified in parameter RestartOption for the target OS-Application (the OS-Application specified 
in parameter Application).

Remark 1. This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. The operation to be executed for the target OS differs as follows depending on the setting in parameter 
RestartOption.

[NO_RESTART (0x0)]
This system service executes the following operation as OS-application termination processing.

- Shifts the tasks belonging to the target OS-Application to SUSPENDED state.

- Disables acceptance of interrupts corresponding to any interrupt service routine belonging to the target 
OS-Application (manipulates EI level interrupt mask register IMRm).

- Releases the resources that have been acquired by processing programs belonging to the target OS-
Application.

- Shifts the alarms belonging to the target OS-Application to inactive state.

- Shifts the schedule tables belonging to the target OS-Application to STOPPED state.

- Shifts the target OS-Application to APPLICATION_TERMINATED state.

[RESTART (0x1)]
This system service executes the following operation after executing the same operation as when 
NO_RESTART (0x0) is specified.

- Shifts the target task from SUSPENDED state to READY state when Task identifier "OsRestartTask" is 
specified.

- Shifts the target OS-Application from APPLICATION_TERMINATED state to 
APPLICATION_RESTARTING state.

TerminateApplication

StatusType TerminateApplication ( ApplicationType Application, RestartType RestartOption );

I/O Parameter Description

I ApplicationType Applica-
tion;

OS-Application identifier

I RestartType RestartOption; Restart option
NO_RESTART (0x0): Terminates the OS-Application.
RESTART (0x1): Terminates and restarts the OS-Application.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 155 of 282
Jun 10, 2015

The OS-Application placed in APPLICATION_RESTARTING state by issuing this system service is 
shifted to APPLICATION_ACCESSIBLE state when the task specified by Task identifier "OsRestartTask" 
issues AllowAccess.
Acceptance of the interrupts disabled by issuing this system service is enabled when the task specified 
by Task identifier "OsRestartTask" issues InitApplicationInterrupts.

Remark 3. If there is a task in RUNNING state when this system service is issued, the common hook routine (Post-
TaskHook) is called before that task is shifted to SUSPENDED state by the OS-Application termination 
processing

Remark 4. When a processing program that belongs to a non-trusted OS-Application issues this system service with 
parameter Application set to "an OS-Application to which the processing program that issues this system 
service does not belong", E_OS_ACCESS (0x1) will be returned.

Remark 5. When ErrorHook_OsApplication issues this system service with parameter Application set to "an OS-
Application to which ErrorHook_OsApplication that issues this system service does not belong", 
E_OS_CALLEVEL (0x2) will be returned.

Remark 6. This system service does not clear the interrupts whose acceptance is suspended.
Therefore, if these suspended interrupts need to be cleared when the OS-Application is restarted, the 
user should execute the interrupt clear processing before enabling acceptance of interrupts.

[Return values]

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_ACCESS 0x1 The OS-Application to which the processing program that 
issues this system service belongs is non-trusted.

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter Application is invalid.

E_OS_STATE 0x7 Exit with error

- The target is an OS-Application in 
APPLICATION_RESTARTING state, to which the process-
ing program that issued this system service does not 
belong.

- An invalid setting is made for restart option RESTART for 
an OS-Application in APPLICATION_RESTARTING state, 
to which the processing program that issued this system 
service belongs.

- The target OS-Application is in 
APPLICATION_TERMINATED state.

E_OS_VALUE 0x8 Specification of parameter RestartOption is invalid.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



R20UT2768EJ0103  Rev.1.03 Page 156 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Activates the OS-Application.

[Issue scope]

Tasks, interrupt service routines (category 2)

[Syntax]

[Parameters]

None

[Function]

Shifts the target OS-Application (the OS-Application to which the processing program that issued this system service 
belongs) from APPLICATION_RESTARTING state to APPLICATION_ACCESSIBLE state.

Remark This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

[Return values]

AllowAccess

StatusType AllowAccess ( void );

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_STATE 0x7 The OS-Application to which the processing program that 
issued this system service belongs is in 
APPLICATION_ACCESSIBLE state or 
APPLICATION_TERMINATED state.

E_OS_DISABLEDINT 0x15 Issued from a critical section.



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 157 of 282
Jun 10, 2015

[Overview]

Gets the current state.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (StartupHook, ShutdownHook, PostTaskHook, 
PreTaskHook, ErrorHook, ProtectionHook), OS-Application-specific hook routines (StartupHook_OsApplication, 
ShutdownHook_OsApplication, ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Gets the current state of the target OS-Application (the OS-Application specified in parameter Application) and stores it 
in the area specified in parameter Value.

Parameter Value is set as follows, depending on the current state.

Remark This system service can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

[Return values]

GetApplicationState

StatusType GetApplicationState ( ApplicationType Application, ApplicationStateRefType 
Value );

I/O Parameter Description

I ApplicationType Applica-
tion;

OS-Application identifier

O ApplicationStateRefType 
Value;

Pointer to the area where the acquired current state is to be stored.

Macro Numerical Value Description

APPLICATION_ACCESSIBLE 0x0 APPLICATION_ACCESSIBLE state

APPLICATION_RESTARTING 0x1 APPLICATION_RESTARTING state

APPLICATION_TERMINATED 0x2 APPLICATION_TERMINATED state

Macro Numerical Value Description

E_OK 0x0 Normal termination

E_OS_CALLEVEL 0x2 Issued from a processing program outside the scope of issue.

E_OS_ID 0x3 Specification of parameter Application is invalid.

E_OS_PARAM_POINTER 0x12 Specification of parameter Value is invalid (NULL pointer).



R20UT2768EJ0103  Rev.1.03 Page 158 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

E_OS_ILLEGAL_ADDRESS 0x13 The processing program that issued this system service has 
no access privileges for the area specified in parameter 
Value.

E_OS_DISABLEDINT 0x15 Issued from a critical section.

Macro Numerical Value Description



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 159 of 282
Jun 10, 2015

14.4.9  OS execution management

The following shows the system services for OS execution management provided by the RV850.

Table 14.23 System Services for OS Execution Management

Name of System Service Function Overview

StartOS Starts RV850.

ShutdownOS Terminates RV850.

GetActiveApplicationMode Acquires the application mode.



R20UT2768EJ0103  Rev.1.03 Page 160 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Starts RV850.

[Issue scope]

Boot process

[Syntax]

[Parameters]

[Function]

Executes the startup processing for the RV850.

Remark 1. The startup processes executed by this system service are given below.

- Disables acceptance of interrupts
Manipulates the ID bit of the program status word (PSW)

- Initializes the OS reserved resources

- Calls the kernel initialization module
Creates and registers objects
Activates objects

- Enables acceptance of interrupts in category 1
Manipulates the PMn bits of the priority mask register (PMR)
Manipulates the ID bit of the program status word (PSW)

- Calls hook routines
Calls StartupHook 
Calls StartupHook_OsApplication

- Activates the scheduler

- Enables acceptance of interrupts
Manipulates the PMn bits of the priority mask register (PMR)

Remark 2. Since this system service manipulates system registers, it must be issued in supervisor mode (the UM bit 
in PSW is 0). Also, this system service must be issued after setting of the system protection identifier 
(SPID bit of MCFG0 register) (Remark 6. in “4.2 Boot Process") is complete.

Remark 3. When the value specified in parameter Mode matches the value defined in Application mode "OsTas-
kAppModeRef" for a task, the task is shifted from SUSPENDED state to READY state when this system 
service is issued.

Remark 4. When the value specified in parameter Mode matches the value defined in Application mode "OsTas-
kAppModeRef" for an alarm, the alarm is shifted from inactive state to active state when this system ser-
vice is issued.

StartOS

void StartOS ( AppModeType Mode );

I/O Parameter Description

I AppModeType Mode; Application mode
Name: Normal application mode
OSDEFAULTAPPMODE: Default application mode



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 161 of 282
Jun 10, 2015

Remark 5. When the value specified in parameter Mode matches the value defined in Application mode "OsAla-
rmAppModeRef" for a schedule table, the schedule table is shifted from STOPPED state to RUNNING 
state when this system service is issued.

Remark 6. This system service does not manipulate the EI level interrupt mask register (IMRm).
Therefore, the user should manipulate IMRm in the processing program after StartupHook to enable 
acceptance of interrupts.

[Return values]

None



R20UT2768EJ0103  Rev.1.03 Page 162 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Terminates RV850.

[Issue scope]

Tasks, interrupt service routines (category 2), common hook routines (StartupHook, ErrorHook), OS-Application-specific 
hook routines (StartupHook_OsApplication, ErrorHook_OsApplication)

[Syntax]

[Parameters]

[Function]

Executes the termination processing for the RV850.

Remark 1. The termination processes executed by this system service are given below.

- Disables acceptance of interrupts
Manipulates the ID bit of the program status word (PSW)
Manipulates the PMn bits of the priority mask register (PMR)
Manipulates the EI level interrupt mask register (IMRm)

- Calls hook routines
Calls ShutdownHook_OsApplication using the value specified in parameter Error as inherited data
Calls ShutdownHook using the value specified in parameter Error as inherited data

- Calls an empty process
Executes an endless loop of an empty process (shifts RV850 into a pseudo-HALT state)

Remark 2. Execution returns from the empty process only when a hardware reset occurs.

Remark 3. If this system service is issued from a processing program belonging to a non-trusted OS-Application, it 
will not be handled as an error and no processing will be performed.

Remark 4. If this system service is issued from a processing program outside the valid scope of issue, it will not be 
handled as an error and no processing will be performed.

Remark 5. In the RV850, when the common hook routine (ProtectionHook) is not defined and if a stack overflow is 
detected, this system service is issued with parameter Error set to E_OS_STACKFAULT (0x16).

Remark 6. In the RV850, if an interrupt that is not defined in the Interrupt service routine information occurs, this sys-
tem service is issued with parameter Error set to E_OS_SYS_ILLEGAL_EXCEPTION (0x1F).

Remark 7. The AUTOSAR specifications do not prescribe whether common hook routine PostTaskHook is called 
when Scalability class "OsScalabilityClass" is set to scalability class 1 (SC1).
In the RV850, common hook routine PostTaskHook is not called from this system service regardless of 
the definition of Scalability class "OsScalabilityClass".

ShutdownOS

void ShutdownOS ( StatusType Error );

I/O Parameter Description

I StatusType Error; Inherited data



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 163 of 282
Jun 10, 2015

[Return values]

None



R20UT2768EJ0103  Rev.1.03 Page 164 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Acquires the application mode.

[Issue scope]

Tasks, interrupt service routines (category 2), alarm callback, common hook routines, OS-Application-specific hook rou-
tines, critical sections

[Syntax]

[Parameters]

None

[Function]

Gets the application mode that was specified in parameter OsAppMode in StartOS, and returns the application mode.

[Return values]

Remark If an illegal value is specified in parameter OsAppMode for StartOS, a value not shown above may be 
returned.

GetActiveApplicationMode

AppModeType GetActiveApplicationMode ( void );

Macro Numerical Value Description

- 0x0 to 0x7E Acquired application mode



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 165 of 282
Jun 10, 2015

14.4.10  Utility functions

The following shows the utility functions provided by the RV850.

Table 14.24 Utility Functions

Remark The AUTOSAR specifications do not prescribe utility functions InitApplicationInterrupts, 
_kernel_fv0_InitializeIntService, OSIllegalException_SystemRegister_ExcCode and 
OSIllegalException_SystemRegister_ExcPC.
These are our original utility functions added to the RV850.

Name of Utility Functions Function Overview

InitApplicationInterrupts Enables acceptance of interrupts.

_kernel_fv0_InitializeIntService Enables the issuing of system services for interrupt handling.

OSIllegalException_SystemRegister_Ex
cCode

Gets the register value (EIIC or FEIC).

OSIllegalException_SystemRegister_Ex
cPC

Gets the register value (EIPC or FEPC).

OSErrorGetServiceId Gets the system service identifier.

OSError_SystemService_Parameter Gets the parameters.



R20UT2768EJ0103  Rev.1.03 Page 166 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Enables acceptance of interrupts.

[Issue scope]

Tasks

[Syntax]

[Parameters]

None

[Function]

Allows acceptance of interrupts to the OS-Application to which the processing program that issued this utility function 
belongs.

Remark 1. This utility function can be issued only when scalability class 3 (SC3) is defined for the Scalability class 
"OsScalabilityClass".

Remark 2. This utility function manipulates the EI level interrupt mask register (IMRm) in the interrupt acceptance 
enable processing.
The IMRm corresponding to the interrupt service routine registered in the target OS-Application is manip-
ulated.

Remark 3. It is assumed that this utility function is issued from a task (Task identifier "OsRestartTask") that shifts 
from SUSPENDED state to READY state when TerminateApplication is issued with parameter 
RestartOption set to RESTART(0x1).

Remark 4. If this utility function is issued from a processing program outside the valid scope of issue, it will not be 
handled as an error and no processing will be performed.

Remark 5. When an OS-Application is terminated or restarted, the RV850 does not clear the interrupts whose 
acceptance is suspended.
Therefore, if these suspended interrupts need to be cleared when the OS-Application is restarted, the 
user should execute the interrupt clear processing before issuing this utility function.

[Return values]

None

InitApplicationInterrupts

void InitApplicationInterrupts ( void );



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 167 of 282
Jun 10, 2015

[Overview]

Enables the issuing of system services for interrupt handling.

[Issue scope]

Boot process

[Syntax]

[Parameters]

None

[Function]

Executes the initialization processing to enable the issuing of the System Services for Interrupt Handling provided by the 
RV850 before StartOS is issued.

Remark 1. This utility function can be issued only before StartOS is issued.

Remark 2. Since this utility function manipulates the RV850 internal data, it must be issued in supervisor mode (the 
UM bit in PSW is 0).

[Return values]

None

_kernel_fv0_InitializeIntService

void _kernel_fv0_InitializeIntService ( void );



R20UT2768EJ0103  Rev.1.03 Page 168 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the register value (EIIC or FEIC).

[Issue scope]

Common hook routine (ShutdownHook), OS-Application-specific hook routine (ShutdownHook_OsApplication)

[Syntax]

[Parameters]

None

[Function]

Gets the register value (EIIC or FEIC), and returns the value.

Remark This utility function can be issued only before the processing program issues any system service.

[Return values]

OSIllegalException_SystemRegister_ExcCode

SystemRegisterType OSIllegalException_SystemRegister_ExcCode ( void );

Macro Numerical Value Description

- 0x0 - 
0xFFFFFFFF

System register value



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 169 of 282
Jun 10, 2015

[Overview]

Gets the register value (EIPC or FEPC).

[Issue scope]

Common hook routine (ShutdownHook), OS-Application-specific hook routine (ShutdownHook_OsApplication)

[Syntax]

[Parameters]

None

[Function]

Gets the register value (EIPC or FEPC), and returns the value.

Remark This utility function can be issued only before the processing program issues any system service.

[Return values]

OSIllegalException_SystemRegister_ExcPC

SystemRegisterType OSIllegalException_SystemRegister_ExcPC ( void );

Macro Numerical Value Description

- 0x0 - 
0xFFFFFFFF

System register value



R20UT2768EJ0103  Rev.1.03 Page 170 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the system service identifier.

[Issue scope]

Common hook routine (ErrorHook), OS-Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

[Parameters]

None

[Function]

Gets the identifier of the target system service (the system service that caused activation of the processing program that 
issued this utility function), and returns the system service identifier.

Remark 1. This utility function can be issued only before the processing program issues any system service.

Remark 2. When the processing program (ErrorHook or ErrorHook_OsApplication) that issues this utility function 
was called for a reason other than "abnormal end of the system service", this utility function will return an 
undefined value. 

[Return values]

OSErrorGetServiceId

OSServiceIdType OSErrorGetServiceId ( void );

Macro Numerical Value Description

OSServiceID_GetApplicationID 0x0 System service identifier of GetApplicationID

OSServiceID_GetISRID 0x1 System service identifier of GetISRID

OSServiceID_CallTrustedFunction 0x2 System service identifier of CallTrustedFunction

OSServiceId_CheckISRMemoryAccess 0x3 System service identifier of CheckISRMemoryAc-
cess

OSServiceId_CheckTaskMemoryAccess 0x4 System service identifier of CheckTaskMemoryAc-
cess

OSServiceId_CheckObjectAccess 0x5 System service identifier of CheckObjectAccess

OSServiceId_CheckObjectOwnership 0x6 System service identifier of CheckObjectOwner-
ship

OSServiceId_StartScheduleTableRel 0x7 System service identifier of StartScheduleTableRel

OSServiceId_StartScheduleTableAbs 0x8 System service identifier of StartScheduleT-
ableAbs

OSServiceId_StopScheduleTable 0x9 System service identifier of StopScheduleTable

OSServiceId_NextScheduleTable 0xA System service identifier of NextScheduleTable



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 171 of 282
Jun 10, 2015

OSServiceId_GetScheduleTableStatus 0xE System service identifier of GetScheduleTableSta-
tus

OSServiceId_IncrementCounter 0xF System service identifier of IncrementCounter

OSServiceId_GetCounterValue 0x10 System service identifier of GetCounterValue

OSServiceId_GetElapsedValue 0x11 System service identifier of GetElapsedValue

OSServiceId_TerminateApplication 0x12 System service identifier of TerminateApplication

OSServiceID_AllowAccess 0x13 System service identifier of AllowAccess

OSServiceID_GetApplicationState 0x14 System service identifier of GetApplicationState

OSServiceId_StartOS 0x40 System service identifier of StartOS

OSServiceId_ShutdownOS 0x41 System service identifier of ShutdownOS

OSServiceId_GetActiveApplicationMode 0x42 System service identifier of GetActiveApplication-
Mode

OSServiceId_ActivateTask 0x43 System service identifier of ActivateTask

OSServiceId_TerminateTask 0x44 System service identifier of TerminateTask

OSServiceId_ChainTask 0x45 System service identifier of ChainTask

OSServiceId_Schedule 0x46 System service identifier of Schedule

OSServiceId_GetTaskID 0x47 System service identifier of GetTaskID

OSServiceId_GetTaskState 0x48 System service identifier of GetTaskState

OSServiceId_EnableAllInterrupts 0x49 System service identifier of EnableAllInterrupts

OSServiceId_DisableAllInterrupts 0x4A System service identifier of DisableAllInterrupts

OSServiceId_ResumeAllInterrupts 0x4B System service identifier of ResumeAllInterrupts

OSServiceId_SuspendAllInterrupts 0x4C System service identifier of SuspendAllInterrupts

OSServiceId_ResumeOSInterrupts 0x4D System service identifier of ResumeOSInterrupts

OSServiceId_SuspendOSInterrupts 0x4E System service identifier of SuspendOSInterrupts

OSServiceId_GetResource 0x4F System service identifier of GetResource

OSServiceId_ReleaseResource 0x50 System service identifier of ReleaseResource

OSServiceId_SetEvent 0x51 System service identifier of SetEvent

OSServiceId_ClearEvent 0x52 System service identifier of ClearEvent

OSServiceId_GetEvent 0x53 System service identifier of GetEvent

OSServiceId_WaitEvent 0x54 System service identifier of WaitEvent

OSServiceId_GetAlarmBase 0x55 System service identifier of GetAlarmBase

OSServiceId_GetAlarm 0x56 System service identifier of GetAlarm

OSServiceId_SetRelAlarm 0x57 System service identifier of SetRelAlarm

OSServiceId_SetAbsAlarm 0x58 System service identifier of SetAbsAlarm

OSServiceId_CancelAlarm 0x59 System service identifier of CancelAlarm

Macro Numerical Value Description



R20UT2768EJ0103  Rev.1.03 Page 172 of 282
Jun 10, 2015

RV850 14.  SYSTEM SERVICES

[Overview]

Gets the parameters.

[Issue scope]

Common hook routine (ErrorHook), OS-Application-specific hook routine (ErrorHook_OsApplication)

[Syntax]

OSError_SystemService_Parameter

TaskType OSError_ActivateTask_TaskID ( void );

TaskType OSError_ChainTask_TaskID ( void );

TaskRefType OSError_GetTaskID_TaskID ( void );

TaskType OSError_GetTaskState_TaskID ( void );

TaskStateRefType OSError_GetTaskState_State ( void );

ResourceType OSError_GetResource_ResID ( void );

ResourceType OSError_ReleaseResource_ResID ( void );

TaskType OSError_SetEvent_TaskID ( void );

EventMaskType OSError_SetEvent_Mask ( void );

EventMaskType OSError_ClearEvent_Mask ( void );

TaskType OSError_GetEvent_TaskID ( void );

EventMaskRefType OSError_GetEvent_Event ( void );

EventMaskType OSError_WaitEvent_Mask ( void );

CounterType OSError_IncrementCounter_CounterID ( void );

CounterType OSError_GetCounterValue_CounterID ( void );

TickRefType OSError_GetCounterValue_Value ( void );

CounterType OSError_GetElapsedValue_CounterID ( void );

TickRefType OSError_GetElapsedValue_Value ( void );

TickRefType OSError_GetElapsedValue_ElapsedValue ( void );

AlarmType OSError_GetAlarmBase_AlarmID ( void );

AlarmBaseRefType OSError_GetAlarmBase_Info ( void );

AlarmType OSError_GetAlarm_AlarmID ( void );

TickRefType OSError_GetAlarm_Tick ( void );

AlarmType OSError_SetRelAlarm_AlarmID ( void );

TickType OSError_SetRelAlarm_increment ( void );

TickType OSError_SetRelAlarm_cycle ( void );

AlarmType OSError_SetAbsAlarm_AlarmID ( void );



RV850 14.  SYSTEM SERVICES

R20UT2768EJ0103  Rev.1.03 Page 173 of 282
Jun 10, 2015

Remark 1. Specify a system service name for SystemService in this utility function name and a parameter for 
Parameter.

Remark 2. Only a StatusType-type system service that has a parameter can be specified for SystemService in this 
utility function name.

[Parameters]

None

[Function]

Gets the value or the pointer address specified for the parameter in the target system service (the system service that 
caused activation of the processing program that issued this utility function), and returns the value or pointer address.

Remark When the processing program (ErrorHook or ErrorHook_OsApplication) that issues this utility function 
was called for a reason other than "abnormal end of the system service", this utility function will return an 
undefined value. 

[Return values]

For details of the return value, see [Parameters] for each system service in "14.4System Services Reference".

TickType OSError_SetAbsAlarm_start ( void );

TickType OSError_SetAbsAlarm_cycle ( void );

AlarmType OSError_CancelAlarm_AlarmID ( void );

ScheduleTableType OSError_StartScheduleTableRel_ScheduleTableID ( void );

TickType OSError_StartScheduleTableRel_Offset ( void );

ScheduleTableType OSError_StartScheduleTableAbs_ScheduleTableID ( void );

TickType OSError_StartScheduleTableAbs_Start ( void );

ScheduleTableType OSError_StopScheduleTable_ScheduleTableID ( void );

ScheduleTableType OSError_NextScheduleTable_ScheduleTableID_From ( void );

ScheduleTableType OSError_NextScheduleTable_ScheduleTableID_To ( void );

ScheduleTableType OSError_GetScheduleTableStatus_ScheduleTableID ( void );

ScheduleTableStatusRefType OSError_GetScheduleTableStatus_ScheduleStatus ( void );

TrustedFunctionIndexType OSError_CallTrustedFunction_FunctionIndex ( void );

TrustedFunctionParameterRefType OSError_CallTrustedFunction_FunctionParams ( void );

ApplicationType OSError_TerminateApplication_Application ( void );

RestartType OSError_TerminateApplication_RestartOption ( void );

ApplicationType OSError_GetApplicationState_Application ( void );

ApplicationStateRefType OSError_GetApplicationState_Value ( void );



R20UT2768EJ0103  Rev.1.03 Page 174 of 282
Jun 10, 2015

RV850 A.  CONFIGURATOR

A.  CONFIGURATOR

This appendix describes the configurator.

A.1  Overview

The configurator is a utility tool for reading a CF file as the input file and outputting information files (SIT files, ENTRY 
files, and kernel macro files).

A.2   Activation Method

The following describes the method for starting the configurator from the command prompt.
Here, "C:\" represents the command prompt, the "" character represents input of the Space key, and text surrounded 

by square brackets ("[ ]") represents startup options that can be omitted.

Each activation option is described in detail below.

(1) cf_file
Treats the CF file (ARXML format or OIL format) specified by cf_file as the input file.
Note that the maximum length of the cf_file parameter is 255 characters.

Remark 1. If the cf_file string includes ASCII space characters, such as "Program Files", the cf_file parameter 
must be surrounded by double quotation marks.

Remark 2. In the configurator, the cf_file is handled as an ARXML format when the extention is .arxml or .xml, 
as an OIL format when the extention is .oil.
Only .arxml, .xml  or .oil can be specified as extension of cf_file.

Remark 3. cf_file can be specified multiple times as shown below. However, only the last parameter specified 
is treated as a valid CF file, and the others will be treated as invalid files. Consequently, in the 
example below, cf_file3.oil is a valid CF file, and the other files (cf_file1.arxml and cf_file2.xml) are 
ignored.

Remark 4. When cf_file is in the ARXML format, the configurator assumes that the descriptions (specified 
items) in the file match the AUTOSAR_RENESAS_OS_ECUConfigurationParameters.arxml con-
tents (the specified items are equivalent to those in the OIL format).

Remark 5. The AUTOSAR specifications do not prescribe that an OIL-format file conforming to the specifica-
tions of OSEK Implementation Language Version 2.5 can be specified as an input file. In the 
RV850, this type of file can be specified as an input file.

[If omitted:]
The configurator searches the Os_Configurator.exe startup folder to find if the following files exist, and if one of 
these files is found, it is treated as the CF file.

- Os_Config.arxml (Priority in search: First)

- Os_Config.xml (Priority in search: Second)

- Os_Config.oil (Priority in search: Third)

(2) @cmd_file
Treats the file specified by cmd_file as a command file.
Note that the maximum length of the cmd_file parameter is 255 characters.

Remark If the cmd_file string includes ASCII space characters, such as "Program Files", the cmd_file 
parameter must be surrounded by double quotation marks.

C:\> Os_Configurator.exe  [cf_file]  [@cmd_file]  [-o  sit_file]  [-no]  [-e  entry_file]  [-ne]  [-nk]  [-I  
path_name]  [-nsc]  [-V]  [-help]

C:\> Os_Configurator.exe  cf_file1.arxml  cf_file2.xml  cf_file3.oil



RV850 A.  CONFIGURATOR

R20UT2768EJ0103  Rev.1.03 Page 175 of 282
Jun 10, 2015

(3) -o  sit_file
Outputs the SIT file with the file name specified by sit_file.
Note that the maximum length of the sit_file parameter is 255 characters.

Remark 1. If the sit_file string includes ASCII space characters, such as "Program Files", the sit_file parameter 
must be surrounded by double quotation marks.

Remark 2. -o  sit_file can be specified multiple times as shown below. However, only the first -o  sit_file 
specified is treated as a valid activation option, and the others will be treated as invalid activation 
options.
Consequently, in the example below, -o  sit_file1.c is a valid activation option, and the other 
activation options (-o  sit_file2.c and -o  sit_file3.c) are ignored.

[If omitted:]
The process is executed assuming that "-o  Os_Cfg.c" was specified.

(4) -no
Outputs no SIT file.

(5) -e  entry_file
Outputs the ENTRY file with the file name specified by entry_file.
Note that the maximum length of the entry_file parameter is 255 characters.

Remark 1. If the entry_file string includes ASCII space characters, such as "Program Files", the entry_file 
parameter must be surrounded by double quotation marks.

Remark 2. -e  entry_file can be specified multiple times as shown below. However, only the first -e  
entry_file specified is treated as a valid activation option, and the others will be treated as invalid 
activation options.
Consequently, in the example below, -e  entry_file1.850 is a valid activation option, and the other 
activation options (-e  entry_file2.850 and -e  entry_file3.850) are ignored.

[If omitted:]
The process is executed assuming that "-e  Os_CfgEntry.850" was specified.

(6) -ne
Outputs no ENTRY file.

(7) -nk
Outputs no kernel macro file.

[If omitted:] 
Outputs the kernel macro file "Os_Cfg.h".

(8) -I  path_name
Specifies the folder to search for the Include Files written in the CF file (OIL).
Note that the maximum length of the path_name parameter is 255 characters.

Remark 1. If the path_name string includes ASCII space characters, such as "Program Files", the path_name 
parameter must be surrounded by double quotation marks.

Remark 2. This activation option can be specified multiple times (up to 255 times) as shown below.

Remark 3. The search order for include files differs as shown below, depending on the format of the CF file 
(OIL) definition.

["#include  <inc_file>" format]

- Folder specified by path_name

- Folder storing cf_file

C:\> Os_Configurator.exe  -o  sit_file1.c  -o  sit_file2.c  -o  sit_file3.c  cf_file.oil

C:\> Os_Configurator.exe  -e  entry_file1.850  -e  entry_file2.850  -e  entry_file3.850  
cf_file.oil

C:\> Os_Configurator.exe  -I  path_name1  -I  path_name2  -I  path_name3  cf_file.oil



R20UT2768EJ0103  Rev.1.03 Page 176 of 282
Jun 10, 2015

RV850 A.  CONFIGURATOR

- Startup folder of Os_Configurator.exe

["#include  "inc_file"" format]

- Folder storing cf_file 

- Startup folder of Os_Configurator.exe

- Folder specified by path_name

[If omitted:] 
Include files are searched for in the following order.

- Folder storing cf_file

- Startup folder of Os_Configurator.exe

(9) -nsc
Treats the C++ style comments ("//") in the CF file (OIL) as errors.

[If omitted:]
The C++ style comments ("//") in the CF file (OIL) are not treated as errors.

(10) -V
Outputs the version information of the configurator.

Remark When this activation option is specified, all other activation options are disabled and output of the 
information file is suppressed.

[If omitted:]
Does not output the version information.

(11) -help
Outputs help messages (information about types, usage, etc.) for the activation options of the configurator.

Remark When this activation option is specified, all other activation options are disabled and output of the 
information file is suppressed.

[If omitted:] 
Does not output help messages for the activation options.

A.2.1  Command file

In the configurator, use of a command file is supported to eliminate the limitation on the maximum length of characters 
that can be specified in the activation options in the command line.

The format of the command file is described below.

(1) Comment
All text after a hash symbol (#) until the end of the line is treated as a comment.
Comments can be written in SJIS or EUC encoding.

(2) Activation option separator
Activation options can be separated by a line break, an ASCII space, or a tab.
When an activation option consists of a command part (-xxx) and a parameter part, such as "-o  sit_file", "-e  
entry_file", or "-I  path_name", the command (-xxx) and parameter can be separated by a line break, an ASCII 
space, or a tab.

(3) Character strings storing ASCII spaces
If an activation option (such as "cf_file", "cmd_file", "-o  sit_file", "-e  entry_file", or "-I  path_name") stores an 
ASCII space (e.g. "Program Files"), it must be surrounded by double quotation marks.

Figure A.1 Coding Example of Command File

# Command file
C:\sample\src\cf_file.oil           # CF file
-o C:\sample\src\sit_file.c         # SIT file
-e C:\sample\src\entry_file.850     # ENTRY file
-I "C:\Program Files\sample\inc"    # Include path



RV850 A.  CONFIGURATOR

R20UT2768EJ0103  Rev.1.03 Page 177 of 282
Jun 10, 2015

A.3  Sample Command Input

The following shows examples of command input for the configurator.
Here, "C:\>" represents the command prompt, and the "" character represents input of the Space key.

(1) After the CF file cf_file.oil is read from the folder C:\Program Files\sample, the information files (SIT file: Os_Cfg.c; 
ENTRY file: Os_CfgEntry.850; and kernel macro file: Os_Cfg.h) are output to the folder where 
Os_Configurator.exe was started.
The include files defined in cf_file.oil are searched for in the following order.

- Folder storing cf_file.oil

- Startup folder of Os_Configurator.exe

(2) The file cf_file.oil stored in the folder specified by the path ..\sample relative to the startup folder of 
Os_Configurator.exe is read as the input file, and then the information file (SIT file: sit_file.c) is output to the folder 
specified by the path ..\sample relative to the startup folder of Os_Configurator.exe.
The include files defined in cf_file.oil are searched for in the following order.

- Folder storing cf_file.oil

- Startup folder of Os_Configurator.exe

(3) After the file cf_file.oil is read as the CF file from the startup folder of Os_Configurator.exe, the information files 
(SIT file: Os_Cfg.c; ENTRY file: Os_CfgEntry.850; and kernel macro file: Os_Cfg.h) are output to the current folder 
where Os_Configurator.exe was started.
The include files defined in cf_file.oil are searched for in the following order.

["#include  <inc_file>" format]

- The folder specified by the path ..\sample\inc relative to the startup folder of Os_Configurator.exe

- Folder storing cf_file.oil

- Startup folder of Os_Configurator.exe

["#include  "inc_file"" format]

- Folder storing cf_file.oil

- Startup folder of Os_Configurator.exe

- The folder specified by the path ..\sample\inc relative to the startup folder of Os_Configurator.exe

(4) The version information of the configurator is output.

C:\> Os_Configurator.exe  "C:\Program Files\sample\cf_file.oil"

C:\> Os_Configurator.exe  ..\sample\cf_file.oil  -o  ..\sample\sit_file.c  -
ne  -nk

C:\> Os_Configurator.exe  cf_file.oil  -I  ..\sample\inc

C:\> Os_Configurator.exe  -V



R20UT2768EJ0103  Rev.1.03 Page 178 of 282
Jun 10, 2015

RV850 A.  CONFIGURATOR

A.4  Messages

Messages are generated and output if information of which the user should be notified (e.g. invalid activation options 
and specification of out-of-bounds numbers) is detected while the configurator is executing a process.

There are three types of message, according to the importance of the notification.

- E: Fatal error 
If a specified number of fatal errors occur, the configurator aborts processing. No information file is output.

- F: Abort error
The configurator aborts processing. No information file is output.

- W: Warning
The configurator continues processing. Information files are output.
The contents of the output information files may differ from those expected by the user.

A.4.1  Fatal errors

The following shows the messages that are output when fatal errors are detected.
In each message, the italic text indicates what is determined when the corresponding fatal error is detected.

Table A.1 Fatal Errors

E2001 [Message] Nesting of include is greater than 8.

[Description] Nesting of include files exceeds 8 levels.

[Action by user] Reduce the level of include-file nesting to no more than 8, for example by combining 
multiple include files into one file.

E2002 [Message] Object name is longer than 255 characters.

[Description] The object name exceeds the maximum length of 255 characters.

[Action by user] Change the name of the object so that it is no more than 255 characters.

E2003 [Message] Syntax error.

[Description] There is a syntax error.

[Action by user] Check for any syntax errors.

E2005 [Message] information is expected.

[Description] Required information information is missing.

[Action by user] Add the description of information information.

E2006 [Message] Illegal description (string).

[Description] Invalid string string is specified.

[Action by user] Specify a valid string.

E2007 [Message] Out of range (value).

[Description] Specification of numerical value value is invalid.

[Action by user] Specify a numerical value within the valid range.

E2008 [Message] xxx sub part is expected when yyy is zzz.

[Description] When zzz is specified for yyy, xxx must not be omitted.

[Action by user] Add xxx.



RV850 A.  CONFIGURATOR

R20UT2768EJ0103  Rev.1.03 Page 179 of 282
Jun 10, 2015

E2009 [Message] xxx sub part is unnecessary when yyy is zzz.

[Description] When zzz is specified for yyy, xxx must not be specified.

[Action by user] Delete xxx.

E2010 [Message] There is no required item in xxx.

[Description] The definition of a required item in xxx is missing.

[Action by user] Add the item.

E3000 [Message] Identifier is conflict (name).

[Description] Name name is declared multiple times.

[Action by user] Change one of the names.

E3001 [Message] xxx is multiple defined (yyy).

[Description] xxx is defined multiple times in yyy.

[Action by user] Avoid multiple definitions of xxx.

E3002 [Message] Too many objects (xxx).

[Description] The object xxx is defined more than the maximum allowable number of times.

[Action by user] Define the object xxx no more than the maximum allowable number of times.

E3005 [Message] information is not aligned.

[Description] Information information is not aligned.

[Action by user] Specify a value that is aligned to the prescribed value.

E3007 [Message] RV850 doesn't support a value larger than 32 bit size.

[Description] A value greater than 0xFFFFFFFF is specified.

[Action by user] Specify 0xFFFFFFFF or a smaller value.

E3102 [Message] xxx is not defined in yyy.

[Description] Information xxx corresponding to identifier yyy is not defined.

[Action by user] Define information xxx.

E3103 [Message] xxx can not defined in yyy.

[Description] xxx cannot be defined in yyy.

[Action by user] Delete xxx.

E3104 [Message] Timing Protection is defined for Category 1 ISR (xxx).

[Description] A definition related to timing protection has been made for a category 1 interrupt ser-
vice routine.

[Action by user] Change the category of the interrupt service routine from 1 to 2, or delete the definition 
of the timing protection.

E3105 [Message] Setting in a memory area is the illegal value.

[Description] The specified range of the memory area is invalid.

[Action by user] Specify valid addresses.



R20UT2768EJ0103  Rev.1.03 Page 180 of 282
Jun 10, 2015

RV850 A.  CONFIGURATOR

E3106 [Message] The size and the termination address can't be specified at the same time.

[Description] Both the size and end address are specified.

[Action by user] Use either the size or the end address to specify a memory area.

E3107 [Message] xxx is lower than yyy.

[Description] A value smaller than yyy is specified for xxx.

[Action by user] Specify yyy or a greater value for xxx.

E3108 [Message] xxx is higher than yyy.

[Description] A value greater than yyy is specified for xxx.

[Action by user] Specify yyy or a smaller value for xxx.

E3109 [Message] There are a lot of specification of xxx (yyy).

[Description] The total number of xxx definitions in yyy is too many.

[Action by user] Reduce the number of xxx definitions.

E3110 [Message] Internal resource is multiple defined (xxx).

[Description] The internal resource is defined multiple times.

[Action by user] Reduce the internal resource definitions to one.

E3112 [Message] xxx is OS reserved.

[Description] xxx is a reserved word and cannot be used.

[Action by user] Change the name without using a reserved word.

E3113 [Message] xxx doesn't belong to yyy.

[Description] Object xxx does not belong to OS-Application yyy.

[Action by user] Make object xxx belong to OS-Application yyy.

E4002 [Message] xxx must be yyy for zzz.

[Description] yyy must be defined in xxx with the condition zzz.

[Action by user] Specify an appropriate value for xxx according to the zzz condition.

E4003 [Message] xxx cannot be defined by yyy.

[Description] xxx cannot be defined with the condition yyy.

[Action by user] To define xxx, condition yyy should be checked and modified.

E4006 [Message] No one use this object_type (object_name).

[Description] Object object_name with object type object_type is not used anywhere.

[Action by user] Delete the object information corresponding to object_name.

E4007 [Message] Not enabled to access (xxx) (yyy).

[Description] xxx does not have access privileges to yyy.

[Action by user] Give xxx access privileges to yyy.

E4008 [Message] Invalid event name.

[Description] An event that is not assigned to a task is specified.

[Action by user] Check and modify the event identifier.



RV850 A.  CONFIGURATOR

R20UT2768EJ0103  Rev.1.03 Page 181 of 282
Jun 10, 2015

E4009 [Message] Category 1 ISR's priority must be set to a higher priority than Category 2 ISR's priority.

[Description] The priority of category 1 interrupt service routines is lower than that of category 2 
interrupt service routines.

[Action by user] Define a higher priority for category 1 interrupt service routines than that of category 2 
interrupt service routines.

E4010 [Message] There is no space in event mask (xxx).

[Description] AUTO cannot be specified because there is no unused event bit.

[Action by user] Specify a value from 0x1 to 0xFFFFFFFF as the event mask.

E4011 [Message] TASK or ISR is expected in OS-Application (xxx).

[Description] There are no tasks or interrupt service routines in the OS-Application information.

[Action by user] Make at least one task or interrupt service routine belong to the OS-Application infor-
mation.

E4013 [Message] object_type (object_name) doesn't belong to application.

[Description] Object object_name with object type object_type does not belong to any OS-Applica-
tion.

[Action by user] Make object object_name belong to an OS-Application.

E4014 [Message] Cyclic chain of alarm actions with Increment Counter (xxx).

[Description] Counter xxx to be manipulated repeats a loop operation.

[Action by user] Check the validity of the associated counter and the counter to be manipulated in 
expiry action.

E4015 [Message] object_name is defined in multiple OS-Application.

[Description] The same object object_name is defined in multiple OS-Application information entries.

[Action by user] Check and modify the identifier.

E4017 [Message] The offset value of action is the same value.

[Description] The same expiry count value is defined in another location.

[Action by user] Change one of the expiry count values.

E4019 [Message] The same exception code as other ISR is specified.

[Description] The same exception code is defined in another location.

[Action by user] Change one of the exception codes.

E4020 [Message] When xxx option is used, yyy should be defined.

[Description] When xxx is specified for activation option, yyy must not be omitted.

[Action by user] Add yyy, or don't specify activation option xxx.



R20UT2768EJ0103  Rev.1.03 Page 182 of 282
Jun 10, 2015

RV850 A.  CONFIGURATOR

A.4.2  Abort errors

The following shows the messages that are output when abort errors are detected.
In each message, the italic text indicates what is determined when the corresponding abort error is detected.

Table A.2 Abort Errors

F1000 [Message] Can not open file (file_name).

[Description] Cannot open file file_name.

[Action by user] Check whether the file exists.

F1002 [Message] Unknown device file format.

[Description] The format of the device file is invalid.

[Action by user] Reinstall the device file.

F1003 [Message] Too long file name.

[Description] The file name exceeds the maximum length of 255 characters.

[Action by user] Change the name of the file so that it is no more than 255 characters.

F1004 [Message] Too long folder name.

[Description] The folder name exceeds the maximum length of 255 characters.

[Action by user] Change the name of the folder so that it is no more than 255 characters.

F1005 [Message] Output file names are the same (file_name).

[Description] Output file names file_name are conflicting.

[Action by user] Avoid conflict between the SIT file name specified by activation option -o and the 
ENTRY file name specified by activation option -e.

F1006 [Message] Unauthorized use of option (option).

[Description] Illegal specification format of activation option option.

[Action by user] Check the specification format of the activation option.

F1007 [Message] Illegal option (option).

[Description] Illegal specification of activation option option.

[Action by user] Check the specification format of the activation option.

F1008 [Message] Illegal format in command file.

[Description] Illegal specification format of the command file.

[Action by user] Check the specification format of the command file.

F1009 [Message] Out of memory.

[Description] Not enough memory.

[Action by user] Release memory (e.g. by exiting resident programs).

F1010 [Message] option option is expected.

[Description] Option option is a mandatory activation option.

[Action by user] Specify activation option option.



RV850 A.  CONFIGURATOR

R20UT2768EJ0103  Rev.1.03 Page 183 of 282
Jun 10, 2015

F1011 [Message] Too many include path.

[Description] More than 255 include paths are defined.

[Action by user] Reduce the number of include path definitions to no more than 255, for example by 
combining multiple include paths.

F1012 [Message] Too many File lines.

[Description] The number of lines in the CF file (OIL) exceeds 32767.

[Action by user] Use default assumptions, etc. to reduce the number of lines in the CF file (OIL) to no 
more than 32767.

F1013 [Message] Configuration file is not specified.

[Description] No CF file specified.

[Action by user] Specify a CF file.

F6002 [Message] XML file syntax error.

[Description] An XML syntax error has occurred.

[Action by user] Check the syntax in the CF file (XML).

F6003 [Message] Unknown error.

[Description] An unknown error has occurred.

[Action by user] Check the descriptions in the CF file (XML).

F6004 [Message] XML file syntax error by an AUTOSAR schema.

[Description] A syntax error has occurred due to the AUTOSAR schema.

[Action by user] Check the syntax in the CF file (XML).



R20UT2768EJ0103  Rev.1.03 Page 184 of 282
Jun 10, 2015

RV850 A.  CONFIGURATOR

A.4.3  Warnings

The following shows the messages that are output when warnings are detected.
In each message, the italic text indicates what is determined when the corresponding warning is detected.

Table A.3 Warnings

Remark The AUTOSAR specifications do not prescribe a warning equivalent to W4001. This is our original warn-
ing item added to the RV850.

W1000 [Message] Nested command file.

[Description] The command file is nested.
Processing is continued with command-file nesting ignored.

[Action by user] Calling a command file from another command file is prohibited. Include the contents of 
the called another command file in the calling command file.

W4001 [Message] Priority is lower than process's priority. (Rise to value of process's priory)

[Description] The specified ceiling value is illegal.
Processing is continued with the assumption that the same value as the priority of pro-
cessing program process is defined.

[Action by user] Change the ceiling value to a higher priority than that of the processing program that 
uses the resource.



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 185 of 282
Jun 10, 2015

B.  CF FILES (OIL)

This appendix describes how to write a CF file (OIL) in conformance with the OSEK Implementation Language Version 
2.5 specification.

B.1  Overview

A CF file (OIL) is required to generate files that hold the Configuration Information to be supplied to the RV850 (SIT files, 
ENTRY files, and kernel macro files). These files are written by the user with a text editor.

The following describes the notation used in a CF file (OIL).

(1) Character encoding
A CF file (OIL) is written in ASCII code.
Comments can be written in SJIS or EUC encoding.

(2) Comments 
Text surrounded by "/*" and "*/" and the rest of lines following a "//" are treated as comments.

(3) Numerical values
Words starting with a number from 0 to 9 are treated as numerical values.
Numbers storing a decimal point must be written in decimal notation.

Words starting with numbers 0 to 9: Decimal
Words starting with 0x or 0X: Hexadecimal

Remark Numbers in a CF file (OIL) cannot be written in binary or octal notation.

(4) Names
Words starting with an alphabetic character (a to z or A to Z) or an underscore "_" are treated as names.
Up to 255 characters can be specified as a name.

Remark 1. Names and symbol names are distinguished according to the context of the CF file (OIL).

Remark 2. The CF file (OIL) is case-sensitive for alphabetic characters (a to z and A to Z are handled as differ-
ent characters).

(5) Symbol names
Words starting with an alphabetic character (a to z or A to Z) or an underscore "_" are treated as symbol names.
Up to 4095 characters can be specified as a symbol name.

Remark 1. Names and symbol names are distinguished according to the context of the CF file (OIL).

Remark 2. The CF file (OIL) is case-sensitive for alphabetic characters (a to z and A to Z are handled as differ-
ent characters).

Remark 3. In the RV850, symbol names starting with _kernel or _KERNEL are OS reserved symbols and must 
not be used for any other purpose than the specified one.

(6) Keywords
The words shown below are reserved as keywords for CF files (OIL) and must not be used for any other purpose 
than the specified one.

ABSOLUTE, ACCESSING_APPLICATION, ACTION, ACTIVATETASK, ACTIVATION, ADJUSTABLEEXP-
POINT, ALARM, ALARMCALLBACK, ALARMCALLBACKNAME, ALARMTIME, APPLICATION, APPMODE, 
ATTRIBUTE, AUTO, AUTOSTART, CATEGORY, CODE, CONST, CONSTNAME, CORE, CORENUMBER, 
COUNTER, CPU, CPUCORE, CYCLETIME, DATA, DEFAULTFPSRVALUE, DRIVER, ECUCPARTITION, 
ENDADDRESS, ERRORHOOK, EVENT, EXCEPTIONCODE, EXECUTIONBUDGET, EXPLICIT, EXTENDED, 
FALSE, FULL, G3K, G3M, G3KH, G3MH, HARDWARE, IMPLICIT, INCREMENTCOUNTER, INTC1EICTRL, 
INTC1EIMASK, INTC2EICTRL, INTC2EIMASK, INTERNAL, INTERRUPTBASE, INTPRI0 to INTPRI15, ISR, 
IOC, LENGTH, LINKED, LINKEDRESOURCE, LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION, LOCKING-
TIME, MASK, MAXADVANCE, MAXALLINTERRUPTLOCKTIME, MAXALLOWEDVALUE, MAXEXCEPTION-
CODE, MAXOSINTERRUPTLOCKTIME, MAXRESOURCELOCKTIME, MAXRETARD, MEMORYAREA, 
MINCYCLE, NAME, NON, NONE, OFFSET, OS, OSDEFAULTAPPMODE, OSTMCNT, PRECISION, PERI-
ODIC, POSTTASKHOOK, PRETASKHOOK, PRIORITY, PROTECT, PROTECTIONHOOK, READONLY, 
READWRITE, RELATIVE, RESOURCE, RESOURCEPROPERTY, RESOURCELOCK, RES_SCHEDULER, 
RESTARTTASK, SAVEFPUREG, SC1 to SC4, SCALABILITYCLASS, SCHEDULE, SCHEDULETABLE, SEC-
ONDSPERTICK, SETEVENT, SHUTDOWNHOOK, SIZE, SOFTWARE, SPID, SPINLOCK, STANDARD, 
STACKMONITORING, STACKSIZE, STARTADDRESS, STARTUPHOOK, STARTVALUE, STATUS, SYN-



R20UT2768EJ0103  Rev.1.03 Page 186 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

CHRON, SYNCSTRATEGY, SYSTEM, SYSTEM_CLOCK, TASK, TICKSPERBASE, TIMECONSTANTS, TIME-
FRAME, TIMEVALUE, TIMING_PROTECTION, TRACESYSTEMENTRY, TRACESYSTEMEXIT, 
TRACETASKSTATUS, TRUE, TRUSTED, TRUSTED_FUNCTION, TYPE, USEGETSERVICEID, USEPARAM-
ETERACCESS, USERESSCHEDULER

B.2  Configuration Information

The data (configuration information) described in a CF file (OIL) is broadly classified into the following types.

(1) Include Files

(2) CPU

(a) Alarm information

(b) Application mode information

(c) OS-Application information

(d) Counter information

(e) Event information

(f) Interrupt service routine information

(g) OS information

(h) Resource information

(i) Schedule table information

(j) Task information

(k) System information

The following shows a schematic image of a CF file (OIL). Strings surrounded by square brackets "[ ]" are optional items 
that can be omitted.

Figure B.1 CF File (OIL) Coding Sample

// Include Files
[ #include inc_file ]

// CPU
CPU Os {
    [ Alarm information ]
    [ Application mode information ]
    [ OS-Application information ]
    [ Counter information ]
    [ Event information ]
    [ Interrupt service routine information ]
    OS information
    [ Resource information ]
    [ Schedule table information ]
    [ Task information ]
    System information
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 187 of 282
Jun 10, 2015

B.3  Include Files

The following item is defined as required information for other CF files (OIL).

- Include file "inc_file"

The format for defining an include file is shown below. Strings surrounded by square brackets "[ ]" are optional items that 
can be omitted.

Figure B.2 Include File Definition Format

(1) Include file "inc_file"
Specifies the name of an include file.
Only a name (up to 255 characters including a path) can be specified as inc_file.

Remark 1. The search order for include files differs as shown below, depending on the format of the inc_file 
definition.

[In "#include  <inc_file>" format]

- Folder specified by path_name in activation option "-I  path_name"

- Folder storing the CF file (OIL) specified by activation option "cf_file"

- Startup folder of configurator Os_Configurator.exe

[In "#include  "inc_file"" format]

- Folder storing the CF file (OIL) specified by activation option "cf_file"

- Startup folder of configurator Os_Configurator.exe

- Folder specified by path_name in activation option "-I  path_name"

Remark 2. The maximum nesting level of include files is eight.

Remark 3. This item can be defined multiple times as shown below.

#include inc_file

#include "inc_file1.oil"
#include "inc_file2.oil"
#include "inc_file3.oil"



R20UT2768EJ0103  Rev.1.03 Page 188 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

B.4  CPU 

The following items are defined as required information for implementing the functions provided by the RV850.

- Identifier "Os"

- Alarm information to system information

Only one CPU  can be defined.
The format for defining the CPU  is shown below. Strings surrounded by square brackets "[ ]" are optional items that can 

be omitted.

Figure B.3 CPU  Definition Format

(1) Identifier "Os"
Specifies the CPU  identifier.
Only a name can be specified as Os.

(2) Alarm information to system information
See "B.4.1Alarm information" to "B.4.11System information" for details about Alarm information to System infor-
mation.

CPU Os { 
    [ Alarm information ]
    [ Application mode information ]
    [ OS-Application information ]
    [ Counter information ]
    [ Event information ]
    [ Interrupt service routine information ]
    OS information
    [ Resource information ]
    [ Schedule table information ]
    [ Task information ]
    System information
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 189 of 282
Jun 10, 2015

B.4.1  Alarm information

The following items are defined as required information for implementing the ALARM MANAGEMENT provided by the 
RV850.

- Identifier "OsAlarm"

- OS-Application identifier "OsAlarmAccessingApplication"

- Counter identifier "OsAlarmCounterRef"

- Expiry action "OsAlarmAction"

- Task identifier "OsAlarmActivateTaskRef"

- Event identifier "OsAlarmSetEventRef"

- Task identifier "OsAlarmSetEventTaskRef"

- Counter identifier "OsAlarmIncrementCounterRef"

- Alarm callback identifier "OsAlarmCallbackName"

- Initial state "OsAlarmAutostart"

- Expiry count value "OsAlarmAlarmTime"

- Count mode "OsAlarmAutostartType"

- Cycle count value "OsAlarmCycleTime"

- Application mode "OsAlarmAppModeRef"

The sum of the numbers of defined alarm information sets and Schedule table information sets must be between 0 and 
1023.

Remark In the RV850, if SC3 is defined for Scalability class "OsScalabilityClass" and the counter defined in this 
information is not defined in the OS-Application information, fatal error E4013 will be output.

The format for defining alarm information is shown below. Strings surrounded by square brackets "[ ]" are optional items.

Figure B.4 Alarm Information Definition Format

(1) Identifier "OsAlarm"
Specifies the alarm identifier.
Only a name can be specified as OsAlarm.

(2) OS-Application identifier "OsAlarmAccessingApplication"
Specifies the identifier of an OS-Application that defines objects (tasks, interrupt service routines, and counters) to 
which access privileges to this alarm should be assigned.
Only Identifier "OsApplication" can be specified as OsAlarmAccessingApplication.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".

ALARM OsAlarm {
    [ ACCESSING_APPLICATION = OsAlarmAccessingApplication; ]
    COUNTER = OsAlarmCounterRef;
    ACTION = OsAlarmAction {
        [ TASK = OsAlarmActivateTaskRef; ]
        [ EVENT = OsAlarmSetEventRef; ]
        [ TASK = OsAlarmSetEventTaskRef; ]
        [ COUNTER = OsAlarmIncrementCounterRef; ]
        [ ALARMCALLBACKNAME = OsAlarmCallbackName; ]
    };
    [ AUTOSTART = OsAlarmAutostart {
        [ ALARMTIME = OsAlarmAlarmTime; ]
        [ TYPE = OsAlarmAutostartType; ]
        [ CYCLETIME = OsAlarmCycleTime; ]
        [ APPMODE = OsAlarmAppModeRef; ]
    }; ]
};



R20UT2768EJ0103  Rev.1.03 Page 190 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

The AUTOSAR specifications prescribe that a warning should be output when a value other than 
SC3 and SC4 is defined for Scalability class "OsScalabilityClass". In the RV850, however, fatal 
error E4003 will be output.

Remark 2. It is not necessary to specify the identifier of the OS-Application to which this alarm belongs as 
OsAlarmAccessingApplication.

Remark 3. This item can be specified multiple times (up to 31 times) as shown below.

[If omitted:]
Processing is performed assuming that access privileges to this alarm are assigned only to the objects (tasks, 
interrupt service routines, and counters) defined in the OS-Application to which this alarm belongs.

(3) Counter identifier "OsAlarmCounterRef"
Specifies the identifier of the counter with which this alarm is to be associated (the counter that holds the count for 
confirming whether the expiry conditions have been met).
Only Identifier "OsCounter" can be specified as OsAlarmCounterRef.

Remark When SC3 is defined for Scalability class "OsScalabilityClass" and "a counter that does not belong 
to the OS-Application to which this alarm belongs (counter belonging to another OS-Application)" is 
specified for this counter identifier, the identifier of the OS-Application to which the counter belongs 
should be defined for OS-Application identifier "OsAlarmAccessingApplication".

(4) Expiry action "OsAlarmAction"
Specifies the type of processing to perform when the expiry conditions are met.
Only ACTIVATETASK, SETEVENT, INCREMENTCOUNTER, or ALARMCALLBACK can be specified as OsAla-
rmAction.

ACTIVATETASK: Task activation (processing equivalent to ActivateTask)
SETEVENT: Setting of event mask (processing equivalent to SetEvent)
INCREMENTCOUNTER: Update of count value (processing equivalent to IncrementCounter)
ALARMCALLBACK: Activation of alarm callback (only in SC1)

Remark ALARMCALLBACK can be specified only when SC1 is defined for Scalability class "OsScalability-
Class".

(a) Task identifier "OsAlarmActivateTaskRef"
Specifies the identifier of the task to activate when the expiry conditions are met.
Only Identifier "OsTask" can be specified as OsAlarmActivateTaskRef.

Remark 1. This item can be specified only when ACTIVATETASK is defined for Expiry action "OsAlarmAc-
tion".

Remark 2. When SC3 is defined for Scalability class "OsScalabilityClass" and "a task that does not belong 
to the OS-Application to which this alarm belongs (task belonging to another OS-Application)" is 
specified for this task identifier, the identifier of the OS-Application to which the alarm belongs as 
OS-Application identifier "OsTaskAccessingApplication".

(b) Event identifier "OsAlarmSetEventRef"
Specifies the identifier of the event that holds the event mask to set when the expiry conditions are met.
Only Identifier "OsEvent" can be specified as OsAlarmSetEventRef.

Remark 1. This item can be specified only when SETEVENT is defined for Expiry action "OsAlarmAction".

Remark 2. The event specified here must be assigned to the task defined for Event identifier "OsAlarmSetE-
ventRef".

(c) Task identifier "OsAlarmSetEventTaskRef"
Specifies the identifier of the task in which the event mask is to be set when the expiry conditions are met.
Only Identifier "OsTask" can be specified as OsAlarmSetEventTaskRef.

Remark 1. This item can be specified only when SETEVENT is defined for Expiry action "OsAlarmAction".

Remark 2. When SC3 is defined for Scalability class "OsScalabilityClass" and "a task that does not belong 
to the OS-Application to which this alarm belongs (task belonging to another OS-Application)" is 
specified for this task identifier, the identifier of the OS-Application to which the alarm belongs as 
OS-Application identifier "OsTaskAccessingApplication".

ACCESSING_APPLICATION = OsApplication1;
ACCESSING_APPLICATION = OsApplication2;
ACCESSING_APPLICATION = OsApplication3;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 191 of 282
Jun 10, 2015

(d) Counter identifier "OsAlarmIncrementCounterRef"
Specifies the identifier of the counter whose count value is to be updated when the expiry conditions are met.
Only Identifier "OsCounter" can be specified as OsAlarmIncrementCounterRef.

Remark 1. This item can only be specified when INCREMENTCOUNTER is defined for Expiry action "OsAl-
armAction".

Remark 2. This item can specify only the counters with Type "OsCounterType" defined as SOFTWARE.

Remark 3. When SC3 is defined for Scalability class "OsScalabilityClass" and "a counter that does not 
belong to the OS-Application to which this alarm belongs (counter belonging to another OS-
Application)" is specified for this item, the identifier of the OS-Application to which this alarm 
belongs as OS-Application identifier "OsTaskAccessingApplication".

Remark 4. The AUTOSAR specifications prescribe that when this item and Counter identifier "OsAlarm-
CounterRef" are set to the same value (loop operation), a warning will be output. In the RV850, 
however, fatal error E4014 will be output.

(e) Alarm callback identifier "OsAlarmCallbackName"
Specifies the identifier of the alarm callback to be called when the expiry conditions are met.
Only a symbol name (up to 4095 characters) can be specified as OsAlarmCallbackName.

Remark 1. This item can be specified only when ALARMCALLBACK is defined for Expiry action "OsAla-
rmAction".

Remark 2. When an alarm callback is defined as follows, the value set in OsAlarmCallbackName should be 
"OsAlarmCallbackName1". See "8.2Alarm Callback" for details about alarm callback.

(5) Initial state "OsAlarmAutostart"
Specifies the initial state of the alarm.
Only TRUE or FALSE can be specified as OsAlarmAutostart.

TRUE: Depends on StartOS parameter "Mode"
FALSE: Inactive state

Remark 1. When this item is set to "TRUE", the initial state of the alarm changes as follows according to the 
value set in StartOS parameter "Mode".

[Values of "Mode" and Application mode "OsAlarmAppModeRef" match]

- Active state

[Values of "Mode" and Application mode "OsAlarmAppModeRef" do not match]

- Inactive state

Remark 2. The format for specifying FALSE is as follows:

Remark 3. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

[If omitted:]
Processing is performed assuming that FALSE is specified.

(a) Expiry count value "OsAlarmAlarmTime"
Specifies the expiry count value of the alarm (relative count value or absolute count value).
The value that can be specified for OsAlarmAlarmTime depends on the definition of Type "OsCounterType" of 
the counter associated through Counter identifier "OsAlarmCounterRef".

- ABSOLUTE
Only a value from 0x0 to Maximum count value "OsCounterMaxAllowedValue" can be specified.

ALARMCALLBACK ( OsAlarmCallbackName1 ) {
    ..................
    ..................
    return;
}

AUTOSTART = FALSE;



R20UT2768EJ0103  Rev.1.03 Page 192 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

- RELATIVE
Only a value from 0x1 to Maximum count value "OsCounterMaxAllowedValue" can be specified.

Remark Only a relative count value can be specified when RELATIVE is defined for Count mode "OsAla-
rmAutostartType" or an absolute count value when ABSOLUTE is defined.

(b) Count mode "OsAlarmAutostartType"
Specifies the mode for counting until Expiry count value "OsAlarmAlarmTime". Only RELATIVE or ABSOLUTE 
can be specified as OsAlarmAutostartType.

RELATIVE: Relative count
ABSOLUTE: Absolute count

(c) Cycle count value "OsAlarmCycleTime"
Specifies the cycle count value of the alarm.
Only 0x0 or a value from Minimum cycle value "OsCounterMinCycle" to Maximum count value "OsCounterMax-
AllowedValue" can be specified as OsAlarmCycleTime.

Remark When 0x0 is specified in OsAlarmCycleTime, the alarm operates as a one-shot alarm. When a 
value other than 0x0 is specified, it operates as a cycle alarm.

(d) Application mode "OsAlarmAppModeRef"
Specifies the application mode of the alarm.
Only Application mode "OsAppMode" can be specified for OsAlarmAppModeRef.

Remark 1. Processing is performed assuming that the default application mode OSDEFAULTAPPMODE is 
defined regardless of whether it is actually defined.

Remark 2. This item can be specified multiple times (up to 127 times) as shown below.

[If omitted:]
The AUTOSAR specifications prescribe that this item must not be omitted. In the RV850, however, when this 
item is omitted, processing is performed assuming that OSDEFAULTAPPMODE is specified.

APPMODE = OSDEFAULTAPPMODE;
APPMODE = OsAppMode1;
APPMODE = OsAPPMode2;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 193 of 282
Jun 10, 2015

B.4.2  Application mode information

The following items are defined as required information for implementing the OS EXECUTION MANAGEMENT pro-
vided by the RV850.

- Application mode "OsAppMode"

0 to 127 sets of application mode information can be specified.
The format for defining application mode information is shown below. Strings surrounded by square brackets "[ ]" are 

optional items that can be omitted.

Figure B.5 Application Mode Information Definition Format

(1) Application mode "OsAppMode"
Specifies the application mode.
Only a name or OSDEFAULTAPPMODE can be specified as OsAppMode.

Name: Normal application mode
OSDEFAULTAPPMODE: Default application mode

Remark Processing is performed assuming that the default application mode OSDEFAULTAPPMODE is 
defined, regardless of whether it is actually defined.

[If omitted:]
The AUTOSAR specifications prescribe that this item must not be omitted. In the RV850, however, when this item 
is omitted, processing is performed assuming that the following is defined.

APPMODE OsAppMode { };

APPMODE OSDEFAULTAPPMODE { };



R20UT2768EJ0103  Rev.1.03 Page 194 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

B.4.3  OS-Application information

The following items are defined as required information for implementing the OS-APPLICATION MANAGEMENT pro-
vided by the RV850.

- Identifier "OsApplication"

- Reliability "OsTrusted"

- OS-Application Stack size "OsAppStackSize"

- FPSR "OsAppDefaultFPSRValue"

- Core ID "OsApplicationCoreAssignment"

- SPID "OsApplicationSPID"

- Alarm identifier "OsAppAlarmRef"

- Counter identifier "OsAppCounterRef"

- Interrupt service routine identifier "OsAppIsrRef"

- Schedule table identifier "OsAppScheduleTableRef"

- Task identifier "OsAppTaskRef"

- Task identifier "OsRestartTask"

- StartupHook_OsApplication "OsAppStartupHook"

- ShutdownHook_OsApplication "OsAppShutdownHook"

- ErrorHook_OsApplication "OsAppErrorHook"

- Trusted function "OsApplicationTrustedFunction"

- Identifier "OsTrustedFunctionName"

- Memory area identifier "OsAppMemoryAreaNameRef"

- Attribute "OsAppMemoryAreaAttribute"

0 to 31 sets of OS-Application information can be defined.

Remark The AUTOSAR specifications prescribe the item ECUCPARTITION as OS-Application information. This 
item is not supported, however, on the RV850.

The format for defining OS-Application information is shown below. Strings surrounded by square brackets "[ ]" are 
optional items that can be omitted.

Figure B.6 OS-Application Information Definition Format

APPLICATION OsApplication {
    TRUSTED = OsTrusted;
    STACKSIZE = OsAppStackSize;
    [ DEFAULTFPSRVALUE = OsAppDefaultFPSRValue; ]
    [ CORE = OsApplicationCoreAssignment; ]
    [ SPID = OsApplicationSPID; ]
    [ ALARM = OsAppAlarmRef; ]
    [ COUNTER = OsAppCounterRef; ]
    [ ISR = OsAppIsrRef; ]
    [ SCHEDULETABLE = OsAppScheduleTableRef; ]
    [ TASK = OsAppTaskRef; ]
    [ RESTARTTASK = OsRestartTask; ]
    STARTUPHOOK = OsAppStartupHook;
    SHUTDOWNHOOK = OsAppShutdownHook;
    ERRORHOOK = OsAppErrorHook;
    [ TRUSTED_FUNCTION = OsApplicationTrustedFunction {
        NAME = OsTrustedFunctionName;
    }; ]
    [ MEMORYAREA = OsAppMemoryAreaNameRef {
        ATTRIBUTE = OsAppMemoryAreaAttribute;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 195 of 282
Jun 10, 2015

(1) Identifier "OsApplication"
Specifies the OS-Application identifier 
Only a name can be specified as OsApplication.

Remark This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".
The AUTOSAR specifications prescribe that a warning should be output when a value other than 
SC3 and SC4 is defined for Scalability class "OsScalabilityClass". In the RV850, however, fatal 
error E4003 will be output.

(2) Reliability "OsTrusted"
Specifies the reliability of the OS-Application.
Only TRUE or FALSE can be specified as OsTrusted.

TRUE: Trusted OS-Application
FALSE: Non-trusted OS-Application

Remark In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(3) OS-Application Stack size "OsAppStackSize"
Specifies the size (in bytes) of the stack used by this OS-Application.
Only a 0x4-byte aligned value from 0x4 to 0x0FFFFFFC can be specified for OsAppStackSize.

Remark 1. See "C.7.2OS-Application stack" for details about the size to be specified in this item.

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(4) FPSR "OsAppDefaultFPSRValue"
Specifies the value to be set in the floating-point configuration/status register (FPSR) when a processing program 
(a task, an interrupt service routine, or a hook routine) belonging to this OS-Application is activated.
Only a value from 0x0 to 0xFFFFFFFF can be specified as OsAppDefaultFPSRValue.

Remark 1. This item can be specified only when TRUE is defined for FPSR saving/restoring "OsSaveF-
puReg".

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

[If omitted:]
Processing is performed assuming that the same value as FPSR default value "OsDefaultFPSRValue" is speci-
fied.

(5) Core ID "OsApplicationCoreAssignment"
Specifies the ID of the target core to be controlled by the RV850.
Only 0x1 can be specified as OsApplicationCoreAssignment.

Remark The AUTOSAR specifications prescribe that 0 to 65534 can be specified for this item. In the RV850, 
however, only 0x1 can be specified for this item.

[If omitted:]
Processing is performed assuming that 0x1 is specified.

(6) SPID "OsApplicationSPID"
Specifies the access privileges (system protection identifier) to the I/O area.
Only a value from 0x0 to 0x3 can be specified as OsApplicationSPID.

Remark 1. This item can be specified when G3M or G3KH or G3MH is defined for Core identifier "OsSystem-
CpuCore", and FALSE is defined for Reliability "OsTrusted".

Remark 2. When TRUE is defined for Reliability "OsTrusted" or when 0x0 is specified for this item, any access 
to the I/O area is enabled.

Remark 3. The correspondence between the value specified in OsAppicationSPID and access rights to the I/O 
area depends on the Boot Process operation extracted as user own coding modules.

Remark 4. See the user's manual of the target device for details on the SPID.

    }; ]
};



R20UT2768EJ0103  Rev.1.03 Page 196 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 5. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(7) Alarm identifier "OsAppAlarmRef"
Specifies the identifier of the alarm to be assigned to the OS-Application.
Only Identifier "OsAlarm" can be specified as OsAppAlarmRef.

Remark This item can be specified multiple times (up to 1023 times) as shown below.

(8) Counter identifier "OsAppCounterRef"
Specifies the identifier of the counter to be assigned to the OS-Application.
Only Identifier "OsCounter" can be specified as OsAppCounterRef.

Remark This item can be specified multiple times (up to 1023 times) as shown below.

(9) Interrupt service routine identifier "OsAppIsrRef"
Specifies the identifier of the interrupt service routine to be assigned to the OS-Application.
Only Identifier "OsIsr" can be specified as OsAppIsrRef.

Remark 1. A category 1 interrupt service routine can be defined only for a trusted OS-Application (TRUE is 
defined for Reliability "OsTrusted").

Remark 2. This item can be specified multiple times (up to 1023 times) as shown below.

Remark 3. The AUTOSAR specifications prescribe that both Task identifier "OsAppTaskRef" and this item can 
be left undefined. However, if neither is defined in the RV850, fatal error E4011 will be output.

(10) Schedule table identifier "OsAppScheduleTableRef"
Specifies the identifier of the schedule table to be assigned to the OS-Application.
Only Identifier "OsScheduleTable" can be specified as OsAppScheduleTableRef.

Remark This item can be specified multiple times (up to 1023 times) as shown below.

(11) Task identifier "OsAppTaskRef"
Specifies the identifier of the task to be assigned to the OS-Application.
Only Identifier "OsTask" can be specified as OsAppTaskRef.

Remark 1. This item can be specified multiple times (up to 1023 times) as shown below.

Remark 2. The AUTOSAR specifications prescribe that both Interrupt service routine identifier "OsAppIsrRef" 
and this item can be left undefined. In the RV850, however, if neither is defined, fatal error E4011 
will be output.

(12) Task identifier "OsRestartTask"
Specifies the identifier of the task that issues an activation request when TerminateApplication is issued (with 
parameter RestartOption set to RESTART).
Only Task identifier "OsAppTaskRef" can be specified for OsRestartTask.

ALARM = OsAlarm1;
ALARM = OsAlarm2;
ALARM = OsAlarm3;

COUNTER = OsCounter1;
COUNTER = OsCounter2;
COUNTER = OsCounter3;

ISR = OsIsr1;
ISR = OsIsr2;
ISR = OsIsr3;

SCHEDULETABLE = OsScheduleTable1;
SCHEDULETABLE = OsScheduleTable2;
SCHEDULETABLE = OsScheduleTable3;

TASK = OsTask1;
TASK = OsTask2;
TASK = OsTask3;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 197 of 282
Jun 10, 2015

[If omitted:]
Processing is performed assuming that parameter RestartOption is not set to RESTART when TerminateApplica-
tion issued.

(13) StartupHook_OsApplication "OsAppStartupHook"
Specifies whether to assign OS-Application-specific hook routine StartupHook_OsApplication to this OS-Applica-
tion.
Only TRUE or FALSE can be specified as OsAppStartupHook.

TRUE: The OS-Application-specific hook routine is assigned.
FALSE: No OS-Application-specific hook routine is assigned.

Remark 1. When TRUE is specified, the following OS-Application-specific hook routine is assigned to this OS-
Application.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(14) ShutdownHook_OsApplication "OsAppShutdownHook"
Specifies whether to assign OS-Application-specific hook routine ShutdownHook_OsApplication to this OS-Appli-
cation.
Only TRUE or FALSE can be specified as OsAppShutdownHook.

TRUE: The OS-Application-specific hook routine is assigned.
FALSE: No OS-Application-specific hook routine is assigned.

Remark 1. When TRUE is specified, the following OS-Application-specific hook routine is assigned to this OS-
Application.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(15) ErrorHook_OsApplication "OsAppErrorHook"
Specifies whether to assign OS-Application-specific hook routine ErrorHook_OsApplication to this OS-Application.
Only TRUE or FALSE can be specified as OsAppErrorHook.

TRUE: The OS-Application-specific hook routine is assigned.
FALSE: No OS-Application-specific hook routine is assigned.

Remark 1. When TRUE is specified, the following OS-Application-specific hook routine is assigned to this OS-
Application.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

void
StartupHook_OsApplication ( void ) {
    ..................
    ..................
}

void
ShutdownHook_OsApplication ( StatusType Fatalerror ) {
..................
..................
}

void
ErrorHook_OsApplication ( StatusType Error ) {
..................
..................
}



R20UT2768EJ0103  Rev.1.03 Page 198 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

(16) Trusted function "OsApplicationTrustedFunction"
Specifies whether to assign a trusted function to this OS-Application.
Only TRUE or FALSE can be specified as OsApplicationTrustedFunction.

TRUE: A trusted function is assigned.
FALSE: No trusted function is assigned.

Remark 1. This item can be specified only when TRUE is defined for Reliability "OsTrusted".

Remark 2. This item can be specified multiple times (up to 1023 times) as shown below.

Remark 3. The format for specifying FALSE is as follows:

Remark 4. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

[If omitted:]
Processing is performed assuming that FALSE is specified.

(a) Identifier "OsTrustedFunctionName"
Specifies the identifier of the trusted function.
Only a name can be specified as OsTrustedFunctionName.

Remark 1. When the trusted function is defined as follows, the value set in OsTrustedFunctionName should 
be "OsTrustedFunctionName1".

Remark 2. The AUTOSAR specifications prescribe that only a function name can be specified for this item. 
In the RV850, however, only an identifier can be specified for this item.

(17) Memory area identifier "OsAppMemoryAreaNameRef"
Specifies the identifier of a memory area as the target of access protection in this OS-Application.
Only Memory area identifier "OsSystemMemoryArea" can be specified for OsAppMemoryAreaNameRef.

Remark 1. This item can be specified when G3M or G3KH or G3MH is defined for Core identifier "OsSystem-
CpuCore", and FALSE is defined for Reliability "OsTrusted".

Remark 2. This item can be specified multiple times (up to 4 times) as shown below.

Remark 3. The memory area to be protected in common in all OS-Applications should be defined for Memory 
area identifier "OsMemoryAreaNameRef".

TRUSTED_FUNCTION = TRUE {
    NAME = OsTrustedFunctionName1;
};
TRUSTED_FUNCTION = TRUE {
    NAME = OsTrustedFunctionName2;
};
TRUSTED_FUNCTION = TRUE {
    NAME = OsTrustedFunctionName3;
};

TRUSTED_FUNCTION = FALSE;

TRUSTED ( OsTrustedFunctionName1 ) {
    ..................
    ..................
}

MEMORYAREA = OsSystemMemoryArea11 {
    ATTRIBUTE = CODE;
};
MEMORYAREA = OsSystemMemoryArea12 {
    ATTRIBUTE = CONST;
};
MEMORYAREA = OsSystemMemoryArea13 {
    ATTRIBUTE = DATA;
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 199 of 282
Jun 10, 2015

Remark 4. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(a) Attribute "OsAppMemoryAreaAttribute"
Specifies the attribute to be assigned to the memory area.
Only CODE, CONST, or DATA can be specified as OsAppMemoryAreaAttribute.

CODE: Readable and executable
CONST: Readable
DATA: Readable and writable

Remark 1. If a processing program (a task, an interrupt service routine, or a hook routine) belonging to this 
OS-Application performs memory access other than that specified in this item, processing is per-
formed (ProtectionHook is called or ShutdownOS is issued) in accordance with the definition in 
ProtectionHook "OsProtectionHook".

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.



R20UT2768EJ0103  Rev.1.03 Page 200 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

B.4.4  Counter information

The following items are defined as required information for implementing the COUNTER MANAGEMENT provided by 
the RV850.

- Identifier "OsCounter"

- Maximum count value "OsCounterMaxAllowedValue"

- Minimum cycle value "OsCounterMinCycle"

- Basic count value "OsCounterTicksPerBase"

- Type "OsCounterType"

- Number of seconds per tick "OsSecondsPerTick"

- OS-Application identifier "OsCounterAccessingApplication"

- Hardware counter information

- Exception code "OsCounterExceptionCode"

- Priority "OsCounterPriority"

- Data macro information

- Macro name "OsConstName"

- Count value "OsTimeValue"

0 to 1023 sets of counter information can be defined.

Remark 1. In the RV850, when the counter defined in this information is not used in Alarm information or Schedule 
table information, fatal error E4006 will be output.

Remark 2. In the RV850, if SC3 is defined for Scalability class "OsScalabilityClass" and the counter defined in this 
information is not defined in the OS-Application information, fatal error E4013 will be output.

The format for defining counter information is shown below. Strings surrounded by square brackets "[ ]" are optional 
items that can be omitted.

Figure B.7 Counter Information Definition Format

(1) Identifier "OsCounter"
Specifies the counter identifier.
Only a name or SYS_COUNTER can be specified as OsCounter.

Name: Normal counter
SYS_COUNTER: System counter

Remark See "7.1.1System counters" for details about the system counter.

COUNTER OsCounter {
    MAXALLOWEDVALUE = OsCounterMaxAllowedValue;
    MINCYCLE = OsCounterMinCycle;
    TICKSPERBASE = OsCounterTicksPerBase;
    TYPE = OsCounterType;
    [ SECONDSPERTICK = OsSecondsPerTick; ]
    [ ACCESSING_APPLICATION = OsCounterAccessingApplication; ]
    [ DRIVER {
        EXCEPTIONCODE = OsCounterExceptionCode;
        [ PRIORITY = OsCounterPriority; ]
    }; ]
    [ TIMECONSTANTS {
        CONSTNAME = OsConstName;
        TIMEVALUE = OsTimeValue;
    }; ]
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 201 of 282
Jun 10, 2015

(2) Maximum count value "OsCounterMaxAllowedValue"
Specifies the maximum value that can be counted using the counter. Only a value from Minimum cycle value 
"OsCounterMinCycle" to 0x7FFFFFFF can be specified as OsCounterMaxAllowedValue.

Remark The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 
0xFFFFFFFFFFFFFFFF. In the RV850, however, the maximum specifiable value for this item is 
0x7FFFFFFF.

(3) Minimum cycle value "OsCounterMinCycle"
Specifies the minimum cycle value that can be defined for cycle processing (alarms and schedule tables) using the 
counter. Only a value from 0x1 to Maximum count value "OsCounterMaxAllowedValue" can be specified for 
OsCounterMinCycle.

Remark The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 
0xFFFFFFFFFFFFFFFF. In the RV850, however, the maximum specifiable value for this item is 
0x7FFFFFFF.

(4) Basic count value "OsCounterTicksPerBase"
Specifies the basic count value of the counter.
Only a value from 0x1 to 0x7FFFFFFF can be specified as OsCounterTicksPerBase.

Remark The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 
0xFFFFFFFF. In the RV850, however, the maximum specifiable value for this item is 0x7FFFFFFF.

(5) Type "OsCounterType"
Specifies the counter type.
Only SOFTWARE or HARDWARE can be specified as OsCounterType.

SOFTWARE: Software counter
HARDWARE: Hardware counter

Remark See "7.1Overview" for details about the software counter and hardware counter.

(6) Number of seconds per tick "OsSecondsPerTick"
Specifies the number of seconds per tick (in seconds).
Only a value from 0.000001 to 1.000000 can be specified as OsSecondsPerTick.

Remark 1. This item can be specified only when HARDWARE is defined for Type "OsCounterType".

Remark 2. The AUTOSAR specifications prescribe that a value from 0 to INF can be specified for this item. In 
the RV850, however, a value from 0.000001 to 1.000000 can be specified for this item.

(7) OS-Application identifier "OsCounterAccessingApplication"
Specifies the identifier of an OS-Application that defines objects (tasks, interrupt service routines, and alarms) to 
which access privileges to this counter should be assigned.
Only Identifier "OsApplication" can be specified as OsCounterAccessingApplication.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".
The AUTOSAR specifications prescribe that a warning should be output when a value other than 
SC3 and SC4 is defined for Scalability class "OsScalabilityClass". In the RV850, however, fatal 
error E4003 will be output.

Remark 2. It is not necessary to specify the identifier of the OS-Application to which this counter belongs as 
OsCounterAccessingApplication.

Remark 3. This item can be specified multiple times (up to 31 times) as shown below.

[If omitted:]
Processing is performed assuming that access privileges to this counter are assigned only to the objects (tasks, 
interrupt service routines, and alarms) defined in the OS-Application to which the counter belongs.

(8) Hardware counter information
Defines information regarding the interrupt service routine (category 2) that performs update processing of the 
hardware counter.

Remark This item can be specified only when HARDWARE is defined for Type "OsCounterType".

ACCESSING_APPLICATION = OsApplication1;
ACCESSING_APPLICATION = OsApplication2;
ACCESSING_APPLICATION = OsApplication3;



R20UT2768EJ0103  Rev.1.03 Page 202 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

(a) Exception code "OsCounterExceptionCode"
Specifies the exception code for the EI level interrupt causing activation of the interrupt service routine.
Only a value from 0x1000 to Maximum exception code "OsSystemMaxExceptionCode" can be specified for 
OsCounterExceptionCode.

Remark The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(b) Priority "OsCounterPriority"
Specifies the priority of the interrupt defined for Exception code "OsCounterExceptionCode". Only a value from 
NTPRI0 to INTPRI15 (or INTPRI0 to INTPRI7 when the target device is G3K) can be specified for OsCounter-
Priority.

Remark 1. For the value defined in OsCounterPriority, INTPRI0 signifies the lowest priority and INTPRI15 
signifies the highest priority.

Remark 2. OsCounterPriority must not be set to a priority equal to or higher than Initial priority "OsIsrPriority" 
of the interrupt service routine for which 0x1 is specified as Category "OsIsrCategory".

Remark 3. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

[If omitted:]
Processing is performed assuming that INTPRI0 is specified.

(9) Data macro information
This should be defined only when the results of converting a length of time from units of seconds to units of ticks 
(value calculated by Count value "OsTimeValue" / Number of seconds per tick "OsSecondsPerTick") are output to 
an information file (kernel macro file) as a data macro.

Remark 1. This item can be specified only when HARDWARE is defined for Type "OsCounterType".

Remark 2. This item can be specified only when Number of seconds per tick "OsSecondsPerTick" is defined.

Remark 3. This item can be specified multiple times (up to 1023 times) as shown below.

(a) Macro name "OsConstName"
Specifies the macro name to be used when a processing program references data.
Only a name can be specified as OsConstName.

(b) Count value "OsTimeValue"
Specifies the value (in seconds) for converting a length of time from units of seconds to units of ticks.
Only a value from 0.000001 to 999.999999 can be specified as OsTimeValue.

Remark The AUTOSAR specifications prescribe that a value from 0 to INF can be specified for this item. 
In the RV850, however, a value from 0.000001 to 999.999999 can be specified for this item.

TIMECONSTANTS {
    CONSTNAME = OSConstMs;
    TIMEVALUE = 0.1;
};
TIMECONSTANTS {
    CONSTNAME = OSConstSec;
    TIMEVALUE = 1;
};
TIMECONSTANTS {
    CONSTNAME = OSConstMin;
    TIMEVALUE = 60;
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 203 of 282
Jun 10, 2015

B.4.5  Event information

The following items are defined as required information for implementing the EVENT MANAGEMENT provided by the 
RV850.

- Identifier "OsEvent"

- Event mask "OsEventMask"

0 to 1023 sets of event information can be defined.
The format for defining event information is shown below. Strings surrounded by square brackets "[ ]" are optional items 

that can be omitted.

Remark In the RV850, if the event defined in this information is not defined in the Task information, fatal error 
E4006 will be output.

Figure B.8 Event Information Definition Format

(1) Identifier "OsEvent"
Specifies the event identifier.
Only a name can be specified as OsEvent.

(2) Event mask "OsEventMask"
Specifies the event mask.
Only a value from 0x1 to 0xFFFFFFFF or AUTO can be specified as OsEventMask.

Remark 1. When AUTO is specified, the lowest-order unused event bit of all tasks to which this event is 
assigned is found, and the value obtained by setting the found unused bit to "1" is assigned as the 
event mask.
Consequently, if a definition is made as shown below, the third bit is the lowest-order unused event 
bit, so the OsEvent3 event mask will be "0x4".

Remark 2. The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 
0xFFFFFFFFFFFFFFFF. In the RV850, however, the maximum specifiable value for this item is 
0xFFFFFFFF.

EVENT OsEvent {
[ MASK = OsEventMask; ]
};

TASK OsTask1 {
    ..................
    ..................
    EVENT = OsEvent1;
    EVENT = OsEvent3;
    ..................
    ..................
};
TASK OsTask2 {
    ..................
    ..................
    EVENT = OsEvent2;
    EVENT = OsEvent3;
    ..................
    ..................

};
EVENT OsEvent1 {
    MASK = 0x3;
};
EVENT OsEvent2 {
    MASK= 0x8;
};
EVENT OsEvent3 {
    MASK = AUTO;
};



R20UT2768EJ0103  Rev.1.03 Page 204 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 3. In the ARXML format, specify 0 to select the processing equivalent to AUTO.

[If omitted:]
Processing is performed assuming that AUTO is specified.



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 205 of 282
Jun 10, 2015

B.4.6  Interrupt service routine information

The following items are defined as required information for implementing the INTERRUPT HANDLING provided by the 
RV850.

- Identifier "OsIsr"

- Category "OsIsrCategory"

- Exception code "OsIsrExceptionCode"

- Initial priority "OsIsrPriority"

- Resource identifier "OsIsrResourceRef"

- Timing protection "OsIsrTimingProtection"

0 to 1023 sets of interrupt service routine information can be defined.

Remark 1. The AUTOSAR specifications do not prescribe the operation when neither the Task information nor this 
information is defined. In the RV850, fatal error E4011 will be output in this case.

Remark 2. In the RV850, if SC3 is defined for Scalability class "OsScalabilityClass" and the interrupt service routine 
defined in this information is not defined in the OS-Application information, fatal error E4013 will be out-
put.

The format for defining interrupt service routine information is shown below. Strings surrounded by square brackets "[ ]" 
are optional items that can be omitted.

Figure B.9 Interrupt Service Routine Information Definition Format

(1) Identifier "OsIsr"
Specifies the interrupt service routine identifier. Only a name can be specified as OsIsr.

Remark When the interrupt service routine is defined as follows, the value set in OsIsr should be "OsIsr1".

(2) Category "OsIsrCategory"
Specifies the category of the interrupt service routine.
Only 0x1 or 0x2 can be specified as OsIsrCategory.

0x1: Category 1
0x2: Category 2

Remark When SC3 is defined for Scalability class "OsScalabilityClass", 0x1 can be specified only when 
TRUE is defined for Reliability "OsTrusted".

(3) Exception code "OsIsrExceptionCode"
Specifies the exception code for the EI level interrupt causing activation of the interrupt service routine.
Only a value from 0x1000 to Maximum exception code "OsSystemMaxExceptionCode" can be specified for OsIs-
rExceptionCode.

Remark 1. This item can be specified multiple times (up to 512 times) as shown below.

ISR OsIsr {
    CATEGORY = OsIsrCategory;
    EXCEPTIONCODE = OsIsrExceptionCode;
    [ PRIORITY = OsIsrPriority; ]
    [ RESOURCE = OsIsrResourceRef; ]
    [ TIMING_PROTECTION = OsIsrTimingProtection; ]
};

ISR ( OsIsr1 ) {
    ..................
    ..................
}

EXCEPTIONCODE = 0x1000;
EXCEPTIONCODE = 0x1010;
EXCEPTIONCODE = 0x1020;



R20UT2768EJ0103  Rev.1.03 Page 206 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 2. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(4) Initial priority "OsIsrPriority"
Specifies the initial priority of the interrupt defined for Exception code "OsIsrExceptionCode".
The value that can be specified for OsIsrPriority depends on the target device type; INTPRI0 to INTPRI7 when the 
target device is G3K or INTPRI0 to INTPRI15 for other devices.

Remark 1. For the value defined in OsIsrPriority, INTPRI0 signifies the lowest priority and INTPRI15 signifies 
the highest priority.

Remark 2. OsIsrPriority of the category 1 interrupt service routine should be set to a priority higher than that of 
any category 2 interrupt service routine (including Priority "OsCounterPriority" specified for hard-
ware counters).

Remark 3. When 0x1 is defined for Category "OsIsrCategory", this item cannot be set to the same value as 
Priority "OsCounterPriority".

Remark 4. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

[If omitted:]
Processing is performed assuming that INTPRI0 is specified.

(5) Resource identifier "OsIsrResourceRef"
Specifies the identifier of the resource that is manipulated (acquired or released) by the interrupt service routine.
Only Identifier "OsResource" can be specified as OsIsrResourceRef.

Remark 1. This item can be specified only when 0x2 is defined for Category "OsIsrCategory".

Remark 2. It is not possible to specify an "internal resource identifier" for this item.

Remark 3. When SC3 is defined for Scalability class "OsScalabilityClass" and "a resource that does not 
belong to the OS-Application to which this interrupt service routine belongs (resource belonging to 
another OS-Application)" is specified for this resource identifier, the identifier of the OS-Application 
to which the interrupt service routine belongs as OS-Application identifier "OsResourceAccessin-
gApplication".

Remark 4. This item can be specified multiple times (up to 1023 times) as shown below.

[If omitted:]
This interrupt service routine is processed assuming that it does not manipulate (acquire or release) resources.

(6) Timing protection "OsIsrTimingProtection"
Specifies whether to use the timing protection function when interrupt service routine processing is performed. 
Only FALSE can be specified as OsIsrTimingProtection.

FALSE: Not used

Remark 1. The AUTOSAR specifications prescribe that use of the timing protection function should be dis-
abled when SC1 or SC3 is defined for Scalability class "OsScalabilityClass".
In the RV850, when an illegal value is specified for this item, fatal error E4003 will be output.

Remark 2. In the ARXML format, specify 0 for this item to select the processing equivalent to FALSE.

[If omitted:]
Processing is performed assuming that FALSE is specified.

RESOURCE = OsResource1;
RESOURCE = OsResource2;
RESOURCE = OsResource3;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 207 of 282
Jun 10, 2015

B.4.7  OS information

The following items are defined as the basic information required for RV850 operation.

- Identifier "OsOS"

- Maximum number of cores "OsNumberOfCores"

- Scalability class "OsScalabilityClass"

- Stack monitoring facilities "OsStackMonitoring"

- Status type "OsStatus"

- OSErrorGetServiceId "OsUseGetServiceId"

- OSError_SystemService_Parameter "OsUseParameterAccess"

- Scheduler resource "OsUseResScheduler"

- FPSR saving/restoring "OsSaveFpuReg"

- Base address "OsInterruptBaseAddress"

- System stack size "OsStackSize"

- FPSR default value "OsDefaultFPSRValue"

- StartupHook "OsStartupHook"

- ShutdownHook "OsShutdownHook"

- PostTaskHook "OsPostTaskHook"

- PreTaskHook "OsPreTaskHook"

- ErrorHook "OsErrorHook"

- ProtectionHook "OsProtectionHook"

- Memory area identifier "OsMemoryAreaNameRef"

- Attribute "OsMemoryAreaAttribute"

Only one set of OS information can be defined.
The format for defining OS information is shown below. Strings surrounded by square brackets "[ ]" are optional items 

that can be omitted.

Figure B.10 OS Information Definition Format

OS OsOS {
    [ CORENUMBER = OsNumberOfCores; ]
    [ SCALABILITYCLASS = OsScalabilityClass; ]
    STACKMONITORING = OsStackMonitoring;
    STATUS = OsStatus;
    USEGETSERVICEID = OsUseGetServiceId;
    USEPARAMETERACCESS = OsUseParameterAccess;
    USERESSCHEDULER = OsUseResScheduler;
    SAVEFPUREG = OsSaveFpuReg;
    INTERRUPTBASE = OsInterruptBaseAddress;
    STACKSIZE = OsStackSize;
    [ DEFAULTFPSRVALUE = OsDefaultFPSRValue; ]
    STARTUPHOOK = OsStartupHook;
    SHUTDOWNHOOK = OsShutdownHook;
    POSTTASKHOOK = OsPostTaskHook;
    PRETASKHOOK = OsPreTaskHook;
    ERRORHOOK = OsErrorHook;
    PROTECTIONHOOK = OsProtectionHook;
    [ MEMORYAREA = OsMemoryAreaNameRef {
        ATTRIBUTE = OsMemoryAreaAttribute;
    }; ]
};



R20UT2768EJ0103  Rev.1.03 Page 208 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

(1) Identifier "OsOS"
Specifies the OS identifier.
Only a name can be specified as OsOS.

(2) Maximum number of cores "OsNumberOfCores"
Specifies the maximum number of cores that can be controlled by the RV850.
Only 0x1 can be specified as OsNumberOfCores.

Remark The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 65535. 
In the RV850, however, only 0x1 can be specified for this item.

[If omitted:]
Processing is performed assuming that 0x1 is specified.

(3) Scalability class "OsScalabilityClass"
Specifies the scalability class of the RV850.
Only SC1, SC3, or AUTO can be specified as OsScalabilityClass.

SC1: Scalability class 1
SC3: Scalability class 3
AUTO: The configurator selects the most appropriate scalability class in accordance with the content of the CF 
file.

Remark 1. The AUTOSAR specifications prescribe that the keywords that can be specified for this item are 
SC1, SC2, SC3, and SC4. In the RV850, however, SC2 and SC4 are not supported.

Remark 2. The AUTOSAR specifications do not prescribe the keyword AUTO. This is our original keyword 
added to the RV850.

[If omitted:]
Processing is performed assuming that AUTO is specified.

(4) Stack monitoring facilities "OsStackMonitoring"
Specifies whether to use the stack monitoring facilities when a processing program (task or interrupt service rou-
tine) performs processing.
Only TRUE or FALSE can be specified as OsStackMonitoring.

TRUE: Used
FALSE: Not used

Remark 1. See "3.1.2Stack monitoring facilities" and "4.1.1Stack monitoring facilities" for details about the 
stack monitoring facilities.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(5) Status type "OsStatus"
Specifies the status type of the RV850.
Only EXTENDED can be specified as OsStatus.

EXTENDED: Extended status

(6) OSErrorGetServiceId "OsUseGetServiceId"
Specifies whether to use utility function OSErrorGetServiceId.
Only TRUE or FALSE can be specified as OsUseGetServiceId.

TRUE: Used
FALSE: Not used

Remark 1. The AUTOSAR specifications prescribe that whether to use utility function OSErrorGetServiceId 
should be specified in this item. In the RV850, however, processing is performed assuming that 
TRUE is specified regardless of the actual definition in this item.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(7) OSError_SystemService_Parameter "OsUseParameterAccess"
Specifies whether to use utility function OSError_SystemService_Parameter.
Only TRUE or FALSE can be specified as OsUseParameterAccess.



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 209 of 282
Jun 10, 2015

TRUE: Used
FALSE: Not used

Remark 1. The AUTOSAR specifications prescribe that whether to use utility function 
OSError_SystemService_Parameter should be specified in this item. In the RV850, however, pro-
cessing is performed assuming that TRUE is specified regardless of the actual definition in this 
item.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(8) Scheduler resource "OsUseResScheduler"
Specifies whether to use a scheduler resource (identifier: RES_SCHEDULER). Only TRUE or FALSE can be 
specified as OsUseResSchedule.

TRUE: Used
FALSE: Not used

Remark 1. See "5.1.1Ceiling values" for details about the scheduler resource.

Remark 2. The AUTOSAR specifications prescribe that whether to use a scheduler resource should be speci-
fied in this item. In the RV850, however, whether to use a scheduler resource is determined accord-
ing to whether identifier RES_SCHEDULER is specified in Identifier "OsResource" regardless of 
the definition in this item.

Remark 3. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(9) FPSR saving/restoring "OsSaveFpuReg"
Specifies whether to make the RV850 save and restore the floating-point configuration/status register (FPSR) 
when execution switches from a processing program (such as a task, an interrupt service routine, or a hook rou-
tine) to another. Only TRUE or FALSE can be specified as OsSaveFpuReg.

TRUE: RV850 saves and restores FPSR.
FALSE: RV850 does not save or restore FPSR.

Remark 1. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(10) Base address "OsInterruptBaseAddress"
Specifies the base address of the interrupt handler address table.
Only a 0x200-byte aligned value from 0x0 to 0xFFFFFE00 can be specified as OsInterruptBaseAddress.

Remark 1. The RV850 uses the table reference method to select an interrupt handler address.

Remark 2. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(11)  System stack size "OsStackSize"
Specifies the stack size used by the system.
Only a 0x4-byte aligned value from 0x4 to 0xFFFFFFC can be specified for OsStackSize.

Remark 1. See "C.7.1System stack" for details about the size specified in this item.

Remark 2. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(12) FPSR default value "OsDefaultFPSRValue"
This specifies the default value to be set in the floating-point configuration/status register (FPSR) when a process-
ing program (such as a task, an interrupt service routine, or a hook routine) is activated. Only a value from 0x0 to 
0xFFFFFFFF can be specified as OsDefaultFPSRValue.

Remark 1. This item can be specified only when TRUE is defined for FPSR saving/restoring "OsSaveF-
puReg".

Remark 2. The value defined for FPSR "OsAppDefaultFPSRValue" has precedence for the setting of the pro-
cessing programs (tasks, interrupt service routines, or hook routines) belonging to the OS-Applica-
tion.



R20UT2768EJ0103  Rev.1.03 Page 210 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 3. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

[If omitted:]
Processing is performed assuming that reset value of the target device is specified.

(13) StartupHook "OsStartupHook"
Specifies whether to use common hook routine StartupHook.
Only TRUE or FALSE can be specified as OsStartupHook.

TRUE: Used
FALSE: Not used

Remark In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(14) ShutdownHook "OsShutdownHook"
Specifies whether to use common hook routine ShutdownHook. Only TRUE or FALSE can be specified as OsS-
hutdownHook.

TRUE: Used
FALSE: Not used

Remark In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(15) PostTaskHook "OsPostTaskHook"
Specifies whether to use common hook routine PostTaskHook. Only TRUE or FALSE can be specified as OsPost-
TaskHook.

TRUE: Used
FALSE: Not used

Remark In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(16) PreTaskHook "OsPreTaskHook"
Specifies whether to use common hook routine PreTaskHook. Only TRUE or FALSE can be specified as OsPre-
TaskHook.

TRUE: Used
FALSE: Not used

Remark In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(17) ErrorHook "OsErrorHook"
Specifies whether to use common hook routine ErrorHook. Only TRUE or FALSE can be specified as OsError-
Hook.

TRUE: Used
FALSE: Not used

Remark In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(18) ProtectionHook "OsProtectionHook"
Specifies whether to use common hook routine ProtectionHook. Only TRUE or FALSE can be specified as OsPro-
tectionHook.

TRUE: Used
FALSE: Not used

Remark 1. When FALSE is specified for this item and if a protection violation (a stack overflow, illegal memory 
access, or occurrence of an exception) is detected, ShutdownOS will be issued.

Remark 2. TRUE can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".
The AUTOSAR specifications prescribe that a warning should be output when SC1 is defined for 
Scalability class "OsScalabilityClass" and TRUE is defined for this item. In the RV850, however, 
fatal error E4003 will be output.



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 211 of 282
Jun 10, 2015

Remark 3. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(19) Memory area identifier "OsMemoryAreaNameRef"
Specifies the identifier of the target memory area for access protection in all OS-Applications.
Only Memory area identifier "OsSystemMemoryArea" can be specified for OsMemoryAreaNameRef.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".

Remark 2. This item can be specified multiple times (when G3K is defined for Core identifier "OsSystemCpu-
Core": up to 3 times, when G3M or G3KH or G3MH is defined for Core identifier "OsSystemCpu-
Core": up to 7 times) as shown below.

Remark 3. The target memory area for access protection only in a specific OS-Application should be defined 
for Memory area identifier "OsAppMemoryAreaNameRef".

Remark 4. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(a) Attribute "OsMemoryAreaAttribute"
Specifies the attribute to assign to the memory area.
Only CODE, CONST, or DATA can be specified as OsMemoryAreaAttribute.

CODE: Readable and executable
CONST: Readable
DATA: Readable and writeable

Remark 1. If a processing program (a task, an interrupt service routine, or a hook routine) performs memory 
access other than that specified in this item, processing is performed (ProtectionHook is called or 
ShutdownOS is issued) in accordance with the definition in ProtectionHook "OsProtectionHook".

Remark 2. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

MEMORYAREA = OsSystemMemoryArea11 {
    ATTRIBUTE = CODE;
};
MEMORYAREA = OsSystemMemoryArea12 {
    ATTRIBUTE = CONST;
};
MEMORYAREA = OsSystemMemoryArea13 {
    ATTRIBUTE = DATA;
};



R20UT2768EJ0103  Rev.1.03 Page 212 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

B.4.8  Resource information

The following items are defined as required information for implementing the RESOURCE MANAGEMENT provided by 
the RV850.

- Identifier "OsResource"

- Ceiling value "OsResourcePriority"

- Type "OsResourceProperty"

- OS-Application identifier "OsResourceAccessingApplication"

- Resource identifier "OsResourceLinkedResourceRef"

0 to 1023 sets of (1022 if the scheduler resource is used) resource information can be specified.

Remark In the RV850, if the counter defined in this information is not used in Task information or Interrupt service 
routine information, fatal error E4006 will be output.

The format for defining resource information is shown below. Strings surrounded by square brackets "[ ]" are optional 
items that can be omitted.

Figure B.11 Resource Information Definition Format

(1) Identifier "OsResource"
Specifies the resource identifier.
Only a name can be specified as OsResource.

Remark When using the scheduler resource, specify RES_SCHEDULER for this item. See "5.1.1Ceiling 
values" for details about the scheduler resource.

(2) Ceiling value "OsResourcePriority"
Specifies the ceiling value of the resource.
Only a value from 0 to 29, INTPRI0 to INTPRI15 (or INTPRI0 to INTPRI7 when the target device is G3K), or AUTO 
can be specified as OsResourcePriority.

Remark 1. This is an optional item. When the specification is omitted, the ceiling value is automatically calcu-
lated and assigned as described in Remark 5. Except for the case of generating the scheduler 
resource, it is recommended to omit the specification of the ceiling value by this item, and instead 
specify  Resource identifier "OsTaskResourceRef" to be acquired by the task or Resource identifier 
"OsIsrResourceRef" to be acquired by the interrupt service routine (category 2).
See "5.1.1 Ceiling values" for details about the ceiling value.

Remark 2. The OsResourcePriority value should be higher than the priority of the processing programs that 
use this resource and equal to or lower than the highest priority of all interrupt service routines (cat-
egory 2) for the OS-Application to which this resource belongs.

Remark 3. To generate the scheduler resource, RES_SCHEDULER should be defined for Identifier "OsRe-
source", and priority 29 should be defined for OsResourcePriority.

Remark 4. Values 0 to 29 specified in OsResourcePriority are priority levels, where 0 is the lowest priority and 
29 is the highest. For INTPRIx, INTPRI0 is the lowest priority and INTPRI15 is the highest.

Remark 5. When AUTO is specified, the highest priority in all tasks and interrupt service routines, which 
acquire the resource, defined in the CF file is obtained, and that priority is assigned as the ceiling 
value.
Consequently, if a definition is made as shown below, the OsResource1 ceiling value will be 
"INTPRI5".

RESOURCE OsResource {
    [ PRIORITY = OsResourcePriority; ]
    RESOURCEPROPERTY = OsResourceProperty;
    ACCESSING_APPLICATION = OsResourceAccessingApplication;
    [ LINKEDRESOURCE = OsResourceLinkedResourceRef; ]
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 213 of 282
Jun 10, 2015

Remark 6. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

[If omitted:]
Processing is performed assuming that AUTO is specified.

(3) Type "OsResourceProperty"
Specifies the resource type.
Only STANDARD, INTERNAL, or LINKED can be specified as OsResourceProperty.

STANDARD: Normal resource
INTERNAL: Internal resource
LINKED: Linked resource

Remark For details of the normal resource, internal resource, and linked resource, see "5.1Overview".

(4) OS-Application identifier "OsResourceAccessingApplication"
Specifies the identifier of an OS-Application that defines objects (tasks, interrupt service routines, and alarms) to 
which access privileges to this resource should be assigned.
Only Identifier "OsApplication" can be specified as OsResourceAccessingApplication.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".

Remark 2. When LINKED is defined for Type "OsResourceProperty", this item does not need to be defined 
because the same value as the OS-Application identifier for the resource defined for Resource 
identifier "OsResourceLinkedResourceRef" is assigned to the OS-Application identifier of this 
resource.

Remark 3. This item can be specified multiple times (up to 31 times) as shown below.

(5) Resource identifier "OsResourceLinkedResourceRef"
Specifies the identifier of the resource that will inherit the ceiling value.
Only Identifier "OsResource" can be specified as OsResourceLinkedResourceRef.

Remark This item can be specified only when LINKED is defined for Type "OsResourceProperty".

TASK OsTask1 {
    ..................
    ..................
    PRIORITY = 29;
    ..................
    ..................
    RESOURCE = OsResource1;
    ..................

    ..................
};
ISR OsISR1 {
    ..................
    ..................
    PRIORITY = INTPRI5;
    ..................
    ..................
    RESOURCE = OsResource1;
    ..................
    ..................
};
RESOURCE OsResource1 {
    PRIORITY = AUTO;
};

ACCESSING_APPLICATION = OsApplication1;
ACCESSING_APPLICATION = OsApplication2;
ACCESSING_APPLICATION = OsApplication3;



R20UT2768EJ0103  Rev.1.03 Page 214 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

B.4.9  Schedule table information 

The following items are defined as required information for implementing the SCHEDULE MANAGEMENT provided by 
the RV850.

- Identifier "OsScheduleTable"

- Schedule count value "OsScheduleTableDuration"

- Cyclic property "OsScheduleTableRepeating"

- OS-Application identifier "OsSchTblAccessingApplication"

- Counter identifier "OsScheduleTableCounterRef"

- Initial state "OsScheduleTableAutostart"

- Type "OsScheduleTableAutostartType"

- Offset count value "OsScheduleTableStartValue"

- Application mode "OsScheduleTableAppModeRef"

- Expiry conditions/expiry action

- Expiry count value "OsScheduleTblExpPointOffset"

- Expiry action (task activation)

- Task identifier "OsScheduleTableActivateTaskRef"

- Expiry action (event mask setting)

- Event identifier "OsScheduleTableSetEventRef"

- Task identifier "OsScheduleTableSetEventTaskRef"

The sum of the numbers of schedule table information sets and Alarm information sets must be between 0 and 1023.

Remark 1. In the RV850, if SC3 is defined for Scalability class "OsScalabilityClass" and the counter defined in this 
information is not defined in the OS-Application information, fatal error E4013 will be output.

Remark 2. The AUTOSAR specifications prescribe ADJUSTABLEEXPPOINT and 
LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION as schedule table information items. However, the 
RV850 does not support them.

The format for defining schedule table information is shown below. Strings surrounded by square brackets "[ ]" are 
optional items that can be omitted.

Figure B.12 Schedule table information

SCHEDULETABLE OsScheduleTable {
    LENGTH = OsScheduleTableDuration;
    PERIODIC = OsScheduleTableRepeating;
    [ ACCESSING_APPLICATION = OsSchTblAccessingApplication; ]
    COUNTER = OsScheduleTableCounterRef;
    [ AUTOSTART = OsScheduleTableAutostart {
        TYPE = OsScheduleTableAutostartType;
        STARTVALU = OsScheduleTableStartValue;
        [ APPMODE = OsScheduleTableAppModeRef; ]
    }; ]
    ACTION {
        OFFSET = OsScheduleTblExpPointOffset;
        [ ACTIVATETASK {
            TASK = OsScheduleTableActivateTaskRef;
        }; ]
        [ SETEVENT {
            EVENT = OsScheduleTableSetEventRef;
            TASK = OsScheduleTableSetEventTaskRef;
        }; ]
    };
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 215 of 282
Jun 10, 2015

(1) Identifier "OsScheduleTable"
Specifies the schedule table identifier.
Only a name can be specified as OsScheduleTable.

(2) Schedule count value "OsScheduleTableDuration"
Specifies the schedule count value of the schedule table.
Only a value from the Minimum cycle value "OsCounterMinCycle" to Maximum count value "OsCounterMaxAl-
lowedValue" plus 0x1 can be specified for OsScheduleTableDuration.

(3) Cyclic property "OsScheduleTableRepeating"
Specifies whether to assign the cyclic property to the schedule table. Only TRUE or FALSE can be specified as 
OsScheduleTableRepeating.

TRUE: Cyclic property is assigned.
FALSE: Cyclic property is not assigned.

Remark 1. When TRUE is specified in OsScheduleTableRepeating, the schedule table operates as a cyclic 
schedule table; when FALSE is specified, it operates as a one-shot schedule table.

Remark 2. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

(4) OS-Application identifier "OsSchTblAccessingApplication"
Specifies the identifier of an OS-Application that defines objects (tasks, interrupt service routines, and counters) to 
which access privileges to this schedule table should be assigned. Only Identifier "OsApplication" can be specified 
as OsSchTblAccessingApplication.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".

Remark 2. The identifier of the OS-Application to which this schedule table belongs does not need to be spec-
ified as OsSchTblAccessingApplication.

Remark 3. This item can be specified multiple times (up to 31 times) as shown below.

[If omitted:]
Processing is performed assuming that access privileges to this schedule table are assigned only to the objects 
(tasks, interrupt service routines, and counters) defined in the OS-Application to which this schedule table 
belongs.

(5) Counter identifier "OsScheduleTableCounterRef"
Specifies the identifier of the counter to associate (the counter that holds the count for confirming whether the start 
conditions/expiry conditions have been met).
Only Identifier "OsCounter" can be specified as OsScheduleTableCounterRef.

Remark When SC3 is defined for Scalability class "OsScalabilityClass" and "a counter that does not belong 
to the OS-Application to which this schedule table belongs (counter belonging to another OS-Appli-
cation)" is specified for this counter identifier, the identifier of the OS-Application to which the coun-
ter belongs should be defined for OS-Application identifier "OsSchTblAccessingApplication".

(6) Initial state "OsScheduleTableAutostart"
Specifies the initial state of the schedule table.
Only TRUE or FALSE can be specified as OsScheduleTableAutostart.

TRUE: Depends on StartOS parameter "Mode".
FALSE: STOPPED state.

Remark 1. When this item is set to "TRUE", the initial state of the schedule table changes as follows according 
to the value set in StartOS parameter "Mode".

[Values of Mode and Application mode "OsScheduleTableAppModeRef" match]

- RUNNING state (other combination defined)

[Values of Mode and Application mode "OsScheduleTableAppModeRef" do not match]

- STOPPED state

ACCESSING_APPLICATION = OsApplication1;
ACCESSING_APPLICATION = OsApplication2;
ACCESSING_APPLICATION = OsApplication3;



R20UT2768EJ0103  Rev.1.03 Page 216 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 2. The format for specifying FALSE is as follows:

Remark 3. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

[If omitted:]
Processing is performed assuming that FALSE is specified.

(a) Type "OsScheduleTableAutostartType"
Specifies the type of the schedule table.
Only ABSOLUTE or RELATIVE can be specified as OsScheduleTableAutostartType.

ABSOLUTE: Absolute schedule table
RELATIVE: Relative schedule table

Remark The AUTOSAR specifications prescribe that a warning should be output when an illegal value is 
specified for this item. In the RV850, however, fatal error E4003 will be output.

(b) Offset count value "OsScheduleTableStartValue"
Specifies the offset count value from the issuing of StartOS until the start of schedule counting.
The values that can be specified as OsScheduleTableRelOffset depend on the value specified in Type "OsS-
cheduleTableAutostartType".

- ABSOLUTE
Only a value from 0x0 to the value obtained by "Maximum count value "OsCounterMaxAllowedValue"- Initial-
Offset" can be specified.

- RELATIVE
Only a value from 0x1 to the value obtained by "Maximum count value "OsCounterMaxAllowedValue"- Initial-
Offset" can be specified.

Remark InitialOffset indicates the minimum of Expiry count value "OsScheduleTblExpPointOffset" defined 
for this schedule table.

(c) Application mode "OsScheduleTableAppModeRef"
Specifies the application mode of the schedule table. Only Application mode "OsAppMode" can be specified for 
OsScheduleTableAppModeRef.

Remark 1. Processing is performed assuming that the default application mode OSDEFAULTAPPMODE is 
defined regardless of whether it is actually defined.

Remark 2. This item can be specified multiple times (up to 127 times) as shown below.

[If omitted:]
The AUTOSAR specifications prescribe that this item must not be omitted. In the RV850, however, when this 
item is omitted, processing is performed assuming that OSDEFAULTAPPMODE is specified.

(7) Expiry conditions/expiry action
Specifies the expiry conditions and expiry action for the schedule table.

Remark This item can be specified multiple times (up to 1023 times) as shown below.

AUTOSTART = FALSE;

APPMODE = OSDEFAULTAPPMODE;
APPMODE = OsAppMode1;
APPMODE = OsAppMode2;

ACTION {
    OFFSET = 0x7;
    ACTIVATETASK {
        TASK = OsTask2;
    };
};
ACTION {
    OFFSET = 0x3;
    SETEVENT {
        EVENT = OsEvent1;
        TASK = OsTask1;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 217 of 282
Jun 10, 2015

(a) Expiry count value "OsScheduleTblExpPointOffset"
Specifies the expiry count value of the schedule table.
The value that can be specified for OsScheduleTblExpPointOffset depends on the definition of Cyclic property 
"OsScheduleTableRepeating".

- TRUE 
Only 0x0 or a value from Minimum cycle value "OsCounterMinCycle" to the value obtained by "Schedule 
count value "OsScheduleTableDuration" - Minimum cycle value "OsCounterMinCycle"" can be specified.

- FALSE 
Only 0x0 or a value from Minimum cycle value "OsCounterMinCycle" to Schedule count value "OsScheduleT-
ableDuration" can be specified.

Remark 1. OsScheduleTblExpPointOffset is the relative count value from Offset count value "OsScheduleT-
ableStartValue" until the expiry action is executed.

Remark 2. When multiple Expiry conditions/expiry action are defined, the interval between expiry points (the 
timing for execution of expiry action) must be at least Minimum cycle value "OsCounterMinCy-
cle".

(b) Expiry action (task activation)
Specifies whether to execute task activation processing (processing equivalent to ActivateTask) as the expiry 
action of the schedule table.

Remark This item can be specified multiple times (up to 1023 times) as shown below.
The total maximum number of processes that can be specified for each expiry condition (sum of 
task activation ACTIVATETASK and event mask setting SETEVENT) is 1023.

<1> Task identifier "OsScheduleTableActivateTaskRef"
Specifies the identifier of the task to activate when the expiry conditions are met.
Only Identifier "OsTask" can be specified as OsScheduleTableActivateTaskRef.

Remark When SC3 is defined for Scalability class "OsScalabilityClass" and "a task that does not 
belong to the OS-Application to which this schedule table belongs (task belonging to another 
OS-Application)" is specified for this task identifier, the identifier of the OS-Application to which 
this schedule table belongs should be defined for OS-Application identifier "OsTaskAccessin-
gApplication".

(c) Expiry action (event mask setting)
Specifies whether to set the event mask (processing equivalent to SetEvent) as the expiry action of the sched-
ule table.

Remark This item can be specified multiple times (up to 1023 times) as shown below.

    };
};
ACTION {
    OFFSET = 0xF;
    ACTIVATETASK {
        TASK = OsTask4;
    };
    SETEVENT {
        EVENT = OsEvent3;
        TASK = OsTask3;
    };
};

ACTIVATETASK {
    TASK = OsTask1;
};
ACTIVATETASK {
    TASK = OsTask2;
};
ACTIVATETASK {
    TASK = OsTask3;
};



R20UT2768EJ0103  Rev.1.03 Page 218 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

The total maximum number of processes that can be specified for each expiry condition (sum of 
task activation ACTIVATETASK and event mask setting SETEVENT) is 1023.

<1> Event identifier "OsScheduleTableSetEventRef"
Specifies the identifier of the event that holds the event mask to set when the expiry conditions are met.
Only Identifier "OsEvent" can be specified as OsScheduleTableSetEventRef.

Remark The event specified here must be assigned to the task specified by Task identifier "OsSchedu-
leTableSetEventTaskRef".

<2> Task identifier "OsScheduleTableSetEventTaskRef"
Specifies the identifier of the task for which the event mask is to be set when the expiry conditions are met. 
Only Identifier "OsTask" can be specified as OsScheduleTableSetEventTaskRef.

Remark When SC3 is defined for Scalability class "OsScalabilityClass" and "a task that does not 
belong to the OS-Application to which this schedule table belongs (task belonging to another 
OS-Application)" is specified for this task identifier, the identifier of the OS-Application to which 
this schedule table belongs should be defined for OS-Application identifier "OsTaskAccessin-
gApplication".

SETEVENT {
    EVENT = OsEvent1;
    TASK = OsTask1;
};
SETEVENT {
    EVENT = OsEvent2;
    TASK = OsTask2;
};
SETEVENT {
    EVENT = OsEvent2;
    TASK = OsTask2;
};
SETEVENT {
    EVENT = OsEvent3;
    TASK = OsTask3;
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 219 of 282
Jun 10, 2015

B.4.10  Task information 

The following items are defined as required information for implementing the TASK MANAGEMENT provided by the 
RV850.

- Identifier "OsTask"

- Maximum activation request count "OsTaskActivation"

- Initial priority "OsTaskPriority"

- Scheduling attribute "OsTaskSchedule"

- Task stack size "OsTaskStackSize"

- OS-Application identifier "OsTaskAccessingApplication"

- Event identifier "OsTaskEventRef"

- Resource identifier "OsTaskResourceRef"

- Initial state "OsTaskAutostart"

- Application mode "OsTaskAppModeRef"

- Timing protection "OsTaskTimingProtection"

0 to 1023 sets of task information can be defined.

Remark 1. The AUTOSAR specifications do not prescribe the operation when neither the this information nor Inter-
rupt service routine information is defined. In the RV850, however, fatal error E4011 will be output in this 
case.

Remark 2. In the RV850, if SC3 is defined for Scalability class "OsScalabilityClass" and the task defined in this infor-
mation is not defined in the OS-Application information, fatal error E4013 will be output.

The format for defining task information is shown below. Strings surrounded by square brackets "[ ]" are optional items 
that can be omitted.

Figure B.13 Task Information Definition Format

(1) Identifier "OsTask"
Specifies the task identifier.
Only a name can be specified as OsTask.

Remark When a task is defined as follows, the value set in OsTask should be "OsTask1".

(2) Maximum activation request count "OsTaskActivation"
Specifies the maximum number of activation requests that can be counted.
Only a value from 0x1 to 0x7F can be specified as OsTaskActivation.

TASK OsTask {
    ACTIVATION = OsTaskActivation;
    PRIORITY = OsTaskPriority;
    SCHEDULE = OsTaskSchedule;
    [ STACKSIZE = OsTaskStackSize; ]
    [ ACCESSING_APPLICATION = OsTaskAccessingApplication; ]
    [ EVENT = OsTaskEventRef; ]
    [ RESOURCE = OsTaskResourceRef; ]
    [ AUTOSTART = OsTaskAutostart {
        [ APPMODE = OsTaskAppModeRef; ]
    }; ]
    [ TIMING_PROTECTION = OsTaskTimingProtection; ]
};

TASK ( OsTask1 ) {
    ..................
    ..................
}



R20UT2768EJ0103  Rev.1.03 Page 220 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 1. When the Event identifier "OsTaskEventRef" is defined, only 0x1 can be specified as OsTaskActi-
vation.

Remark 2. The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 
0xFFFFFFFF. In the RV850, however, the maximum specifiable value for this item is 0x7F.

(3) Initial priority "OsTaskPriority"
Specifies the initial priority of the task.
Only a value from 0 to 29 can be specified as OsTaskPriority.

Remark 1. Values 0 to 29 specified in OsTaskPriority are priority levels, where 0 is the lowest priority and 29 is 
the highest.

Remark 2. The AUTOSAR specifications prescribe that the maximum specifiable value for this item is 
0xFFFFFFFF. In the RV850, however, the maximum specifiable value for this item is 29.

(4) Scheduling attribute "OsTaskSchedule"
Specifies the task scheduling attribute.
Only NON or FULL can be specified as OsTaskSchedule.

NON: Non-preemptive
FULL: Preemptive

Remark See "12.1Overview" for details about the scheduling attribute.

(5) Task stack size "OsTaskStackSize"
Specifies the stack size (in bytes) of the task.
Only a 0x4-byte aligned value from 0x4 to 0xFFFFFFC can be specified for OsTaskStackSize.

Remark 1. This item must always be specified when Event identifier "OsTaskEventRef" is defined.

Remark 2. See "C.7.3Task stack (extended task)" for details about the size specified in this item.

Remark 3. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.

(6) OS-Application identifier "OsTaskAccessingApplication"
Specifies the identifier of an OS-Application that defines objects (tasks, interrupt service routines, alarms, and 
schedule tables) to which access privileges to this task should be assigned. Only Identifier "OsApplication" can be 
specified as OsTaskAccessingApplication.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".
The AUTOSAR specifications prescribe that a warning should be output when a value other than 
SC3 and SC4 is defined for Scalability class "OsScalabilityClass". In the RV850, however, fatal 
error E4003 will be output.

Remark 2. The identifier of the OS-Application to which this task belongs does not need to be specified as 
OsTaskAccessingApplication.

Remark 3. This item can be specified multiple times (up to 31 times) as shown below.

[If omitted:]
Processing is performed assuming that access privileges to this task are assigned only to the objects (tasks, inter-
rupt service routines, and counters) defined in the OS-Application to which this task belongs.

(7) Event identifier "OsTaskEventRef"
Specifies the identifier of the event assigned to the task.
Only Identifier "OsEvent" can be specified as OsTaskEventRef.

Remark This item can be specified multiple times (up to 32 times) as shown below.

ACCESSING_APPLICATION = OsApplication1;
ACCESSING_APPLICATION = OsApplication2;
ACCESSING_APPLICATION = OsApplication3;

EVENT = OsEvent1;
EVENT = OsEvent2;
EVENT = OsEvent3;



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 221 of 282
Jun 10, 2015

[If omitted:]
Processing is performed assuming that no event is assigned to the task.

(8) Resource identifier "OsTaskResourceRef"
Specifies the identifier of the resource that is manipulated (acquired or released) by the task. Only Identifier 
"OsResource" can be specified as OsTaskResourceRef.

Remark 1. When SC3 is defined for Scalability class "OsScalabilityClass", the identifier of the OS-Application 
to which this task belongs should be defined for OS-Application identifier "OsResourceAccessin-
gApplication".

Remark 2. This item can be specified multiple times (up to 1023 times) as shown below.
However, for the resources defined as INTERNAL in Type "OsResourceProperty", this item can be 
defined only one time.

[If omitted:]
Processing is performed assuming that the task does not manipulate (acquire or release) resources.

(9) Initial state "OsTaskAutostart"
Specifies the initial state of the task.
Only TRUE or FALSE can be specified as OsTaskAutostart.

TRUE: Depends on StartOS parameter "Mode".
FALSE: SUSPENDED state

Remark 1. When this item is set to "TRUE", the initial state of the task changes as follows according to the 
value set in StartOS parameter "Mode".

[Values of "Mode" and Application mode "OsTaskAppModeRef" match]

- READY state

[Values of "Mode" and Application mode "OsTaskAppModeRef" do not match]

- SUSPENDED state

Remark 2. The format for specifying FALSE is as follows:

Remark 3. In the ARXML format, specify 1 for this item to select the processing equivalent to TRUE or specify 
0 to select the processing equivalent to FALSE.

[If omitted:]
Processing is performed assuming that FALSE is specified.

(a) Application mode "OsTaskAppModeRef"
Specifies the application mode of the task.
Only Application mode "OsAppMode" can be specified as OsTaskAppModeRef.

Remark 1. Processing is performed assuming that the default application mode OSDEFAULTAPPMODE is 
defined regardless of whether it is actually defined.

Remark 2. This item can be specified multiple times (up to 127 times) as shown below.

[If omitted:]
The AUTOSAR specifications prescribe that this item must not be omitted. In the RV850, however, when this 
item is omitted, processing is performed assuming that OSDEFAULTAPPMODE is specified.

RESOURCE = OsResource1;
RESOURCE = OsResource2;
RESOURCE = OsResource3;

AUTOSTART = FALSE;

APPMODE = OSDEFAULTAPPMODE;
APPMODE = OsAppMode1;
APPMODE = OsAppMode2;



R20UT2768EJ0103  Rev.1.03 Page 222 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

(10) Timing protection "OsTaskTimingProtection"
Specifies whether to use the timing protection function when task processing is performed. Only FALSE can be 
specified as OsTaskTimingProtection.

FALSE: Not used

Remark 1. The AUTOSAR specifications prescribe that use of the timing protection function should be dis-
abled when SC1 or SC3 is defined for Scalability class "OsScalabilityClass".
In the RV850, when an illegal value is specified for this item, fatal error E4003 will be output.

Remark 2. In the ARXML format, specify 0 for this item to select the processing equivalent to FALSE.

[If omitted:]
Processing is performed assuming that FALSE is specified.



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 223 of 282
Jun 10, 2015

B.4.11  System information

The following items are defined as basic information required for RV850 operation as well as information required to 
implement the Memory protection provided by the RV850.

- Maximum exception code "OsSystemMaxExceptionCode"

- Operating frequency "OsSystemSystemClock"

- Core identifier "OsSystemCpuCore"

- EICn for INTC1 "OsSystemINTC1EIControlAddress"

- IMRm for INTC1 "OsSystemINTC1EIMaskAddress"

- EICn for INTC2 "OsSystemINTC2EIControlAddress"

- IMRm for INTC2 "OsSystemINTC2EIMaskAddress"

- Memory area identifier "OsSystemMemoryArea"

- Exception code "OsCounterExceptionCode"

- Size "AreaSizeValue"

- End address "AreaEndAddressValue"

Only one set of system information can be defined.
The format for defining system information is shown below. Strings surrounded by square brackets "[ ]" are optional 

items that can be omitted.

Figure B.14 System Information Definition Format

(1) Maximum exception code "OsSystemMaxExceptionCode"
Specifies the maximum value of the exception codes for the EI level interrupts to be managed by the RV850.
Only a value from 0x1000 to 0x11FF can be specified as OsSystemMaxExceptionCode.

Remark The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(2) Operating frequency "OsSystemSystemClock"
Specifies the operating frequency (CPU clock in kHz) of the target device.
Only a value from 0x1 to 0xFFFFFFFF can be specified as OsSystemSystemClock.

Remark The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(3) Core identifier "OsSystemCpuCore"
Specifies the identifier of the target core for control by the RV850.
Only G3K or G3M or G3KH or G3MH can be specified as OsSystemCpuCore.

Remark The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(4) EICn for INTC1 "OsSystemINTC1EIControlAddress"
Specifies the start address of the EI level interrupt control register (EICn) for INTC1.
Only a value from 0x0 to 0xFFFFFFFF can be specified as OsSystemINTC1EIControlAddress.

SYSTEM {
    MAXEXCEPTIONCODE = OsSystemMaxExceptionCode;
    SYSTEM_CLOCK = OsSystemSystemClock;
    CPUCORE = OsCpuCore;
    INTC1EICTRL = OsSystemINTC1EIControlAddress;
    INTC1EIMASK = OsSystemINTC1EIMaskAddress;
    INTC2EICTRL = OsSystemINTC2EIControlAddress;
    INTC2EIMASK = OsSystemINTC2EIMaskAddress;
    [ MEMORYAREA OsSystemMemoryArea {
        STARTADDRESS = AreaStartAddressValue;
        [ SIZE = AreaSizeValue; ]
        [ ENDADDRESS = AreaEndAddressValue; ]
    }; ]
};



R20UT2768EJ0103  Rev.1.03 Page 224 of 282
Jun 10, 2015

RV850 B.  CF FILES (OIL)

Remark 1. See the user's manual of the target device for details about the value specified in 
OsSystemINTC1EIControlAddress.

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(5) IMRm for INTC1 "OsSystemINTC1EIMaskAddress"
Specifies the address of the EI level interrupt mask register (IMRm) for INTC1.
Only a value from 0x0 to 0xFFFFFFFF can be specified as OsSystemINTC1EIMaskAddress.

Remark 1. See the user's manual of the target device for details about the value specified in 
OsSystemINTC1EIMaskAddress.

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(6) EICn for INTC2 "OsSystemINTC2EIControlAddress"
Specifies the start address of the EI level interrupt control register (EICn) for INTC2.
Only a value from 0x0 to 0xFFFFFFFF can be specified as OsSystemINTC2EIControlAddress.

Remark 1. See the user's manual of the target device for details about the value specified in 
OsSystemINTC2EIControlAddress.

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(7) IMRm for INTC2 "OsSystemINTC2EIMaskAddress"
Specifies the address of the EI level interrupt mask register (IMRm) for INTC2.
Only a value from 0x0 to 0xFFFFFFFF can be specified as OsSystemINTC2EIMaskAddress.

Remark 1. See the user's manual of the target device for details about the value specified in 
OsSystemINTC2EIMaskAddress.

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(8) Memory area identifier "OsSystemMemoryArea"
Specifies the identifier of the target memory area for access protection by the RV850.
Only a name can be specified as OsSystemMemoryArea.

Remark 1. This item can be specified only when SC3 is defined for Scalability class "OsScalabilityClass".
The AUTOSAR specifications prescribe that a warning should be output when a value other than 
SC3 and SC4 is defined for Scalability class "OsScalabilityClass". In the RV850, however, fatal 
error E4003 will be output.

Remark 2. This item can be specified multiple times (up to 131 times) as shown below.

(a) Start address "AreaStartAddressValue"
Specifies the start address of the target memory area for access protection.
Only a 0x4-byte aligned value from 0x0 to 0xFFFFFFFC or a symbol name can be specified for AreaStartAd-
dressValue.

Remark The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(b) Size "AreaSizeValue"
Specifies the size (in bytes) of the target memory area for access protection.
Only a 0x4-byte aligned value from 0x4 to 0xFFFFFFFC can be specified for AreaSizeValue.

MEMORYAREA OsSystemMemoryArea1 {
    STARTADDRESS = 0x15000000;
    SIZE = 0x50000000;
};
MEMORYAREA OsSystemMemoryArea2 {
    STARTADDRESS = 0x30000000;
    SIZE = 0x10000000;
};
MEMORYAREA OsSystemMemoryArea3 {
    STARTADDRESS = 0x60000000;
    ENDADDRESS = 0x70000000;
};



RV850 B.  CF FILES (OIL)

R20UT2768EJ0103  Rev.1.03 Page 225 of 282
Jun 10, 2015

Remark 1. When End address "AreaEndAddressValue" is defined, this item cannot be specified.

Remark 2. The AUTOSAR specifications do not prescribe this item. This is our original item added to the 
RV850.

(c) End address "AreaEndAddressValue"
Specifies the end address of the target memory area for access protection.
Only a 0x4-byte aligned value from 0x4 to 0xFFFFFFFC, 0xFFFFFFFF, or a symbol name can be specified for 
AreaEndAddressValue.

Remark 1. When Size "AreaSizeValue" is defined, this item cannot be specified.

Remark 2. The AUTOSAR specifications do not prescribe this item.
This is our original item added to the RV850.



R20UT2768EJ0103  Rev.1.03 Page 226 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

C.  MEMORY FOOTPRINT

This appendix describes memory footprints.

C.1  Overview

The memory area used or managed by the RV850 is broadly classified into seven types of  depending on the usage.

Table C.1  Memory Areas

C.2  Standard Code Area (.kernel_system)

The memory footprint of the standard code area (.kernel_system) differs as shown below according to the type of the 
kernel library linked when generating the load module.

C.3  Interface Area (.kernel_interface)

The memory footprint of the interface area (.kernel_interface) differs as shown below according to the type of the kernel 
library linked when generating the load module.

 Name Description

.kernel_system Standard code area

.kernel_interface Interface area

.kernel_const Constant data area (ROM)

.kernel_identifier Constant data area

.kernel_work Variable data area (RAM)

.kernel_stack Stack area

.kernel_address Interrupt handler address table

Kernel Library Size (1 Kbytes = 1024 bytes)

libecc2extsc1.a 12.2 Kbytes

libecc2extsc1_fpu.a 12.4 Kbytes

libecc2extsc3.a 22.1 Kbytes

libecc2extsc3_fpu.a 22.3 Kbytes

libecc2extsc3_g3k.a 21.6 Kbytes

Kernel Library Size (1 Kbytes = 1024 bytes)

libecc2extsc1.a 0.85 Kbytes

libecc2extsc1_fpu.a 0.85 Kbytes

libecc2extsc3.a 0.92 Kbytes

libecc2extsc3_fpu.a 0.92 Kbytes

libecc2extsc3_g3k.a 0.92 Kbytes



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 227 of 282
Jun 10, 2015

C.4  Constant Data Area (.kernel_const)

The memory footprint of the constant data area (.kernel_const) differs as shown below according to the scalability class.

(1) Constant data area for SC1 (.kernel_const)
The following shows the formula for estimating the size (in bytes) of the constant data area (.kernel_const) when 
the scalability class is SC1.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

KERNEL_CONST =
    align4 (
        673
        + 40 * Alarm_Num
        + 12 * AlarmAutostart_Num
        + 12 * AppMode_Num
        + 16 * Counter_Num
        + 16 * CounterType_Num
        + 16 * Isr_Num
        + 4 * Resource_Num
        + 32 * ScheduleTable_Num
        + 12 * ScheduleTableAutostart_Num
        + 16 * ScheduleTblExpPointOffset_Num
        + 8 * ScheduleTableAction_Num
        + 20 * Task_Num
        + 2 * TaskAutostart_Num
        + 4 * ( SystemMaxExceptionCode - 4095 )
    )

Keyword Description

Alarm_Num Total number of Alarm information sets

AlarmAutostart_Num Total number of alarms started automatically in each application 
mode

AppMode_Num Total number of Application mode information sets (except 
definition of OSDEFAULTAPPMODE)

Counter_Num Total number of Counter information sets
When no Counter information is defined, specify 1.

CounterType_Num Total number of definitions with Type "OsCounterType" set to 
HARDWARE

Isr_Num Total number of Interrupt service routine information sets
When no Interrupt service routine information is defined, specify 
1.

Resource_Num Total number of Resource information sets
When no Resource information is defined, specify 1.

ScheduleTable_Num Total number of Schedule table information sets
When no Alarm information or Schedule table information is 
defined, specify 1.

ScheduleTableAutostart_Num Total number of schedule tables started automatically in each 
application mode

ScheduleTblExpPointOffset_Num Total number of expiry count value definitions in the Schedule 
table information

ScheduleTableAction_Num Total number of expiry action definitions in the Schedule table 
information



R20UT2768EJ0103  Rev.1.03 Page 228 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

Task_Num Total number of Task information sets
When no Task information is defined, specify 1.

TaskAutostart_Num Total number of tasks started automatically in each application 
mode

SystemMaxExceptionCode Total number of definitions of Maximum exception code "OsSys-
temMaxExceptionCode"

Keyword Description



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 229 of 282
Jun 10, 2015

(2) Constant data area for SC3 (.kernel_const)
The following shows the formula for estimating the size (in bytes) of the constant data area (.kernel_const) when 
the scalability class is SC3.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

KERNEL_CONST =
    align4 (
        1253
        + 44 * Alarm_Num
        + 12 * AlarmAutostart_Num
        + 12 * AppMode_Num
        + 148 * OsApplication_Num
        + 8 * TrustedFunctionName_Num
        + 24 * Counter_Num
        + 20 * CounterType_Num
        + 20 * Isr_Num
        + 8 * Resource_Num
        + 36 * ScheduleTable_Num
        + 12 * ScheduleTableAutostart_Num
        + 16 * ScheduleTblExpPointOffset_Num
        + 8 * ScheduleTableAction_Num
        + 24 * Task_Num
        + 2 * TaskAutostart_Num
        + 4 * ( SystemMaxExceptionCode - 4095 )
    )

Keyword Description

Alarm_Num Total number of Alarm information sets

AlarmAutostart_Num Total number of alarms started automatically in each application 
mode

AppMode_Num Total number of Application mode information sets

OsApplication_Num Total number of OS-Application information sets

TrustedFunctionName_Num Total number of trusted functions defined in the OS-Application 
information
When no trusted function is defined, specify 1.

Counter_Num Total number of Counter information sets
When no Counter information is defined, specify 1.

CounterType_Num Total number of definitions with Type "OsCounterType" set to 
HARDWARE

Isr_Num Total number of Interrupt service routine information sets
When no Interrupt service routine information is defined, specify 
1.

Resource_Num Total number of Resource information sets
When no Resource information is defined, specify 1.

ScheduleTable_Num Total number of Schedule table information sets
When no Schedule table information is defined, specify 1.

ScheduleTableAutostart_Num Total number of schedule tables started automatically in each 
application mode

ScheduleTblExpPointOffset_Num Total number of expiry count value definitions in the Schedule 
table information

ScheduleTableAction_Num Total number of expiry action definitions in the Schedule table 
information



R20UT2768EJ0103  Rev.1.03 Page 230 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

Task_Num Total number of Task information sets
When no Task information is defined, specify 1.

TaskAutostart_Num Total number of tasks started automatically in each application 
mode

SystemMaxExceptionCode Total number of definitions of Maximum exception code "OsSys-
temMaxExceptionCode"

Keyword Description



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 231 of 282
Jun 10, 2015

C.5  Constant Data Area (.kernel_identifier)

The memory footprint of the constant data area (.kernel_identifier) differs as shown below according to the scalability 
class.

(1) Constant data area for SC1 (.kernel_identifier)
The following shows the formula for estimating the size (in bytes) of the constant data area (.kernel_identifier) 
when the scalability class is SC1.

The meaning of each keyword used above is as follows:

KERNEL_IDENTIFIER =
    2 * Alarm_Num
    + 2 * Counter_Num
    + 4 * Event_num
    + 2 * Isr_Num
    + 2 * Resource_Num
    + 2 * ScheduleTable_Num
    + 2 * Task_Num

Keyword Description

Alarm_Num Total number of Alarm information sets

Counter_Num Total number of Counter information sets

Event_Num Total number of Event information sets

Isr_Num Total number of Interrupt service routine information sets

Resource_Num Total number of Resource information sets

ScheduleTable_Num Total number of Schedule table information sets

Task_Num Total number of Task information sets



R20UT2768EJ0103  Rev.1.03 Page 232 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

(2) Constant data area for SC3 (.kernel_identifier)
The following shows the formula for estimating the size (in bytes) of the constant data area (.kernel_identifier) 
when the scalability class is SC3.

The meaning of each keyword used above is as follows:

KERNEL_IDENTIFIER =
    2 * Alarm_Num
    + 2 * OsApplication_Num
    + 2 * TrustedFunctionName_Num
    + 2 * Counter_Num
    + 4 * Event_num
    + 2 * Isr_Num
    + 2 * Resource_Num
    + 2 * ScheduleTable_Num
    + 2 * Task_Num

Keyword Description

Alarm_Num Total number of Alarm information sets

OsApplication_Num Total number of OS-Application information sets

TrustedFunctionName_Num Total number of trusted functions defined in the OS-Application 
information

Counter_Num Total number of Counter information sets

Event_Num Total number of Event information sets

Isr_Num Total number of Interrupt service routine information sets

Resource_Num Total number of Resource information sets

ScheduleTable_Num Total number of Schedule table information sets

Task_Num Total number of Task information sets



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 233 of 282
Jun 10, 2015

C.6  Variable Data Area (.kernel_work)

The memory footprint of the variable data area (.kernel_work) differs as shown below according to the scalability class.

(1) Variable data area for SC1 (.kernel_work)
The following shows the formula for estimating the size (in bytes) of the variable data area (.kernel_work) when 
the scalability class is SC1.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

KERNEL_WORK =
    align4 (
        128
        + 32 * Alarm_Num
        + 16 * Counter_Num
        + 12 * CounterType_Num
        + 12 * IsrCategory_Num
        + 8 * Resource_Num
        + 32 * ScheduleTable_Num
        + 24 * Task_Num
        + PriorityBuf_Ttl
    )

Keyword Description

Alarm_Num Total number of Alarm information sets

Counter_Num Total number of Counter information sets

CounterType_Num Total number of definitions with Type "OsCounterType" set to 
HARDWARE

IsrCategory_Num Total number of definitions with Category "OsIsrCategory" set to 
2

Resource_Num Total number of Resource information sets

ScheduleTable_Num Total number of Schedule table information sets

Task_Num Total number of Task information sets

PriorityBuf_Ttl Total of the priority buffer sizes calculated in "Priority buffers"



R20UT2768EJ0103  Rev.1.03 Page 234 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

(2) Variable data area for SC3 (.kernel_work)
The following shows the formula for estimating the size (in bytes) of the variable data area (.kernel_work) when 
the scalability class is SC3.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

KERNEL_WORK =
    align4 (
        148
        + 32 * Alarm_Num
        + 8 * OsApplication_Num
        + 16 * Counter_Num
        + 32 * CounterType_Num
        + 32 * IsrCategory_Num
        + 8 * Resource_Num
        + 32 * ScheduleTable_Num
        + 32 * Task_Num
        + PriorityBuf_Ttl
    )

Keyword Description

Alarm_Num Total number of Alarm information sets

OsApplication_Num Total number of OS-Application information sets

Counter_Num Total number of Counter information sets

CounterType_Num Total number of definitions with Type "OsCounterType" set to 
HARDWARE

IsrCategory_Num Total number of definitions with Category "OsIsrCategory" set to 
2

Resource_Num Total number of Resource information sets

ScheduleTable_Num Total number of Schedule table information sets

Task_Num Total number of Task information sets

PriorityBuf_Ttl Total of the priority buffer sizes calculated in "Priority buffers"



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 235 of 282
Jun 10, 2015

C.6.1  Priority buffers

The following shows the formula for estimating the buffer size (in bytes) per priority level for the priorities defined in the 
Task information and the ceiling values defined in the Resource information.

In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

Remark If the result of "TaskActivation_Pri + Resource - 1" is 0, the PriorityBuf (buffer size per priority level) will 
be 0.

PriorityBuf =
    align4 (
        8
        + 2 * ( TaskActivation_Pri + Resource - 1) 
    )

Keyword Description

TaskActivation_Pri Total of the values defined for Maximum activation request count 
"OsTaskActivation" items

Resource Set to 1 when the priority matches the ceiling value defined in 
any Resource information; otherwise, set to 0.



R20UT2768EJ0103  Rev.1.03 Page 236 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

C.7  Stack Area (.kernel_stack)

The memory footprint of the stack area (.kernel_stack) differs as shown below according to the scalability class.

(1) Stack area for SC1 (.kernel_stack)
The following shows the formula for estimating the size (in bytes) of the stack area (.kernel_stack) when the scal-
ability class is SC1.

The meaning of each keyword used above is as follows:

(2) Stack area for SC3 (.kernel_stack)
The following shows the formula for estimating the size (in bytes) of the stack area (.kernel_stack) when the scal-
ability class is SC3.

The meaning of each keyword used above is as follows:

KERNEL_STACK =
    SystemStack
    + TaskStack_Ttl

Keyword Description

SystemStack Value calculated in "System stack for SC1"

ExtTaskStack_Ttl Total of the values calculated in "Task stack (extended task) for 
SC1"

KERNEL_STACK =
    SystemStack
    + OsApplicationStack_Ttl
    + ExtTaskStack_Ttl

Keyword Description

SystemStack Value calculated in "System stack for SC3"

OsApplicationStack_Ttl Total of the values calculated in "OS-Application stack"

ExtTaskStack_Ttl Total of the values calculated in "Task stack (extended task) for 
SC3"



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 237 of 282
Jun 10, 2015

C.7.1  System stack

The memory footprint of the system stack differs as shown below according to the scalability class.

(1) System stack for SC1
The following shows the formula for estimating the size (in bytes) of the system stack when the scalability class is 
SC1.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary, and "Max (x, y, z)" 
means comparing x, y, and z and taking the largest value.

The meaning of each keyword used above is as follows:

SystemStack =
    align4 (
        44
        + ErrorHookStack_Siz
        + ShutdownHokkStack_Siz
        + AlarmCallbackStack_Siz
        + Max (
            TaskStack_Ttl + MAX (
                8 + PostTaskHookStackSiz,
                8 + PreTaskHookStack_Siz
            ),
            20 + StartupHookStack_Siz,
            IdleHandlerStack_Siz
        )
        + MAX (
            92 + IsrStack_Max * Nest_Count,
            SystemServiceStack_Max
        )
    )

Keyword Description

ErrorHookStack_Siz Stack size necessary for the processing of common hook routine 
ErrorHook

ShutdownHookStack_Siz Stack size necessary for the processing of common hook routine 
ShutdownHook

AlarmCallbackStack_Siz Stack size necessary for the processing of the alarm callback

TaskStack_Ttl Total of the values calculated in "Task stack (basic task) for SC1"

PostTaskHookStack_Siz Stack size necessary for the processing of common hook routine 
PostTaskHook

PreTaskHookStack_Siz Stack size necessary for the processing of common hook routine 
PreTaskHook

StartupHookStack_Siz Stack size necessary for the processing of common hook routine 
StartupHook

IdleHandlerStack_Siz Stack size necessary for the processing of the idle handler

IsrStackMax Maximum of the values calculated in "Interrupt service routine 
stack (category 2) for SC1"

Nest_Count Maximum nesting level of interrupt service routines (category 2)

SystemServiceStack_Max 164 (Stack size necessary for the system service issued by the 
extended task)



R20UT2768EJ0103  Rev.1.03 Page 238 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

(a) Task stack (basic task) for SC1
The following shows the formula for estimating the size (in bytes) of the task stack (basic task) when the scal-
ability class is SC1.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

(b) Interrupt service routine stack (category 2) for SC1
The following shows the formula for estimating the size (in bytes) of the interrupt service routine stack (category 
2) when the scalability class is SC1.

In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

TaskStack =
    align4 (
        164
        + TaskStack_Siz
        + AlarmCallbackStack_Siz
    )

Keyword Description

TaskStack_Siz Stack size necessary for the processing of the basic stack

AlarmCallbackStack_Siz Stack size necessary for the processing of the alarm callback

IsrStack =
    align4 (
        256
        + IsrStack_Siz
        + AlarmCallbackStack_Siz
    )

Keyword Description

IsrStack_Siz Stack size necessary for the processing of the interrupt service 
routine (category 2)

AlarmCallbackStack_Siz Stack size necessary for the processing of the alarm callback



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 239 of 282
Jun 10, 2015

(2) System stack for SC3
The following shows the formula for estimating the size (in bytes) of the system stack when the scalability class is 
SC3.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary, and "Max (x, y, z)" 
means comparing x, y, and z and taking the largest value.

The meaning of each keyword used above is as follows:

SystemStack =
    align4 (
        Max (
            Max (
                320,
                264 + ProtectionHookStack_Siz + ErrorHookStack_Siz,
                104 + StartupHookStack_Siz + ErrorHookStack_Siz
            )
            + Max (
                104,
                44 + ShutdownHookStack_Siz
            ),
            IdleHandlerStack_Siz
        )
    )

Keyword Description

ProtectionHookStack_Siz Stack size necessary for the processing of common hook routine 
ProtectionHook

ErrorHookStack_Siz Stack size necessary for the processing of common hook routine 
ErrorHook

StartupHookStack_Siz Stack size necessary for the processing of common hook routine 
StartupHook

ShutdownHookStack_Siz Stack size necessary for the processing of common hook routine 
ShutdownHook

IdleHandlerStack_Siz Stack size necessary for the processing of the idle handler



R20UT2768EJ0103  Rev.1.03 Page 240 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

C.7.2  OS-Application stack

The following shows the formula for estimating the size (in bytes) of the OS-Application stack. In the formula, "align4 (x)" 
means the result of aligning the value "x" to a 4-byte boundary, and "Max (x, y, z)" means comparing x, y, and z and taking 
the largest value.

The meaning of each keyword used above is as follows:

OsApplicationStack =
    align4 (
        32
        + AppShutdownHookStack_Siz
        + Max (
            TaskStack_Ttl + MAX (
                48 + PostTaskHookStack_Siz,
                48 + PreTaskHookStack_Siz,
            ),
            32 + AppStartupHookStack_Siz
        )
        + MAX (
            104 + ErrorHookStack_Siz,
            216 + AppErrorHookStack_Siz
        )
        + MAX (
            140 + IsrStack_Max * Nest_Count,
            SystemServiceStack_Max
        )
    )

Keyword Description

AppShutdownStackHook_Siz Stack size necessary for the processing of OS-Application-spe-
cific hook routine Shutdown_OsApplication

TaskStack_Ttl Total of the values calculated in "Task stack (basic task) for SC3"

PostTaskHookStack_Siz Stack size necessary for the processing of common hook routine 
PostTaskHook

PreTaskHookStack_Siz Stack size necessary for the processing of common hook routine 
PreTaskHook

AppStartupHookStack_Siz Stack size necessary for the processing of OS-Application-spe-
cific hook routine StartupHook_OsApplication

ErrorHookStack_Siz Stack size necessary for the processing of common hook routine 
ErrorHook

AppErrorHookStack_Siz Stack size necessary for the processing of OS-Application-spe-
cific hook routine ErrorHook_OsApplication

IsrStackMax Maximum of the values calculated in "Interrupt service routine 
stack (category 2) for SC3"

Nest_Count Maximum nesting level of interrupt service routines (category 2)

SystemServiceStack_Max 164 (Stack size necessary for the system service issued by the 
extended task)



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 241 of 282
Jun 10, 2015

(a) Task stack (basic task) for SC3
The following shows the formula for estimating the size (in bytes) of the task stack (basic task) when the scal-
ability class is SC3.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

(b) Interrupt service routine stack (category 2) for SC3
The following shows the formula for estimating the size (in bytes) of the interrupt service routine stack (category 
2) when the scalability class is SC3.

In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

TaskStack =
    align4 (
        164
        + TaskStack_Siz
        + 24 * TrustedFunctionNest_Max
    )

Keyword Description

TaskStack_Siz Stack size necessary for the processing of the basic task

TrustedFunctionNest_Max Maximum nesting level of trusted functions

IsrStack =
    align4 (
        304
        + IsrStack_Siz
        + 24 * TrustedFunctionNest_Max
    )

Keyword Description

IsrStack_Siz Stack size necessary for the processing of the interrupt service 
routine (category 2)

TrustedFunctionNest_Max Maximum nesting level of trusted functions
When the OS-Application is non-trusted and the maximum 
nesting level is 0, set this value to 1.



R20UT2768EJ0103  Rev.1.03 Page 242 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

C.7.3  Task stack (extended task)

The memory footprint of the task stack (extended task) differs as shown below according to the scalability class.

(1) Task stack (extended task) for SC1
The following shows the formula for estimating the size (in bytes) of the task stack (extended task) when the scal-
ability class is SC1.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

ExtTaskStack =
    align4 (
        TaskStack_Siz
        + TaskContext_Siz
        + IsrContext_Siz
        + SystemServiceFrame_Siz
    )

Keyword Description

TaskStack_Siz Stack size necessary for the processing of the extended task

TaskContext_Siz Set to 0 when NON is defined for Scheduling attribute "OsTask-
Schedule";
set to 48 when FULL is defined.

IsrContext_Siz 124 (Stack size necessary for the interrupt processing occurring 
during execution of the extended task)

SystemServiceFrame_Siz 8 (Stack size necessary for the system service issued by the 
extended task)



RV850 C.  MEMORY FOOTPRINT

R20UT2768EJ0103  Rev.1.03 Page 243 of 282
Jun 10, 2015

(2) Task stack (extended task) for SC3
The memory footprint of the task stack (extended task) for SC3 differs as shown below depending on whether the 
task belongs to a trusted OS-Application or a non-trusted OS-Application.

(a) Trusted OS-Application
The following shows the formula for estimating the size (in bytes) of the task stack (extended task) for SC3 
when the reliability of the OS-Application is defined as trusted.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

(b) Non-trusted OS-Application
The following shows the formula for estimating the size (in bytes) of the task stack (extended task) for SC3 
when the reliability of the OS-Application is defined as non-trusted.
In the formula, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

The meaning of each keyword used above is as follows:

ExtTaskStack =
    align4 (
        TaskStack_Siz
        + TaskContext_Siz
        + IsrContext_Siz
        + SystemServiceFrame_Siz
        + 24 * TrustedFunctionNest_Max
    )

Keyword Description

TaskStack_Siz Stack size necessary for the processing of the extended task

TaskContext_Siz Set to 0 when NON is defined for Scheduling attribute "OsTask-
Schedule"; set to 48 when FULL is defined.

IsrContext_Siz 128 (Stack size necessary for the interrupt processing occurring 
during execution of the extended task)

SystemServiceFrame_Siz 12 (Stack size necessary for the system service issued by the 
extended task)

TrustedFunctionNest_Max Maximum nesting level of trusted functions

ExtTaskStack =
    align4 (
        140
        + TaskStack_Siz
        + 24 * TrustedFunctionNest_Max
    )

Keyword Description

TaskStack_Siz Stack size necessary for the processing of the extended task

TrustedFunctionNest_Max Maximum nesting level of trusted functions



R20UT2768EJ0103  Rev.1.03 Page 244 of 282
Jun 10, 2015

RV850 C.  MEMORY FOOTPRINT

C.8  Interrupt Handler Address Table (.kernel_address)

The following shows the formula for estimating the size (in bytes) of the interrupt handler address table 
(.kernel_address).

The meaning of each keyword used above is as follows:

IntHdrAdrTbl =
    4 * (SystemMaxExceptionCode - 4095)

Keyword Description

SystemMaxExceptionCode Total number of definitions of Maximum exception code "OsSys-
temMaxExceptionCode"



Revision Record

Rev. Date Description

Page Summary

1.00 Apr 25, 2014 - First Edition issued

1.01 Sep 30, 2014 10 [1.4 Execution Environment]
Changed the sentence in the "Remark 3." - "(2) Peripheral controllers" as follows:

... in scalability class SC3 conforming to ...
  -->
... in scalability class SC3 (only in G3M core) conforming to ...

10 [1.4 Execution Environment]
Changed the sentence in the "SPID bit of machine configuration (MCFG0)" - 
"Table 1.1 OS Reerved Resource Occupied by RV850" as follows:

SC3
  -->
SC3 (only in G3M core).

10 [1.4 Execution Environment]
Changed the sentence in the "Table 1.1 OS Reserved Resource Occupied by 
RV850" as follows:

EITBn bit of EI level interrupt control register (EICn) of the interrupt controller 
(INTC1)
EITBn bit of EI level interrupt control register (EICn) of the interrupt controller 
(INTC2)
  -->
EITBn bit and EIP3n-0n bit of EI level interrupt control register (EICn) of the inter-
rupt controller (INTC1 or INTC2) corresponding to the interrupts which are defined 
in Exception code "OsIsrExceptionCode" or Exception code 
"OsCounterExceptionCode"

12 [1.5.1 Object release version]
Changed the sentence in the "(9) <rx_root>\{SC1, SC3}\lib\<Target name>\r32" as 
follows:

libecc2extsc3.a: ECC2, extended status, SC3, FPU not supported
libecc2extsc3_fpu.a: ECC2, extended status, SC3, FPU supported
  -->
libecc2extsc3.a: ECC2, extended status, SC3, FPU not supported (only in 
G3M core)
libecc2extsc3_fpu.a: ECC2, extended status, SC3, FPU supported (only in 
G3M core)

12 [1.5.1 Object release version]
Added the sentence in the "(9) <rx_root>\{SC1, SC3}\lib\<Target name>\r32" 
below.

libecc2extsc3_g3k.a: ECC2, extended status, SC3, FPU not supported (only in 
G3K core)

14 [1.5.2 Source release version]
Changed the title in the "(10)" as follows:

<rx_root>\src\os\trace
  -->
<rx_root>\{SC1, SC3}\src\os\trace



1.01 Sep 30, 2014 14 [1.5.2 Source release version]
Changed the sentence in the "(10) <rx_root>\{SC1, SC3}\src\os\trace" as follows:

The source files (for scalability class SC3) of ...
  -->
The source files of ...

15 [2.2 Writing User-Own Coding Modules]
Changed the sentence in this section as follows:

... , and provided as sample source files (excent.850).
  -->
... , and provided as sample source files (direct_vector.850, excent.850).

15 [2.2 Writing User-Own Coding Modules]
Changed the item title in the "(1)" as follows:

FE level exception entry process
  -->
Entry process (direct branch method exception vector)

15 [2.2 Writing User-Own Coding Modules]
Changed the sentence in the "(1) Entry process (direct branch method exception 
vector)" as follows:

The FE level exception entry process is a routine dedicated to the entry process, 
extracted to assign the branch process to the relevant process (process corre-
sponding to the type of the generated FE level exception: boot process, process 
corresponding to a protection exception) to the address of the handler to which the 
device forcibly transfers control when an FE level exception occurs.
  -->
The entry process is a routine dedicated to the entry process, extracted to assign 
the branch process to the relevant process (boot process, exception/interrupt 
safety measure process, etc.) when reset (RESET), FE level Interrupts (FENMI, 
TRAP, etc.), EI level interrupts (not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode", etc.) has 
been generated.

15 [2.2 Writing User-Own Coding Modules]
Changed the item title in the "(2)" as follows:

Default interrupt service routine
  -->
Exception/interrupt safety measure process

15 [2.2 Writing User-Own Coding Modules]
Changed the sentence in the "(2) Exception/interrupt safety measure process" as 
follows:

A default interrupt service routine is a routine dedicated to the interrupt process 
that is called when an EI level interrupt that is not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode" has been 
generated.
  -->
The exception/interrupt safety measure process is a routine dedicated to the 
safety measure process that is called from entry process when FE level interrupts 
(FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode"), etc. has 
been generated.

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 16 [2.2.1 Generating user-own libraries]
Changed the sentence in this item as follows:

... for the source files generated in ...
  -->
... for the source files (exception/interrupt safety measure process: excent.850) 
generated in ...

16 [2.3 Writing Processing Programs]
Changed the sentence in the "(3) Interrupt service routine" as follows:

... is called when an interrupt occurs.
  -->
... is called when an EI level interrupt (defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode") generates.

17 [2.5 Writing the Linker Directive File]
Changed the sentence in this section below:

Write the linker directive file described the information required for fixing the mem-
ory allocations (e.g.  and address information) executed by the link editor.
  -->
Write the linker directive file required to fix the memory allocation executed by the 
link editor.

17 [2.5 Writing the Linker Directive File]
Added the sentence in the "Table 2.1 Prescribed Allocation Locations" below.

.kernel_address  A  ROM  Interrupt handler address table

17 [2.5 Writing the Linker Directive File]
Added the "Remark 3." in this section below.

The user does not need to code the definition related to .kernel_address for the 
linker directive file, because the configurator outputs to the ENTRY file about the 
location of the interrupt handler address table .kernel_address.
The "address" of .kernel_address was calculated via "Base address 
"OsInterruptBaseAddress" + 4 * Interrupt channel number".

18 [2.6 Generation of Load Module]
Added the "Remark 5." in this section below.

Registering common hook routines as library routines is prohibited in the RV850.

18 [2.6 Generation of Load Module]
Changed the sentence in the "Remark 7." as follows:

... with kernel libraries libecc2stdsc1_fpu.a, libecc2extsc1_fpu.a, and 
libecc2extsc3_fpu.a which support FPU.
  -->
...  with kernel libraries libecc2extsc1_fpu.a, and libecc2extsc3_fpu.a which sup-
port FPU.

20 [3.1.4 Processing in tasks]
Changed the sentence in the "Remark" - "(2) Saving/Restoring FPSR" as follows:

... when FPU-supporting kernel libraries libecc2stdsc1_fpu.a, libecc2extsc1_fpu.a, 
and libecc2extsc3_fpu.a are linked.
  -->
... when FPU-supporting kernel libraries libecc2extsc1_fpu.a, and 
libecc2extsc3_fpu.a are linked.

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 23 [4.1 Overview]
Changed the sentence in this section as follows:

Consequently, routines dedicated to interrupt processing of interrupts other than 
those defined in Exception code "OsIsrExceptionCode" and Exception code 
"OsCOunterExceptionCode" are processes not managed by the RV850.
  -->
Consequently, routines (boot process, exception/interrupt safety measure pro-
cess, etc.) dedicated to processing of interrupts that are not defined in Exception 
code "OsIsrExceptionCode" or Exception code "OsCounterExceptionCode" are 
processes not managed by the RV850.

23 [4.2 Boot Process]
Changed the item title in the "(4)" as follows:

... of the machine configuration register (MCFG0)
  -->
... of the machine configuration register (MCFG0) (only in G3M core)

25 [4.3 Interrupt Service Routines]
Changed the sentence in this section as follows:

Interrupt service routines are dedicated to interrupt processes that are activated 
when an interrupt is generated.
  -->
This is a routine dedicated to the interrupt process that is called when an EI level 
interrupt (defined in Exception code "OsIsrExceptionCode" or Exception code 
"OsCounterExceptionCode") generates.

27 [4.3.1 Processing in interrupt service routines]
Added the sentence in the "(d) Interrupt acceptance" - "(1) Category 1" below.

Therefore, when a category 1 interrupt occurs, the device manipulates the ID bit in 
the program status word (PSW) to disable the acceptance of interrupts.

27 [4.3.1 Processing in interrupt service routines]
Added the "Remark 1." in the "(e) Issuing system services" - "(1) Category 1" 
below.

The RV850 does not guarantee correct operation when an unallowable system 
service is issued from an interrupt service routine.

27 [4.3.1 Processing in interrupt service routines]
Changed the sentence in the "Remark" - "(b) Saving/Restoring FPSR" - "(2) 
Category 2" as follows:

... when FPU-supporting kernel libraries libecc2stdsc1_fpu.a, libecc2extsc1_fpu.a, 
and libecc2extsc3_fpu.a are linked.
  -->
... when FPU-supporting kernel libraries libecc2extsc1_fpu.a, and 
libecc2extsc3_fpu.a are linked.

27 [4.3.1 Processing in interrupt service routines]
Changed the sentence in the "(c) Stack switching" - "(2) Category 2" as follows:

... , it switches to the system stack defined in Stack size "OsStackSize".
  -->
... , it switches to the system stack defined in Stack size "OsStackSize" or the OS-
application stack defined in Stack size "OsAppStackSize".

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 28 [4.3.3 Termination of interrupt service routines]
Changed the sentence in the "(2) For category 2 and scalability class SC1" as 
follows:

Control is returned to the processing program in which an interrupt was generated.
  -->
The scheduler is activated.

29 [4.3.3 Termination of interrupt service routines]
Changed the sentence in the "(3) For category 2 and scalability class SC3" as 
follows:

Control is returned to the processing program in which an interrupt was generated.
  -->
The scheduler is activated.

29 [4.3.3 Termination of interrupt service routines]
Changed the sentence in the "Remark 2." as follows:

... when FPU-supporting kernel libraries libecc2stdsc1_fpu.a, libecc2extsc1_fpu.a, 
and libecc2extsc3_fpu.a are linked.
  -->
... when FPU-supporting kernel libraries libecc2extsc1_fpu.a, and 
libecc2extsc3_fpu.a are linked.

29 [4.5.1 Entry process (direct branch method exception vector)]
Changed the sentence in this section as follows:

The FE level exception entry process is a routine dedicated to the entry process, 
extracted to assign the branch process to the relevant process (process corre-
sponding to the type of the generated FE level exception: boot process, process 
corresponding to a protection exception) to the address of the handler to which the 
device forcibly transfers control when an FE level exception occurs.
The basic form for coding the FE level exception entry process in the assembly 
language is shown below.
  -->
The entry process is a routine dedicated to the entry process, extracted to assign 
the branch process to the relevant process (boot process, exception/interrupt 
safety measure process, etc.) when reset (RESET), FE level interrupts (FENMI, 
TRAP, etc.), EI level interrupts (not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode"), etc. has 
been generated.
The basic form for coding the entry process in the assembly language is shown 
below.

29 [4.5.1 Entry process (direct branch method exception vector)]
Replaced the basic form coding in the "[SC1, RBASE/EBASE: 0x0]" as follows:

    .globl  _entry0000
    .globl  _entry0010
    .........
    .globl  _entry0100
    .........

    .org    0x00000000
_entry0000:
    jr      _boot

    .org    0x00000010
_entry0010:

Rev. Date Description

Page Summary



1.01 Sep 30, 2014     jr      __kernel_e_IllegalExcEntry

    .........

    .org    0x00000100
_entry0100:
    jr      __kernel_e_IllegalExcEntry

    .........

30 [4.5.1 Entry process (direct branch method exception vector)]
Replaced the basic form coding in the "[SC3, RBASE/EBASE: 0x0]" as folloes:

    .globl  _entry0000
    .globl  _entry0010
    .globl  _entry0020
    .........
    .globl  _entry0090
    .globl  _entry00A0
    .globl  _entry00B0
    .........
    .globl  _entry0100
    .........

    .org    0x00000000
_entry0000:
    jr      _boot

    .org    0x00000010
_entry0010:
    jr      __kernel_e_ProtectEntry

    .org    0x00000020
_entry0020:
    jr      __kernel_e_IllegalExcEntry

    .........

    .org    0x00000090
_entry0090:
    jr      __kernel_e_ProtectEntry

    .org    0x000000A0
_entry00A0:
    jr      __kernel_e_ProtectEntry

    .org    0x000000B0
_entry00B0:
    jr      __kernel_e_IllegalExcEntry

    .........

    .org    0x00000100
_entry0100:
    jr      __kernel_e_IllegalExcEntry

    .........

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 30 [4.5.1 Entry process (direct branch method exception vector)]
Changed the sentence in the "Remark 1." as follows:

The entry process associated with EI level interrupts is output to the ENTRY file.
  -->
The user does not need to code the entry process associated with EI level inter-
rupts that are defined in Exception code "OsIsrExceptionCode" or Exception code 
"OsCounterExceptionCode", because the configurator outputs to the ENTRY file 
about the entry process.

31 [4.5.2 Exception/interrupt measure process]
Changed the sentence in this section as follows:

A default interrupt service routine is a dedicated interrupt process that is called 
when an EI level interrupt is generated corresponding to an exception code that is 
not defined in Exception code "OsIsrExceptionCode or Exception code 
"OsCounterExceptionCode".
The basic form for coding a default interrupt service routine in the C language is 
shown below.
  -->
The exception/interrupt safety measure process is a routine dedicated to the 
safety measure process that is called from entry process when FE level interrupts 
(FENMI, TRAP, etc.), EI level interrupts (not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode"), etc. has 
been generated.
The basic form for coding an exception/interrupt safety measure process in the C 
language is shown below.

31 [4.5.2 Exception/interrupt measure process]
Changed the sentence in the "Remark" as follows:

A default interrupt service routine is prepared in the RV850.
Consequently, if _kernel_e_IllegalExcEntry is not coded, the default interrupt ser-
vice routine (the process to issue ShutdownOS in which 
E_OS_SYS_ILLEGAL_EXCEPTION has been specified for parameter Error) will 
be called.
  -->
An exception/interrupt safety measure process is prepared in the RV850.
Consequently, event _kernel_e_IllegalExcEntry is not coded, if the branch process 
to the exception/interrupt safety measure process was assigned to entry process, 
and, in the case of the operand of SYSCALL instruction is an illegal value, the 
exception/interrupt safety measure process (the process to issue ShutdownOS in 
which E_OS_SYS_ILLEGAL_EXCEPTION has been specified for parameter 
Error) will be called.

35 [8.1 Overview]
Changed the sentence in this section as follows:

The RV850 provides alarm management functions as a mechanism to operate 
synchronous with change of counter values.
  -->
The RV850 provides alarm management functions as a mechanism to perform 
processing in synchronization with the change of counter values.

37 [9.1 Overview]
Changed the sentence in this section as follows:

The RV850 provides schedule table management functions as a mechanism to 
operate synchronous with change of counter values.
  -->

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 The RV850 provides schedule table management functions as a mechanism to 
perform processing in synchronization with the change of counter values.

39 [10.1.3 Memory protection]
Added the sentence in this section bellow.

The memory areas that are subject to monitoring are defined in Memory area 
identifier "OsSystemMemoryArea", and the type (OS-application specific, common 
for system) is defined in Memory area identifier "OsAppMemoryAreaNameRef", 
Memory area identifier "OsMemoryAreaNameRef".

39 [10.1.3 Memory protection]
Added the "Remark" in this section below.

For the stack area, no definitions are necessary in Memory area identifier "OsSys-
temMemoryArea", Memory area identifier "OsAppMemoryAreaNameRef", or 
Memory area identifier "OsMemoryAreaNameRef".

40 [10.2.1 Processing in trusted functions]
Changed the sentence in the "(2) Saving/Restoring FPSR" as follows:

Since the RV850 characterizes a trusted function as an extension of the process-
ing program that issued CallTrustedFunction, the save/restore processes of the 
floating-point configuration/status register (FPSR) are not executed.
Consequently, it is necessary to code the save/restore processes of FPSR in 
order to change the contents of FPSR explicitly.
　-->
The FPSR value is changed to the value defined in FPSR "OsAppDefaultFPSR-
Value" or FPSR default value "OsDefaultFPSRValue".
Consequently, it is not necessary to code the FPSR save/restore processes when 
TRUE is defined in FPSR saving/restoring "OsSaveFpuReg".

40 [10.2.1 Processing in trusted functions]
Added the "Remark" in the "(2) Saving/Restoring FPSR" below.

The FPSR save/restore processes are done only when kernel library 
libecc2extsc1_fpu.a or libecc2extsc3_fpu.a, which supports the FPU, is linked.

41 [10.3 OS-Application-Specific Hook Routines]
Added the "Remark 2." in the "(1) StartupHook_OsApplication" below.

When StartupHook_OsApplication "OsAppStartupHook" is specified as TRUE in 
multiple sets of OS-Application information, StartupHook_OsApplication is called 
in the order of appearance in the CF file.

41 [10.3 OS-Application-Specific Hook Routines]
Changed the sentence in the "Remark 2." - "(2) ShutdownHook_OsApplication" as 
follows:

... is the default interrupt service routine provided by the RV850, ...
  -->
... is the exception/interrupt safety measure process, ...

41 [10.3 OS-Application-Specific Hook Routines]
Added the "Remark 3." in the "(2) ShutdownHook_OsApplication" below.

When parameter Fatalerror is set to E_OS_SYS_ILLEGAL_EXCEPTION, the 
EIIC or FEIC register value can be obtained by issuing 
OSIllegalException_SystemRegister_ExcCode in this hook routine, or the EIPC or 
FEPC register value can be obtained by issuing 
OSIllegalException_SystemRegister_ExcPC.

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 41 [10.3 OS-Application-Specific Hook Routines]
Added the "Remark 4." in the "(2) ShutdownHook_OsApplication" below.

When ShutdownHook_OsApplication "OsAppShutdownHook" is specified as 
TRUE in multiple sets of OS-Application information, 
ShutdownHook_OsApplication is called in the order of appearance in the CF file.

42 [10.3 OS-Application-Specific Hook Routines]
Changed the sentence in the "Remark 4." - "(3) ErrorHook_OsApplication" as fol-
lows:

... , ErrorHook_OsApplication is not called again.
  -->
... , ErrorHook and ErrorHook_OsApplication is not called again.

42 [10.3.1 Processing in OS-Application-specific hook routines]
Changed the sentence in the "Remark 1." - "(4) Interrupt acceptance" as follows:

In the RV850, It is prohibited to change the category 2 interrupt acceptance status 
to enabled from within an OS-Application-specific hook routine.
  -->
It is prohibited to explicitly manipulate the category 2 interrupt acceptance status 
from within an OS-Application-specific hook routine.

42 [10.3.1 Processing in OS-Application-specific hook routines]
Added the "Remark 2." in the "(4) Interrupt acceptance" below.

When the RV850 transfers control to ShutdownHook_OsApplication, the ID bit of 
PSW is manipulated as well as the PMn bits of PMR to disable the acceptance of 
interrupts.

44 [11.2 Common Hook Routines]
Changed the sentence in the "Remark 1." - "(2) ShutdownHook" as follows:

... is the default interrupt service routine provided by the RV850, ...
  -->
... is the exception/interrupt safety measure process, ...

44 [11.2 Common Hook Routines]
Added the "Remark 2." in the "(2) ShutdownHook" below.

When parameter Fatalerror is set to E_OS_SYS_ILLEGAL_EXCEPTION, the 
EIIC or FEIC register value can be obtained by issuing 
OSIllegalException_SystemRegister_ExcCode in this hook routine, or the EIPC or 
FEPC register value can be obtained by issuing 
OSIllegalException_SystemRegister_ExcPC.

45 [11.2 Common Hook Routines]
Changed the sentence in the "Remark 2." - "(5) ErrorHook" as follows:

... , ErrorHook is not called again.
  -->
... , ErrorHook and ErrorHook_OsApplication is not called again.

45 [11.2 Common Hook Routines]
Changed the sentence in the "Remark 2." - "(6) ProtectionHook" as follows:

The value of the FE-level-exception accepted state saving register (FEPC) when a 
protection violation was detected is set in the area specified by parameter adr.
  -->
In the area specified by parameter adr, "0" is stored if parameter Fatalerror is 

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 E_OS_STACKFAULT or the value of "the status save register when acknowledg-
ing FE-level-interrupt (FEPC)" when a protection violation was detected if Fataler-
ror is E_OS_PROTECTION_MEMORY.

45 - 46 [11.2 Common Hook Routines]
Changed the sentence in the "[PRO_TERMINATETASKISR (0x1)]" - "Remark 3." - 
"(6) ProtectionHook" as follows:

If a task detects a protection violation, the task is shifted to SUSPENDED state, 
and then the scheduler is activated.
If a processing program other than a task detected the protection violation, control 
is returned to the task that called the processing program, and processing of the 
task is resumed.
  -->
The process will differ as follows depending on the type of processing program 
that has generated a protection violation.

[Task]
Shifts the task to SUSPENDED state.
Releases the resources that have been acquired by the task. 
Issues EnableAllInterrupts if the task has issued DisableAllInterrupts
Issues ResumeAllInterrupts if the task has issued SuspendAllInterrupts.
Issues ResumeOSInterrupts if the task has issued SuspendOSInterrupts.
Activates the scheduler.

[Interrupt service routine]
Releases the resources that have been acquired by the task. 
Issues EnableAllInterrupts if the task has issued DisableAllInterrupts
Issues ResumeAllInterrupts if the task has issued SuspendAllInterrupts.
Issues ResumeOSInterrupts if the task has issued SuspendOSInterrupts.
Activates the scheduler.

[Others]
Same processing as PRO_TERMINATEAPPL.

46 [11.2 Common Hook Routines]
Changed the sentence in the "[PRO_TERMINATEAPPL (0x2)]" - "Remark 3." - 
"(6) ProtectionHook" as follows:

TerminateApplication is issued (restart option: NO_RESTART) for the OS-Applica-
tion to which the processing program that has caused the protection violation 
belongs.
  -->
Executes the process equivalent to TerminateApplication (with the restart option 
set to NO_RESTART) for the OS-Application to which the processing program that 
has generated a protection violation belongs.
If no OS-Application is in APPLICATION_ACCESSIBLE state or Task identifier 
"OsRestartTask" has not been defined, ShutdownOS (with the inherited data set to 
Fatalerror) is issued.

46 [11.2 Common Hook Routines]
Changed the sentence in the "[PRO_SHUTDOWN (0x4)]" - "Remark 3." - "(6) 
ProtectionHook" as follows:

ShutdownOS is issued (inherited data: Fatalerror) for the OS-Application to which 
the processing program that has caused the protection violation belongs.
  -->
ShutdownOS (inherited data: Fatalerror) is issued.

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 46 [11.2 Common Hook Routines]
Changed the sentence in the "[PRO_TERMINATEAPPL_RESTART (0x12)]" - 
"Remark 3." - "(6) ProtectionHook" as follows:

TerminateApplication is issued (restart option: RESTART) for the OS-Application 
to which the processing program that has caused the protection violation belongs.
  -->
Executes the process equivalent to TerminateApplication (with the restart option 
set to RESTART) for the OS-Application to which the processing program that has 
generated a protection violation belongs.
If no OS-Application is in APPLICATION_ACCESSIBLE state or Task identifier 
"OsRestartTask" has not been defined, ShutdownOS (with the inherited data set to 
Fatalerror) is issued.

46 [11.2 Common Hook Routines]
Added the sentence in the "Remark 3." - "(6) ProtectionHook".

[Others]
ShutdownOS (inherited data: Fatalerror) is issued.

46 [11.2 Common Hook Routines]
Added the "Remark 4." in the "(6) ProtectionHook".

The parameter adr is not specified by the AUTOSAR specifications.
This parameter have been uniquely added to the RV850.

46 [11.2.1 Processing in common hook routines]
Added the "Remark" in the "(1) Saving/Restoring registers" below.

When the RV850 transfers control to ProtectionHook, the working register for use 
with FE levels (FEWR) is used without being saved and restored.
Consequently, after control moves to ProtectionHook, the FEWR value becomes 
undefined.

46 [11.2.1 Processing in common hook routines]
Changed the sentence in the "Remark 2." - "(4) Interrupt acceptance" as follows:

When the RV850 transfers control to ProtectionHook, in addition to ...
  -->
When the RV850 transfers control to ShutdownHook and ProtectionHook, in addi-
tion to ...

48 [12.1 Overview]
Changed the sentence in the "(2) Preemptive" as follows:

System service issued in which a task state transition may occur
An instruction to return from a category 2 interrupt service routine is issued
Schedule issued
  -->
ActivateTask issued
TerminateTask issued
ChainTask issued
Schedule issued
ReleaseResource issued
SetEvent issued
WaitEvent issued
TerminateApplication issued
Protection exception (system error exception, memory protection exception, 
privileged instruction exception) occurred
An instruction to return from a category 2 interrupt service routine is issued

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 Alarm or schedule table expired

50 [13.1 Overview]
Added the "Remark" in this section below:

The RV850 does not guarantee correct operation if the user manipulates the EI 
level interrupt mask register (IMRm) to enable the acceptance of the EL-level 
interrupts defined in Exception code "OsIsrExceptionCode" or Exception code 
"OsCounterExceptionCode" before the hook routines are called through StartOS.

51 [13.2 Entry Process (Direct Branch Method Exception Vector)]
Changed the sentence in this section as follows:

The FE level exception entry process is a routine dedicated to the entry process, 
extracted to assign the branch process to the relevant process (process corre-
sponding to the type of the generated FE level exception: boot process, process 
corresponding to a protection exception) to the address of the handler to which the 
device forcibly transfers control when an FE level exception occurs.
Remark
See "4.5.1 FE level exception entry process" for details about the FE level excep-
tion entry process.
  -->
The entry process is a routine dedicated to the entry process, extracted to assign 
the branch process to the relevant process (boot process, exception/interrupt 
safety measure process, etc.) when reset (RESET), FE level interrupts (FENMI, 
TRAP, etc.), EI level interrupts (not defined in Exception code 
"OsIsrExceptionCode" or Exception code "OsCounterExceptionCode"), etc. has 
been generated.
Remark
See "4.5.1 Entry process (direct branch method exception vector)" for details 
about the entry process.

52 [14.1 Overview]
Added the utility function in the "(10) Utility functions" below.

OSIllegalException_SystemRegister_ExcCode, 
OSIllegalException_SystemRegister_ExcPC

52 [14.1 Overview]
Changed the sentence in the "Remark" as follows:

The utility functions InitApplicationInterrupts and _kernel_fv0_InitializeIntService 
are not specified by the AUTOSAR specifications.
  -->
The utility functions InitApplicationInterrupts, _kernel_fv0_InitializeIntService, 
OSIllegalException_SystemRegister_ExcCode and 
OSIllegalException_SystemRegister_ExcPC are not specified by the AUTOSAR 
specifications.

53 [14.1.1 Calling of system services]
Added the sentence in this section below.

If a system service of Interrupt handling is issued before the system initialization 
process is finished, _kernel_fv0_InitializeIntService needs to be issued before the 
system service is issued.

53 [14.1.1 Calling of system services]
Added the "Remark 3." in this section below.

If the illegal value is set when SYSCALL instruction is issued, exception/interrupt 

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 safety measure process "_kernel_e_IllegalExcEntry" is called.

54 - 55 [14.2.1 Data types]
Added the macro in the "Table 14.1 Data Types" below.

boolean, float32, float64, sint8, sint8_least, sint16, sint16_least, sint32, 
sint32_least, sint64, uint8, uint8_least, uint16, uint16_least, uint32, uint32_least, 
uint64

57 [14.2.6 Exit with error (abend)]
Changed the sentence in the "INVALID_ISR" - "Table 14.6 Exit with Error (Abend)" 
as follows:

Issued from a processing program outside the scope of issue.
  -->
Exit with error

63 [14.2 Data Macros]
Added the section in this section below.

14.2.14 Checking for access privileges

72 [ChainTask]
Changed the sentence in the "Remark 3." - "[Function]" as follows:

When the type of the target task is basic task, the state of the task will be manipu-
lated (the target task is shifted from SUSPENDED state to READY state) and the 
activation request counter will be incremented (0x1 will be added to the activation 
request counter).
When the target task is shifted to a state other than SUSPENDED state (i.e., 
READY state or RUNNING state), then the state of the task will not be manipu-
lated and only the activation request counter will be incremented.
  -->
When the type of the target task is basic task, the state of the task will be manipu-
lated (the target task is shifted from SUSPENDED state to READY state) and the 
activation request counter will be incremented (0x1 is added to the counter).
When the target task has already been shifted from SUSPENDED state to READY 
state or RUNNING state, the state of the task will not be manipulated, the task will 
be queued at the end of the ready queue corresponding to the priority, and the 
activation request counter will be incremented.

80 - 81 [DisableAllInterrupts]
Changed the sentence in the "Scalability class 3 (SC3)" - "Remark 6." - 
"[Function]" as follows:

When processing programs are switched, the process to enable the acceptance of 
interrupts will be performed (ID bit of PSW is manipulated).
If a common hook routine (ErrorHook) or OS-Application-specific hook routine 
(ErrorHook_OsApplication) has been registered in the processing program, the 
process to enable the acceptance of interrupts will be performed and a hook 
routine will be called with E_OS_DISABLEDINT (0x15) used as the parameter.
  -->
The process will differ as follows depending on the type of processing program.

[Task]
Executes the process to enable the acceptance of interrupts (manipulates the ID 
bit in PSW) and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine 
ErrorHook_OsApplication has been registered, the hook routine will be called with 
E_OS_MISSINGEND (0x14) used as the parameter.

Rev. Date Description

Page Summary



1.01 Sep 30, 2014
[Interrupt service routine (category 2)]
Executes the process to enable the acceptance of interrupts (manipulates the ID 
bit in PSW) and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine 
ErrorHook_OsApplication has been registered, the hook routine will be called with 
E_OS_DISABLEDINT (0x15) used as the parameter.

[OS-Application-specific hook routine StartupHook_OsApplication]
Executes the process to enable the acceptance of interrupts (manipulates the ID 
bit in PSW) and terminates the critical section.

[OS-Application-specific hook routine ShutdownHook_OsApplication]
Terminates the critical section.

[Others]
Correct operation is not guaranteed.

81 [DisableAllInterrupts]
Changed the sentence in the "Remark 6." - "[Function]" as follows:

The AUTOSAR specifications do not specify the operations to be performed when 
the processing program is an OS-Application-specific hook routine. In the RV850, 
however, the above operations should be performed when the processing pro-
gram is StartupHook_OsApplication or ShutdownHook_OsApplication, and no 
processing is to be performed when the processing program is 
ErrorHook_OsApplication.
  -->
The AUTOSAR specifications do not specify the operations to be performed when 
the processing program is an OS-Application-specific hook routine. In the RV850, 
however, the above operations are performed when the processing program is 
StartupHook_OsApplication or ShutdownHook_OsApplication.

83 - 84 [SuspendAllInterrupts]
Changed the sentence in the "Scalability class 3 (SC3)" - "Remark 6." - 
"[Function]" as follows:

When processing programs are switched, the process to enable the acceptance of 
interrupts will be performed (ID bit of PSW is manipulated) and the disable request 
counter will be cleared (0x0 is set to the disable request counter).
If a common hook routine (ErrorHook) or OS-Application-specific hook routine 
(ErrorHook_OsApplication) has been registered in the processing program, the 
process to enable the acceptance of interrupts will be performed, the disable 
request counter will be cleared, and a hook routine will be called with 
E_OS_DISABLEDINT (0x15) used as the parameter.
  -->
The process will differ as follows depending on the type of processing program.

[Task]
Executes the process to enable the acceptance of interrupts (manipulates the ID 
bit in PSW), clears the disable request counter (sets the counter to 0x0), and ter-
minates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine 
ErrorHook_OsApplication has been registered, the hook routine will be called with 
E_OS_MISSINGEND (0x14) used as the parameter.

[Interrupt service routine (category 2)]
Executes the process to enable the acceptance of interrupts (manipulates the ID 
bit in PSW), clears the disable request counter (sets the counter to 0x0), and 

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine 
ErrorHook_OsApplication has been registered, the hook routine will be called with 
E_OS_DISABLEDINT (0x15) used as the parameter.

[OS-Application-specific hook routine StartupHook_OsApplication]
Executes the process to enable the acceptance of interrupts (manipulates the ID 
bit in PSW), clears the disable request counter (sets the counter to 0x0), and ter-
minates the critical section.

[OS-Application-specific hook routine ShutdownHook_OsApplication]
Terminates the critical section.

[Others]
Correct operation is not guaranteed.

84 [SuspendAllInterrupts]
Changed the "Remark 6." in the "[Function]" as follows:

The AUTOSAR specifications do not specify the operations to be performed when 
the processing program is an OS-Application-specific hook routine. In the RV850, 
however, the above operations should be performed when the processing pro-
gram is StartupHook_OsApplication or ShutdownHook_OsApplication, and no 
processing is to be performed when the processing program is 
ErrorHook_OsApplication.
  -->
The AUTOSAR specifications do not specify the operations to be performed when 
the processing program is an OS-Application-specific hook routine. In the RV850, 
however, the above operations are performed when the processing program is 
StartupHook_OsApplication or ShutdownHook_OsApplication.

85 [ResumeOSInterrupts]
Added the "Remark 5." in the "[Function]" below.

If this system service is issued when GetResource (with the ceiling value set to 
INTPRIx) has been issued before SuspendOSInterrupts is issued, the priority 
mask register (PMR) is set to the value before SuspendOSInterrupts is issued (the 
value indicating that the acceptance of the interrupt sources corresponding to 
INTPRI0 to INTPRIx is disabled).

88 [SuspendedOSInterrupts]
Changed the sentence in the "Scalability class 3 (SC3)" - "Remark 6." - 
"[Function]" as follows:

When processing programs are switched, the process to enable the acceptance of 
interrupts will be performed (PMn bits of PMR are manipulated) and the disable 
request counter will be cleared (0x0 is set to the disable request counter).
If a common hook routine (ErrorHook) or OS-Application-specific hook routine 
(ErrorHook_OsApplication) has been registered in the processing program, the 
process to enable the acceptance of interrupts will be performed, the disable 
request counter will be cleared, and a hook routine will be called with 
E_OS_DISABLEDINT (0x15) used as the parameter.
  -->
The process will differ as follows depending on the type of processing program.

[Task]
Executes the process to enable the acceptance of interrupts (manipulates the 
PMn bits in PMR), clears the disable request counter (sets the counter to 0x0), 
and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine 

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 ErrorHook_OsApplication has been registered, the hook routine will be called with 
E_OS_MISSINGEND (0x14) used as the parameter.

[Interrupt service routine (category 2)]
Executes the process to enable the acceptance of interrupts (manipulates the 
PMn bits in PMR), clears the disable request counter (sets the counter to 0x0), 
and terminates the critical section.
If common hook routine ErrorHook or OS-Application-specific hook routine 
ErrorHook_OsApplication has been registered, the hook routine will be called with 
E_OS_DISABLEDINT (0x15) used as the parameter.

[OS-Application-specific hook routine StartupHook_OsApplication]
Executes the process to enable the acceptance of interrupts (manipulates the 
PMn bits in PMR), clears the disable request counter (sets the counter to 0x0), 
and terminates the critical section.

[OS-Application-specific hook routine ShutdownHook_OsApplication]
Terminates the critical section.

[Others]
Correct operation is not guaranteed.

88 [SuspendOSInterrupts]
Changed the "Remark 6." in the "[Function]" as follows:

The AUTOSAR specifications do not specify the operations to be performed when 
the processing program is an OS-Application-specific hook routine. In the RV850, 
however, the above operations should be performed when the processing pro-
gram is StartupHook_OsApplication or ShutdownHook_OsApplication, and no 
processing is to be performed when the processing program is 
ErrorHook_OsApplication.
  -->
The AUTOSAR specifications do not specify the operations to be performed when 
the processing program is an OS-Application-specific hook routine. In the RV850, 
however, the above operations are performed when the processing program is 
StartupHook_OsApplication or ShutdownHook_OsApplication.

145 [TerminateApplication]
Changed the sentence in the "RESTART (0x1)" - "Remark 2." - "[Function]" as 
follows:

Shifts the task specified in Task identifier "OsRestartTask" from SUSPENDED 
state to READY state.
  -->
Shifts the target task from SUSPENDED state to READY state when Task identi-
fier "OsRestartTask" is specified.

146 [TerminateApplication]
Added the "Remark5." in the "[Function]" below.

When ErrorHook_OsApplication issues this system service with parameter Appli-
cation set to "an OS-Application to which ErrorHook_OsApplication that issues 
this system service does not belong", E_OS_CALLEVEL (0x2) will be returned.

146 [TerminateApplication]
Changed the sentence in the "E_OS_ACCESS" - table - "[Return vaules]" as 
follows:

The OS-Application to which the processing program that issued this system ser-
vice belongs has no access privileges for the OS-Application specified in 

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 parameter Application
  -->
The OS-Application to which the processing program that issues this system 
service belongs is non-trusted.

155 [GetActiveApplicationMode]
Added the "Remark" in the "[Return values]" below.

If an illegal value is specified in parameter OsAppMode for StartOS, a value not 
shown above may be returned.

156 - 
164

[14.4.10 Utility functions]
Added the utility function in this section below.

OSIllegalException_SystemRegister_ExcCode,
OSIllegalException_SystemRegister_ExcPC

156 [14.4.10 Utility functions]
Added the utility function in the "Table 14.23 Utility Functions" below.

OSIllegalException_SystemRegister_ExcCode,
OSIllegalException_SystemRegister_ExcPC

156 [14.4.10 Utility functions]
Change the sentence in the "Remark" as follows:

The AUTOSAR specifications do not prescribe utility functions 
InitApplicationInterrupts and _kernel_fv0_InitializeIntService.
  -->
The AUTOSAR specifications do not prescribe utility functions 
InitApplicationInterrupts, _kernel_fv0_InitializeIntService, 
OSIllegalException_SystemRegister_ExcCode and 
OSIllegalException_SystemRegister_ExcPC.

161 [OSErrorGetServiceId]
Added the "Remark 2." in the "[Function]" below.

When the processing program (ErrorHook or ErrorHook_OsApplication) that 
issues this utility function was called for a reason other than "abnormal end of the 
system service", this utility function will return an undefined value. 

164 [OSError_SystemService_Parameter]
Added the "Remark" in the "[Function]" below.

When the processing program (ErrorHook or ErrorHook_OsApplication) that 
issues this utility function was called for a reason other than "abnormal end of the 
system service", this utility function will return an undefined value.

165 [A.2 Activation Method]
Added the "Remark 2." in the "(1) cf_file" below.

In the configurator, the cf_file is handled as an ARXML format when the extention 
is .arxml or .xml, as an OIL format when the extention is .oil.
Only .arxml, .xml  or .oil can be specified as extension of cf_file.

166 [A.2 Activation Method]
Added the "Remark 2." in the "(3) -o  sit_file" below.

-o  sit_file can be specified multiple times as shown below. However, only the 
first -o  sit_file specified is treated as a valid activation option, and the others will 
be treated as invalid activation options.

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 Consequently, in the example below, -o  sit_file1.c is a valid activation option, 
and the other activation options (-o  sit_file2.c and -o  sit_file3.c) are ignored.

C:\> Os_Configurator.exe  -o  sit_file1.c  -o  sit_file2.c  -o  sit_file3.c  
cf_file.oil

166 [A.2 Activation Method]
Added the "Remark 2." in the "(5) -e  entry_file" below.

-e  entry_file can be specified multiple times as shown below. However, only the 
first -e  entry_file specified is treated as a valid activation option, and the others 
will be treated as invalid activation options.
Consequently, in the example below, -e  entry_file1.850 is a valid activation 
option, and the other activation options (-e  entry_file2.850 and -e  
entry_file3.850) are ignored.

C:\> Os_Configurator.exe  -e  entry_file1.850  -o  entry_file2.850  -e  
entry_file3.850  cf_file.oil

166 [A.2 Activation Method]
Added the "Remark 2." in the "(8) -I  path_name" below.

This activation option can be specified multiple times (up to 255 times) as shown 
below.

C:\> Os_Configurator.exe  -I  path_name1  -I  path_name2  -I  
path_name3  cf_file.oil

170, 172 [A.4.1 Fatal errors]
Added the error in the "Table A.1 Fatal Erros" below.

E3007
E4020

174 [A.4.2 Abort errors]
Changed the message in the "F1012" - "Table A.2 Abort Errors" as follows:

Too many File lines.
  -->
Too many lines.

176 - 
177

[B.1 Overview]
Added the keyword in the "(6) Keywords" below.

OSTMCNT, TRACESYSTEMENTRY, TRACESYSTEMEXIT, TRACETASKSTA-
TUS

186 [B.4.3 OS-Application information]
Changed the sentence in the "Remark 1." - "(6) SPID "OsApplicationSPID" as fol-
lows:

This item can be specified only when FALSE is defined for Reliability "OsTrusted".
  -->
This item can be specified only when G3M is defined for Core identifier 
"OsSystemCpuCore", and FALSE is defined for Reliability "OsTrusted".

189 [B.4.3 OS-Application information]
Changed the sentence in the "Remark 1." - "(17) Memory area identifier 
"OsAppMemoryAreaNameRef"" as follows:

This item can be specified only when FALSE is defined for Reliability "OsTrusted".

Rev. Date Description

Page Summary



1.01 Sep 30, 2014   -->
This item can be specified only when G3M is defined for Core identifier 
"OsSystemCpuCore", and FALSE is defined for Reliability "OsTrusted".

194 [B.4.5 Event information]
Added the "Remark" in this section below.

In the RV850, if the event defined in this information is not defined in the Task 
information, fatal error E4006 will be output.

196 [B.4.6 Interrupt service routine information]
Changed the sentence in the "Remark 2." as follows:

... and the counter defined in this information is ...
  -->
... and the interrupt service routine defined in this information is ...

202 [B.4.7 OS information]
Changed the sentence in the "Remark 2." - "(19) Memory area identifier 
"OsMemoryAreaNameRef"" as follows:

This item can be specified multiple times (up to 7 times) as shown below.
  -->
This item can be specified multiple times (when G3K is defined for Core identifier 
"OsSystemCpuCore": up to 3 times, when G3M is defined for Core identifier 
"OsSystemCpuCore": up to 7 times) as shown below.

217 [C.1 Overview]
Added the sentence in the "Table C.1 Memory Areas" below.

.kernel_address  Interrupt handler address table

217 [C.2 Standard Code Area (.kernel_system)]
Changed the sentence in the table as follows:

ECC2, extended status, SC1, FPU not supported  libecc2extsc1.a  12.0 Kbytes
ECC2, extended status, SC1, FPU supported  libecc2extsc1_fpu.a  12.1 Kbytes
ECC2, extended status, SC3, FPU not supported  libecc2extsc3.a 21.9 Kbytes
ECC2, extended status, SCS, FPU supported  libecc2extsc3_fpu.a  22.1 Kbytes
  -->
libecc2extsc1.a  12.2 Kbytes
libecc2extsc1_fpu.a  12.3 Kbytes
libecc2extsc3.a  22.1 Kbytes
libecc2extsc3_fpu.a 22.3 Kbytes

217 [C.2 Standard Code Area (.kernel_system)]
Added the sentence in the table below.

libecc2extsc3_g3k.a  21.5 Kbytes

217 [C.3 Interface Area (.kernel_interface)]
Changed the sentence in the table as follows:

ECC2, extended status, SC1, FPU not supported  libecc2extsc1.a
ECC2, extended status, SC1, FPU supported  libecc2extsc1_fpu.a
ECC2, extended status, SC3, FPU not supported  libecc2extsc3.a
ECC2, extended status, SCS, FPU supported  libecc2extsc3_fpu.a
  -->
libecc2extsc1.a
libecc2extsc1_fpu.a
libecc2extsc3.a

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 libecc2extsc3_fpu.a

217 [C.3 Interface Area (.kernel_interface)]
Added the sentence in the table below.

libecc2extsc3_g3k.a  0.92 Kbytes

218 [C.4 Constant Data Area (.kernel_const)]
Changed the calculating formula in the "(1) Constant data area for SC1" as 
follows:

KERNEL_CONST =
  align4 (
    652
      ...
    + 4 * ( SystemMaxExceptionCode - 4096 )
  )
  -->
KERNEL_CONST =
  align4 (
    674
      ...
    + 4 * ( SystemMaxExceptionCode - 4095 )
  )

218 [C.4 Constant Data Area (.kernel_const)]
Changed the sentence in the "AppMode_Num" - table - "(1) Constant data area for 
SC1" as follows:

... of Application mode information sets
  -->
... of Application mode information sets (except the definition of 
OSDEFAULTAPPMODE)

220 [C.4 Constant Data Area (.kernel_const)]
Changed the calculating formula in the "(2) Constant data area for SC3" as 
follows:

KERNEL_CONST =
  align4 (
    1232
      ...
    + 4 * ( SystemMaxExceptionCode - 4096 )
  )
  -->
KERNEL_CONST =
  align4 (
    1254
      ...
    + 4 * ( SystemMaxExceptionCode - 4095 )
  )

224 [C.6 Variable Data Area (.kernel_work)]
Changed the calculating formula in the "(1) Variable data area for SC1" as follows:

KERNEL_WORK =
  align4 (
    132
      ...
    + 28 * Task_Num

Rev. Date Description

Page Summary



1.01 Sep 30, 2014       ...
  )
  -->
KERNEL_WORK =
  align4 (
    128
      ...
    + 24 * Task_Num
      ...
  )

225 [C.6 Variable Data Area (.kernel_work)]
Changed the calculating formula in the "(2) Variable data area for SC3" as follows:

KERNEL_WORK =
  align4 (
    144
      ...
    + 36 * Task_Num
      ...
  )
  -->
KERNEL_WORK =
  align4 (
    148
      ...
    + 32 * Task_Num
      ...
  )

227 [C.7.1 System stack]
Changed the calculating formula in the "(1) System stack for SC1" as follows:

SystemStack =
  align4 (
    60
      ...
    + Max (
        ...
      36 + StartupHookStack_Siz,
        ...
    )
      ...
  )
  -->
SystemStack =
  align4 (
    44
      ...
    + Max (
        ...
      20 + StartupHookStack_Siz,
        ...
    )
      ...
  )

227 [C.7.1 System stack]
Changed the calculating formula in the "(2) System stack for SC3" as follows:

Rev. Date Description

Page Summary



1.01 Sep 30, 2014 SystemStack =
  align4 (
    Max (
      Max (
        324,
        264 + ProtectionHookStack_Siz + ErrorHookStack_Siz,
        108 + StartupHookStack_Siz + ErrorHookStack_Siz

      )
      ...
    )
  )
  -->
SystemStack =
  align4 (
    Max (
      Max (
        320,
        260 + ProtectionHookStack_Siz + ErrorHookStack_Siz,
        104 + StartupHookStack_Siz + ErrorHookStack_Siz
      )
        ...
    )
  )

230 [C.7.2 Os-Application stack]
Changed the calculating formula in this section as follows:

OsApplicationStack =
  align4 (
      ...
    + MAX (
      56 + ErrorHookStack_Siz,
        ...
    )
      ...
  )
  -->
OsApplicationStack =
  align4 (
      ...
    + MAX (
      104 + ErrorHookStack_Siz,
        ...
    )
      ...
  )

231 [C.7.3 Task stack (basic task)]
Changed the calculating formula in the "(1) Task stack (basic task) for SC1" as 
follows:

TaskStack =
  align4 (
    160
      ...
  )
  -->
TaskStack =

Rev. Date Description

Page Summary



1.01 Sep 30, 2014   align4 (
    164
      ...
  )

234 [C.7.5 Interrupt service routine stack (category 2)]
Changed the calculating formula in the "(1) Interrupt service routine stack (cate-
gory 2) for SC1" as follows:

IsrStack =
  align4 (
    252
      ...
  )
  -->
IsrStack =
  align4 (
    256
      ...
  )

235 [C. MEMORY FOOTPRINT]
Added the "C.8 Interrupt Handler Address Table (.kernel_address)" in this 
appendix.

1.02 Jun 10, 2015 17 [2.5 Writing the Linker Directive File]
Changed the title of “Table 2.1” as follows.

Prescribed Allocation Locations
 -->
Object Allocation Locations Prescribed by RV850

17 [2.5 Writing the Linker Directive File]

Correct “Remark 1.” as follows.

X: Write is possible
W: Execution is possible
 -->
W: Write is possible
X: Execution is possible

18 [2.6 Generation of Load Module]

Added the sentence in “Remark 4.” below.

When no floating-point operations are used at all (when the -fnone option is speci-
fied) in the system to be build, then in addition to the -D__WITHOSONLY__ 
option, the -D__NOFLOAT__ option must be specified.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 18 [2.6 Generation of Load Module]

Added “Remark 5.” in this section below.

When compiling the SIT file (Os_Cfg.c), it is recommended to specify the -sda=0 
option. If -sda=0 is not specified, there is a possibility that the RV850 data which is 
supposed to be stored in the .kernel_const section and .kernel_work section as 
shown in table 2.1 is stored in the .sbss section and .rosdata section, respectively. 
In particular, when -sda=0 is not specified for an SIT file whose scalability class is 
SC3, the .sbss section and .rosdata section need to be allocated to an area that 
cannot be written by all non-trusted OS-Applications.

19 [3.1Overview]
Added the sentences in “(1)Basic tasks” below.

- When the scalability class is SC1
"System stack" defined in System stack size "OsStackSize"

- When the scalability class is SC3
"OS-Application stack" defined in OS-Application stack size "OsAppStackSize"

19 [3.1Overview]
Added the sentences in “(2)Extended tasks” below.

The stack used while an extended task is running is the "task stack" defined in 
Task stack size "OsTaskStackSize".

20 [3.1.2 Stack monitoring facilities]
Added the sentences in this section below.

This facility checks whether there is enough remaining amount of stacks (task 
stack, system stack, and OS-Application stack) needed for RV850 processing 
when control transfers to RV850 processing from task execution. The remaining 
amount of stacks will be checked at the following timing.

- When starting to process a system service issued from a task

- When starting pre-processing of a category 2 interrupt service routine gener-
ated during task execution

20 [3.1.2 Stack monitoring facilities]
Changed the sentence in this section below.

If a stack overflow occurs inside a task, 
 -->
If a stack overflow is detected during task execution,

20 [3.1.2 Stack monitoring facilities]
Added  “Remark 2.” in this section below.

The stack monitoring facilities of the RV850 cannot detect a stack overflow unless 
control transfers from a task to RV850 processing. If a stack overflow that could 
occur at a desired timing during task execution needs to be detected, use the 
Memory protection facility provided by non-trusted OS-Applications of scalability 
class SC3.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 24 [4.1.1 Stack monitoring facilities]
Added the sentences in this section below.

This facility checks whether there is enough remaining amount of stacks (sys-
tem stack and OS-Application stack) needed for RV850 processing upon transition 
to RV850 processing from execution of an interrupt service routine (category 2). 
The remaining amount of stacks will be checked at the following timing.

-  When starting to process a system service issued from an interrupt service rou-
tine (category 2)

- When starting pre-processing of a category 2 interrupt service routine gener-
ated during execution of an interrupt service routine (category 2)

24 [4.1.1 Stack monitoring facilities]
Changed the sentence in this section below.

If a stack overflow occurs inside an interrupt service routine,
 -->
If a stack overflow is detected during execution of an interrupt service routine (cat-
egory 2),

24 [4.1.1 Stack monitoring facilities]
Added  “Remark 3.” in this section below.

The stack monitoring facilities of the RV850 cannot detect a stack overflow unless 
control transfers from an interrupt service routine (category 2) to RV850 
processing. If a stack overflow that could occur at a desired timing during 
execution of an interrupt service routine needs to be detected, use the Memory 
protection facility provided by non-trusted OS-Applications of scalability class 
SC3.

33 [4.5.2 Exception/interrupt safety measure process]
Added basic form for coding an exception/interrupt safety measure process in the 
C language below.

#pragma ghs interrupt

33 [4.5.2 Exception/interrupt safety measure process]
Added the sentence in this section below.

 The following points should be noted when coding an exception/interrupt safety 
measure process.

1) Saving/Restoring registers
. . .
5) Issuing system services

35 [5.1 Overview]
Changed the sentence in this section below.

The RV850 provides resource management functions as a mechanism for pre-
venting contention over limited resources.
These functions support three types of resource.
  -->
The RV850 provides resource management facilities as a mechanism for achiev-
ing mutual exclusion. Resources are exclusively controlled using "priority ceiling 
protocols", and racing over resources by tasks or interrupt service routines (cate-
gory 2) that use the limited number of shared resources (data, peripheral devices, 
common functions, etc.) or deadlocks can be prevented.
The RV850 supports three types of resource.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 35 [5.1.1 Ceiling values]
Moved from “5.1.2 Ceiling value” on Rev.1.01 and changed “Remark” in this sec-
tion below.

Interrupts that were put on hold while a resource was acquired are accepted after 
that resource is released.
 -->
Interrupts that were put on hold while a resource with a ceiling value of INTPRI0 to 
INTPRI5 was acquired are accepted after that resource is released.

35 [5.1.2 Scheduler resource]
Moved from “5.1.1 Scheduler Resource” on Rev.1.01 and changed the sentence 
in this section below.

The OSEK/VDX specifications have a definition of a resource, which have a iden-
tifier "RES_SCHEDULER" as a means to dynamically enable and disable the acti-
vation of the scheduler from processing programs. 
 -->
The OSEK/VDX specifications have a definition of a resource, which have a iden-
tifier "RES_SCHEDULER" and the ceiling value “29” as a means to dynamically 
enable and disable the activation of the scheduler from tasks. 

35 [5.1.2 Scheduler resource]
Added “Remark 1.” and ”Remark 2.” in this section.

36 [5.2 Generation of Resources]
Changed the sentence in “Remark” below.

The scheduler resource is generated by defining TRUE in Scheduler resource 
"OsUseResScheduler" and also making a definition with RES_SCHEDULER 
specified in Identifier "OsResource" of the Resource information.
 -->
The OSEK/VDX specifications have a rule specifying a scheduler resource to be 
automatically generated by defining TRUE in Scheduler resource "OsUseResS-
cheduler". The AUTOSAR specifications, however, have a rule specifying not to 
perform automatic generation. Therefore, when generating a scheduler resource 
in the RV850, make the following definitions in the CF file.

42 [10.1.1 Reliability]
Changed the sentence in “(1)Trusted OS-Applications” below.

Note that in the RV850, since the reliability of processing programs belonging to a 
trusted OS-Application is ensured, they are to be operated in supervisor mode 
(UM bit of PSW is set to 0), and the memory protection and peripheral I/O protec-
tion functions are not applied.
 -->
Note that in the RV850, since the reliability of processing programs belonging to a 
trusted OS-Application is ensured, they are to be operated in supervisor mode 
(UM bit of PSW is set to 0) with the system protection identifier (SPID bit of 
MCFG0 register) set to 0, and the memory protection and peripheral I/O protection 
facilities cannot be applied.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 42 [10.1.1 Reliability]
Changed the sentence in “(2)Non-Trusted OS-Applications” below.

Note that in the RV850, since the reliability of processing programs belonging to a 
non-trusted OS-Application is not ensured, they are to be operated in user mode 
(UM bit of PSW is set to 1), and the memory protection and peripheral I/O protec-
tion functions can be applied.
 -->
Note that in the RV850, since the reliability of processing programs belonging to a 
non-trusted OS-Application is not ensured, they are to be operated in user mode 
(UM bit of PSW is set to 1) with the system protection identifier (SPID bit of 
MCFG0 register) specified by SPID "OsApplicationSPID", and the memory protec-
tion and peripheral I/O protection functions can be applied.

43 [10.1.3 Memory protection]
Added the sentence in “Remark 1.” below.

The stack area used by a non-trusted OS-Application is monitored constantly 
regardless of the specification of Stack monitoring facilities "OsStackMonitoring"

43 [10.1.3 Memory protection]
Added “Remark 2.” in this section below.

The threshold (address) of the stack pointer which is to be considered to detect an 
overflow in the stack area is obtained by adding the maximum value of stack 
usage by the system services of the RV850 to the top address of the stack area 
used by tasks or interrupt service routines (category 2). This is a countermeasure 
for the memory protection facility not operating while executing a system service 
of the RV850 because of the transition to supervisor mode even for a non-trusted 
OS-Application.

45 [10.2 Trusted Functions]
Changed the sentences in this section below.

For OS-Applications whose reliability is ensured, it is possible to assign specific 
trusted functions to individual OS-Applications.
 -->
For trusted OS-Applications, it is possible to assign specific trusted functions to 
individual OS-Applications.

Trusted functions are called by issuing CallTrustedFunction from the processing 
program.
 -->
Trusted functions are called by issuing CallTrustedFunction from the processing 
program.Since CallTrustedFunction can also be called from other non-trusted OS-
Applications, trusted functions can be used when a non-trusted OS-Application is 
to temporarily perform processing without the protection facilities applied.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 45 [10.2 Trusted Functions]
Changed the sentence in “Remark 3.” below.

Trusted functions operate in supervisor mode; if CallTrustedFunction is issued 
from a processing program that belongs to a non-trusted OS-Application, the 
mode switching processing (transition from user mode to supervisor mode) is exe-
cuted.
 -->
Trusted functions operate in supervisor mode; if CallTrustedFunction is issued 
from a processing program that belongs to a non-trusted OS-Application, the 
mode switching processing (transition from user mode to supervisor mode) and 
system protection identifier (SPID bit of MCFG0 register) switching processing (it 
is set to 0 when a trusted function is being executed) are executed.

45 [10.2 Trusted Functions]
Changed the sentence in “Remark 4.” below.

Since trusted functions operate in supervisor mode, the memory protection func-
tion (MPU) provided by the device cannot be applied.
 -->
Since trusted functions operate in supervisor mode, the memory protection func-
tion cannot be applied. Also, since trusted functions operate when the system pro-
tection identifier (SPID bit of MCFG0 register) is set to 0, peripheral I/O protection 
functions associated with the system protection identifier cannot be applied.

46 [10.2.3 Inherited data of trusted functions]
Added this section.

48 [10.3 OS-Application-Specific Hook Routines]
Added “Remark” in this section.

Non-trusted OS-Application-specific hook routines are to be operated in user 
mode (UM bit of PSW is set to 1) with the system protection identifier (SPID bit of 
MCFG0 register) specified by SPID "OsApplicationSPID", and the memory protec-
tion and peripheral I/O protection facilities associated with the system protection 
identifier can be applied. Trusted OS-Application-specific hook routines are to be 
operated in supervisor mode (UM bit of PSW is set to 0) with the system protec-
tion identifier (SPID bit of MCFG0 register) set to 0, and the memory protection 
and peripheral I/O protection facilities associated with the system protection iden-
tifier cannot be applied.

51 [11.2 Common Hook Routines]
Added “Remark” in this section.

Since common hook routines operate in supervisor mode, the memory protection 
facility cannot be applied. Also, since common hook routines operate when the 
system protection identifier (SPID bit of MCFG0 register) is set to 0, peripheral I/O 
protection facilities associated with the system protection identifier cannot be 
applied.

58 [12.3 Idle Handler]
Changed the sentence in “Remark 1.” below.

Since the idle handler operates in supervisor mode, the memory protection func-
tion (MPU) provided by the device cannot be applied.
 -->
Since the idle handler operates in supervisor mode, the memory protection facility 
cannot be applied. Also, since the idle handler operates when the system protec-
tion identifier (SPID bit of MCFG0 register) is set to 0, peripheral I/O protection 
facilities associated with the system protection identifier cannot be applied.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 144 [14.4.8 OS-Application management]
Changed [Function] in CallTrustedFunction below.

When a trusted function is called, the value specified in parameter Function-
Params is passed as the first argument to the trusted function.
 -->
When a trusted function is called from processing of this system service, the value 
specified in parameter FunctionIndex is passed as the first argument to the trusted 
function and the value (pointer) specified in parameter FunctionParams is passed 
as the second argument to the trusted function.
For details on the data (parameters) inherited to the trusted function, see "10.2.3 
Inherited data of trusted functions"

144 [14.4.8 OS-Application management]
Changed “Remark 4.” in CallTrustedFunction below.

This system service does not check the validity of parameter FunctionParams.
When the validity of parameter FunctionParams needs to be checked, check it in 
the trusted function called by issuing this system service.
 -->
This system service does not check the validity of the inherited data indicated by 
parameter FunctionParams. When the validity of the inherited data needs to be 
checked, check it in the trusted function called by issuing this system service.

160 [14.4.9 OS execution management]
Changed “Remark 2.” in StartOS below.

Since this system service manipulates system registers, it must be issued in 
supervisor mode (the UM bit in PSW is 0).
 -->
Since this system service manipulates system registers, it must be issued in 
supervisor mode (the UM bit in PSW is 0). Also, this system service must be 
issued after setting of the system protection identifier (SPID bit of MCFG0 register) 
(Remark 6. in “4.2 Boot Process") is complete.

167 [14.4.10 Utility functions]
Changed “Remark 2.” in _kernel_fv0_InitializeIntService below.

Since this utility function manipulates system registers, it must be issued in super-
visor mode (the UM bit in PSW is 0).
 -->
Since this utility function manipulates the RV850 internal data, it must be issued in 
supervisor mode (the UM bit in PSW is 0).

174 [A.2 Activation Method]
Changed the method for starting the configurator from the command prompt 
below.

OS_Configurator.exe
 -->
Os_Configurator.exe

195 [B.4.3 OS-Application information]
Changed the title below.

(3) Stack size "OsAppStackSize"
 -->
(3) OS-Application Stack size "OsAppStackSize"

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 195 [B.4.3 OS-Application information]
Changed the sentence in “(6) SPID "OsApplicationSPID"” below.

Specifies the access privileges (protection through the SPID) to the I/O area.
 -->
Specifies the access privileges (system protection identifier) to the I/O area.

208 [B.4.7 OS information]
Changed “Remark 1.” in “(4) Stack monitoring facilities "OsStackMonitoring"” 
below.

See "3.1.2  Stack monitoring facilities" or "4.1.1  Stack monitoring facilities" for 
details about the stack monitoring facilities.
 -->
See "3.1.2Stack monitoring facilities" and "4.1.1Stack monitoring facilities" for 
details about the stack monitoring facilities.

209 [B.4.7 OS information]
Changed the title below.

(11) Stack size "OsStackSize"
 -->
(11) System stack size "OsStackSize"

212 [B.4.8 Resource information]
Added the sentences in “Remark 1.” in “(2) Ceiling value "OsResourcePriority"”

This is an optional item. When the specification is omitted, the ceiling value is 
automatically calculated and assigned as described in Remark 5. Except for the 
case of generating the scheduler resource, it is recommended to omit the specifi-
cation of the ceiling value by this item, and instead specify Resource identifier 
"OsTaskResourceRef" to be acquired by the task or Resource identifier "OsIsrRe-
sourceRef" to be acquired by the interrupt service routine (category 2). See "5.1.1 
Ceiling values" for details about the ceiling value.

212 [B.4.8 Resource information]
Changed the sentences in “Remark 3.” in “(2) Ceiling value "OsResourcePriority"” 
below.

When RES_SCHEDULER is defined for Identifier "OsResource", OsResourcePri-
ority should be higher than the priority specified for any Initial priority "OsTaskPri-
ority".
 -->
To generate the scheduler resource, RES_SCHEDULER should be defined for 
Identifier "OsResource", and priority 29 should be defined for OsResourcePriority.

212 [B.4.8 Resource information]
Changed the sentences in “Remark 5.” in “(2) Ceiling value "OsResourcePriority"” 
below.

When AUTO is specified, the highest priority in all tasks and interrupt service rou-
tines for the OS-Application to which this resource belongs is found, and that prior-
ity is assigned as the ceiling value.
 -->
When AUTO is specified, the highest priority in all tasks and interrupt service rou-
tines, which acquire the resource, defined in the CF file is obtained, and that prior-
ity is assigned as the ceiling value.

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 220 [B.4.10 Task information]
Changed the title below.

(5) Stack size "OsTaskStackSize"
 -->
(5) Task stack size "OsTaskStackSize"

237 [C.7.1 System stack]
Changed the sentence of SystemServiceStack_Max in “(1) System stack for SC1” 
below.

Set to 164 when extended tasks issue system services; otherwise, set to 0.
 -->
164 (Stack size necessary for the system service issued by the extended task)

238 [C.7.1 System stack]
Added the sections below written on Rev.1.01 in “(1) System stack for SC1”.

(a) Task stack (basic task) for SC1
(b) Interrupt service routine stack (category 2) for SC1

240 [C.7.2 OS-Application stack]
Changed the sentence of SystemServiceStack_Max in this section below.

Set to 164 when extended tasks issue system services; otherwise, set to 0.
 -->
164 (Stack size necessary for the system service issued by the extended task)

241 [C.7.2 OS-Application stack]
Added the sections below written on Rev.1.01 in this section.

(a) Task stack (basic task) for SC3
(b) Interrupt service routine stack (category 2) for SC3

242 [C.7.3 Task stack (extended task)]
Changed “(1) Task stack (extended task) for SC1” of IsrContext_Siz in this section 
below.

Set to 124 when interrupts occur in the extended task; otherwise, set to 0.
 -->
124 (Stack size necessary for the interrupt processing occurring during execution 
of the extended task)

242 [C.7.3 Task stack (extended task)]
Changed “(1) Task stack (extended task) for SC1” of SystemServiceFrame_Siz in 
this section below.

Set to 8 when the extended task issues system services; otherwise set to 0.
 -->
8 (Stack size necessary for the system service issued by the extended task)

243 [C.7.3 Task stack (extended task)]
Changed “(2) Task stack (extended task) for SC3” of IsrContext_Siz in this section 
below.

Set to 128 when interrupts occur in the extended task; otherwise, set to 0.
 -->
128 (Stack size necessary for the interrupt processing occurring during execution 
of the extended task)

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 243 [C.7.3 Task stack (extended task)]
Changed “(2) Task stack (extended task) for SC3” of SystemServiceFrame_Siz in 
this section below.

Set to 12 when the extended task issues system services; otherwise set to 0.
 -->
12 (Stack size necessary for the system service issued by the extended task)

21 [3.1.4 Processing in tasks]
Added “Remark 2.” in “(2) Saving/Restoring FPSR”.

28 [4.3.1 Processing in interrupt service routines]
Added “Remark” in “(1) Category 1”.

28 [4.3.1 Processing in interrupt service routines]
Added “Remark 2.” in “(2) Category 2”.

39 [8.2.1 Processing in alarm callbacks]
Added “Remark” in “(2) Saving/Restoring FPSR”.

45 [10.2.1 Processing in trusted functions]
Added “Remark 2.” in “(2) Saving/Restoring FPSR”.

49 [10.3.1 Processing in OS-Application-specific hook routines]
Added “Remark” in “(2) Saving/Restoring FPSR”.

54 [11.2.1 Processing in common hook routines]
Added “Remark” in “(2) Saving/Restoring FPSR”.

226 [C.2 Standard Code Area (.kernel_system)]
Changed the memory size value used by the kernel libraries below due to version 
upgrade (Modification of kernel libraries) to V2.01.01.

libecc2extsc1_fpu.a
　12.3Kbytes --> 12.4Kbytes

libecc2extsc3_g3k.a
　21.5Kbytes --> 21.6Kbytes

227 [C.4 Constant Data Area (.kernel_const)]
Changed the fixed value of formula for estimating the memory size in “(1) Con-
stant data area for SC1 (.kernel_const)” below due to version upgrade (Modifica-
tion of kernel libraries) to V2.01.01.

674 --> 673

229 [C.4 Constant Data Area (.kernel_const)]
Changed the fixed value of formula for estimating the memory size in “(2) Con-
stant data area for SC3 (.kernel_const)” below due to version upgrade (Modifica-
tion of kernel libraries) to V2.01.01.

1254 --> 1253

239 [C.7.1 System stack]
Changed the fixed value of formula for estimating the memory size in “(2) System 
stack for SC3” below due to version upgrade (Modification of kernel libraries) to 
V2.01.01.

260 --> 264

Rev. Date Description

Page Summary



1.02 Jun 10, 2015 - [1.5 Folder Structure]
Changed the name of RV850 installation destination folder below.

<rx_root> --> <rv_root>

- Changed the description of system register MCFG0.SPID below.

System protection number --> System protection identifier

220 [B.4.10 Task information]
Changed the sentences in “Remark 2.” in “(5) Task stack size "OsTaskStackSize"” 
below.

See "C.7.3 Task stack (basic task)" or "C.7.4 Task stack (extended task)" for 
details about the size specified in this item.
 -->
See "C.7.3Task stack (extended task)" for details about the size specified in this 
item.

244 [C.8 Interrupt Handler Address Table (.kernel_address)]
Changed the calculating formula in this section below.

IntHdrAdrTbl =
    16 * InterruptSource_Num
 -->
IntHdrAdrTbl =
    4 * (SystemMaxExceptionCode - 4095)

1.03 Dec 17, 2015 10 [1.4 Execution Environment]
Changed information of the target devices in “(1)Devices” below.

RH850 family (G3K core, G3M core)
 -->
RH850 family (G3K core, G3M core, G3KH core, G3MH core)

10 [1.4 Execution Environment]
Changed the sentences in “(2)Peripheral controllers” in “Remark 3.” below.

...scalability class SC3 (only in G3M core) 
 -->
...scalability class SC3 (only in G3M core, G3KH core, G3MH core)

10 [1.4 Execution Environment]
Changed the sentences in “Table 1.1OS Reserved Resources Occupied by 
RV850” in “SPID bit of machine configuration (MCFG0)” below.

SC3 (only in G3M core)
 -->
SC3 (only in G3M core, G3KH core, G3MH core)

Rev. Date Description

Page Summary



1.03 Dec 17, 2015 11 [1.5.1Object release version]
Changed the sentences in “(9)” below.

libecc2extsc3.a: ECC2, extended status, SC3, FPU not supported (only in 
G3M core)
libecc2extsc3_fpu.a: ECC2, extended status, SC3, FPU supported (only in 
G3M core)
 -->
libecc2extsc3.a: ECC2, extended status, SC3, FPU not supported (only in 
G3M, G3KH, G3MH core)
libecc2extsc3_fpu.a: ECC2, extended status, SC3, FPU supported (only in 
G3M, G3KH, G3MH core)

24 [4.2 Boot Process]
Changed the sentences in “(2)” below.

Interrupt function registers
 -->
Interrupt function registers (only in G3M core, G3KH core)

24 [4.2 Boot Process]
Changed the sentences in “(4)” below.

The safety function associated with the SPID bit (system protection identifier) of 
the machine configuration register (MCFG0) (only in G3M core)
 -->
The safety function associated with the SPID bit (system protection identifier) of 
the machine configuration register (MCFG0) (only in G3M core, G3KH core, 
G3MH core)

185 [B.1 Overview]
Added new keywords in “(6) Keywords” below
G3KH, G3MH

195 [B.4.3 OS-Application information]
Changed the sentences in “(6) SPID "OsApplicationSPID"” in ”Remark 1.” below

this item can be specified when G3M is defined for Core identifier "OsSystemCpu-
Core", and FALSE is defined for Reliability "OsTrusted".
 -->
this item can be specified when G3M or G3KH or G3MH is defined for Core identi-
fier "OsSystemCpuCore", and FALSE is defined for Reliability "OsTrusted".

198 [B.4.3 OS-Application information]
Changed the sentences in “(17) Memory area identifier "OsAppMemoryAreaNa-
meRef"” in “Remark 1.” below

This item can be specified when G3M is defined for Core identifier "OsSystemC-
puCore", and FALSE is defined for Reliability "OsTrusted".
 -->
tThis item can be specified when G3M or G3KH or G3MH is defined for Core iden-
tifier "OsSystemCpuCore", and FALSE is defined for Reliability "OsTrusted".

Rev. Date Description

Page Summary



1.03 Dec 17, 2015 209 [B.4.7 OS information]
Changed the sentences in “(12) FPSR default value "OsDefaultFPSRValue"” in 
below

[If omitted:]
Processing is performed assuming that 0x20000 is specified.
 -->
[If omitted:]
Processing is performed assuming that reset value of the target device is speci-
fied.

211 [B.4.7 OS information]
Changed the sentences in “(19) Memory area identifier "OsMemoryAreaNa-
meRef"” in below

This item can be specified multiple times (when G3K is defined for Core identifier 
"OsSystemCpuCore": up to 3 times, when G3M is defined for Core identifier 
"OsSystemCpuCore": up to 7 times) as shown below.
 -->
This item can be specified multiple times (when G3K is defined for Core identifier 
"OsSystemCpuCore": up to 3 times, when G3M or G3KH or G3MH is defined for 
Core identifier "OsSystemCpuCore": up to 7 times) as shown below.

223 [B.4.11 System information]
Changed the sentences in “(3) Core identifier "OsSystemCpuCore"” in below

Only G3K or G3M can be specified as OsSystemCpuCore.
 -->
Only G3K or G3M or G3KH or G3MH can be specified as OsSystemCpuCore.

Rev. Date Description

Page Summary



RV850 Real-Time Operating System User's Manual: Functionality

Publication Date: Rev.1.00 Apr 25, 2014
Rev.1.03 Dec 17, 2015

Published by: Renesas Electronics Corporation



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel:  +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 4.0 



RV850

R20UT2768EJ0103


	How to Use This Manual
	1. GENERAL INFORMATION
	1.1 Overview
	1.2 Features
	1.3 Structure
	1.4 Execution Environment
	1.5 Folder Structure
	1.5.1 Object release version
	1.5.2 Source release version


	2. BUILDING THE SYSTEM
	2.1 Overview
	2.2 Writing User-Own Coding Modules
	2.2.1 Generating user-own libraries

	2.3 Writing Processing Programs
	2.4 Writing CF Files
	2.4.1 Generating information files

	2.5 Writing the Linker Directive File
	2.6 Generation of Load Module

	3. TASK MANAGEMENT
	3.1 Overview
	3.1.1 Task states
	3.1.2 Stack monitoring facilities
	3.1.3 Tasks
	3.1.4 Processing in tasks
	3.1.5 Generation of tasks
	3.1.6 Termination of tasks

	3.2 System Services

	4. INTERRUPT HANDLING
	4.1 Overview
	4.1.1 Stack monitoring facilities

	4.2 Boot Process
	4.2.1 Processing in boot process

	4.3 Interrupt Service Routines
	4.3.1 Processing in interrupt service routines
	4.3.2 Registration of interrupt service routines
	4.3.3 Termination of interrupt service routines

	4.4 System Services
	4.5 User-Own Coding Modules
	4.5.1 Entry process (direct branch method exception vector)
	4.5.2 Exception/interrupt safety measure process

	4.6 Multiplex Interrupts

	5. RESOURCE MANAGEMENT
	5.1 Overview
	5.1.1 Ceiling values
	5.1.2 Scheduler resource

	5.2 Generation of Resources
	5.3 System Services

	6. EVENT MANAGEMENT
	6.1 Overview
	6.2 Generation of Events
	6.3 System Services

	7. COUNTER MANAGEMENT
	7.1 Overview
	7.1.1 System counters

	7.2 Generation of Counters
	7.3 System Services

	8. ALARM MANAGEMENT
	8.1 Overview
	8.2 Alarm Callback
	8.2.1 Processing in alarm callbacks
	8.2.2 Registration of alarm callbacks

	8.3 Generation of Alarms
	8.3.1 System Services


	9. SCHEDULE TABLE MANAGEMENT
	9.1 Overview
	9.2 Schedule Tables
	9.2.1 Schedule table states

	9.3 Generation of schedule tables
	9.4 System Services

	10. OS-APPLICATION MANAGEMENT
	10.1 Overview
	10.1.1 Reliability
	10.1.2 States
	10.1.3 Memory protection
	10.1.4 Peripheral I/O protection function

	10.2 Trusted Functions
	10.2.1 Processing in trusted functions
	10.2.2 Registration of trusted functions
	10.2.3 Inherited data of trusted functions

	10.3 OS-Application-Specific Hook Routines
	10.3.1 Processing in OS-Application-specific hook routines
	10.3.2 Registration of OS-Application-specific hook routines

	10.4 Generation of OS-Applications
	10.5 System Services

	11. OS EXECUTION MANAGEMENT
	11.1 Overview
	11.2 Common Hook Routines
	11.2.1 Processing in common hook routines
	11.2.2 Registration of common hook routines
	11.2.3 System Services


	12. SCHEDULE MANAGEMENT
	12.1 Overview
	12.2 Hook Routines
	12.3 Idle Handler
	12.3.1 Processing in idle handler


	13. SYSTEM INITIALIZATION
	13.1 Overview
	13.2 Entry Process (Direct Branch Method Exception Vector)
	13.3 Boot Process
	13.4 Kernel Initialization Module
	13.5 Hook Routines

	14. SYSTEM SERVICES
	14.1 Overview
	14.1.1 Calling of system services

	14.2 Data Macros
	14.2.1 Data types
	14.2.2 Error status
	14.2.3 Invalid task identifier
	14.2.4 Task states
	14.2.5 Schedule table states
	14.2.6 Exit with error (abend)
	14.2.7 Access privilege types
	14.2.8 Object types
	14.2.9 Checking for access privileges
	14.2.10 Restart options
	14.2.11 State of OS-Application
	14.2.12 System service identifiers
	14.2.13 Counter information
	14.2.14 Checking for access privileges

	14.3 Data Structures
	14.3.1 Alarm base information

	14.4 System Services Reference
	14.4.1 Task management
	ActivateTask
	TerminateTask
	ChainTask
	Schedule
	GetTaskID
	GetTaskState

	14.4.2 Interrupt handling
	EnableAllInterrupts
	DisableAllInterrupts
	ResumeAllInterrupts
	SuspendAllInterrupts
	ResumeOSInterrupts
	SuspendOSInterrupts

	14.4.3 Resource management
	GetResource
	ReleaseResource

	14.4.4 Event management
	SetEvent
	ClearEvent
	GetEvent
	WaitEvent

	14.4.5 Counter management
	IncrementCounter
	GetCounterValue
	GetElapsedValue

	14.4.6 Alarm management
	GetAlarmBase
	GetAlarm
	SetRelAlarm
	SetAbsAlarm
	CancelAlarm

	14.4.7 Schedule table management
	StartScheduleTableRel
	StartScheduleTableAbs
	StopScheduleTable
	NextScheduleTable
	GetScheduleTableStatus

	14.4.8 OS-Application management
	GetApplicationID
	GetISRID
	CallTrustedFunction
	CheckISRMemoryAccess
	CheckTaskMemoryAccess
	CheckObjectAccess
	CheckObjectOwnership
	TerminateApplication
	AllowAccess
	GetApplicationState

	14.4.9 OS execution management
	StartOS
	ShutdownOS
	GetActiveApplicationMode

	14.4.10 Utility functions
	InitApplicationInterrupts
	_kernel_fv0_InitializeIntService
	OSIllegalException_SystemRegister_ExcCode
	OSIllegalException_SystemRegister_ExcPC
	OSErrorGetServiceId
	OSError_SystemService_Parameter



	A. CONFIGURATOR
	A.1 Overview
	A.2 Activation Method
	A.2.1 Command file

	A.3 Sample Command Input
	A.4 Messages
	A.4.1 Fatal errors
	A.4.2 Abort errors
	A.4.3 Warnings


	B. CF FILES (OIL)
	B.1 Overview
	B.2 Configuration Information
	B.3 Include Files
	B.4 CPU
	B.4.1 Alarm information
	B.4.2 Application mode information
	B.4.3 OS-Application information
	B.4.4 Counter information
	B.4.5 Event information
	B.4.6 Interrupt service routine information
	B.4.7 OS information
	B.4.8 Resource information
	B.4.9 Schedule table information
	B.4.10 Task information
	B.4.11 System information


	C. MEMORY FOOTPRINT
	C.1 Overview
	C.2 Standard Code Area (.kernel_system)
	C.3 Interface Area (.kernel_interface)
	C.4 Constant Data Area (.kernel_const)
	C.5 Constant Data Area (.kernel_identifier)
	C.6 Variable Data Area (.kernel_work)
	C.6.1 Priority buffers

	C.7 Stack Area (.kernel_stack)
	C.7.1 System stack
	C.7.2 OS-Application stack
	C.7.3 Task stack (extended task)

	C.8 Interrupt Handler Address Table (.kernel_address)

	Revision Record

