
Bootstrapper

The Bootstrapper loads 
system properties based on

• Environments (prod, qa, dev)

• OS (Windows, Unix)

• Machines

• Users

• Whether you’re in an IDE

A hierarchy of property 
sources allows fine-grained 
specification of defaults and 
overrides. common

prod test

IDE?

server1 server2 server3

Windows Unix

System properties

Production user My user



Property group ordering

Properties have a priority, 
based on the group in which 
they are loaded.

Each group is typically defined 
in its own file, e.g.
• common.properties

• prod.properties

1. System properties

2. User

3. Machine

4. Operating system

5. IDE

6. Additional groups

7. Environment

8. Common

1. Properties are loaded in priority order, 
highest first (with the exception of 
additional groups)

2. Properties from higher priority groups 
may override the location of other 
property files, using the property 
bootstrap.properties.<group>.file



a.b=default
c.d=foo

common.props

a.b=prod

prod.props

a.b=user

user.props

Property overriding

Properties defined in 
higher-priority files take 
precedence.

1. Load properties in descending 
priority order

2. Property a.b is defined in multiple 
places; the highest priority source 
wins, in this case the user properties

a.b=user
c.d=foo

published



a.b=default
c.d=foo

common.props

a.b=prod

prod.props

a.b=user.${c.d}

user.props

Property resolution

Properties can be defined 
in terms of others, using 
placeholders for lazy 
binding.

1. Load properties in descending priority 
order

2. Property a.b is taken from highest 
priority source, as before

3. Finally, outstanding placeholders are 
resolved among other properties

4. Note that placeholders can refer to 
properties defined in both higher and 
lower priority sources

a.b=user.foo
c.d=foo

published

a.b=user.${c.d}
c.d=foo

intermediate



a.b=default
c.d=${e.f}

common.props

a.b=prod.${c.d}
e.f=something

prod.props

a.b=user.${c.d}
e.f=wow

user.props

Indirect property resolution

Properties can depend on 
other properties, and 
those dependencies can 
be overridden.

1. Reference to c.d resolved as a 
reference to e.f

2. Property a.b references resolved 
step by step

3. Definition of e.f is overridden, the 
higher priority value is used for its 
final value and for resolved values

a.b=user.wow
c.d=wow
e.f=wow

published

a.b=user.${c.d}
c.d=${e.f}
e.f=wow

intermediate 1

a.b=user.${e.f}
c.d=wow
e.f=wow

intermediate 2



Use in your main method

Normal usage is at application startup

public static void main(String ... args) {
BootstrapMain.withApplicationName("my-awesome-app").publishTo(systemProperties());
// rest of application

}

• This will publish all generated properties into 
system properties

• Properties can be used from the returned 
PropertyProvider



Overriding property source locations

Properties have default 
file locations, but these 
can be changed by the 
bootstrap.properties.<group>.file

property

1. Reference to c.d resolved as a 
reference to e.f

2. Property a.b references resolved 
step by step

3. Definition of e.f is overridden, the 
higher priority value is used for its 
final value and for resolved values

a.b=default1
c.d=foo

common.props

a.b=prod

prod.props

a.b=user
b.p.common.file=cp.props

user.props

a.b=user
c.d=bar

published

a.b=default2
c.d=bar

cp.props



Additional property groups

• Use additional property 
groups for GUIs, or other 
specific application types.

• Higher priority than 
environment properties.

1. System properties

2. User

3. Machine

4. Operating system

5. IDE

6. Additional groups

7. Environment

8. Common

1. Additional property group names are defined by 
bootstrap.properties.additional.group as a 
comma-separated list.

2. Files for this group are defined in 
bootstrap.properties.<group-name>.file

3. Properties from this group are loaded last, so you 
can define these locations in common.properties

BootstrapMain.withAdditionPropertyGroups("GUI")



Other PropertyProvider options

Rather than publishing to system properties, you 
can use other providers.

• Publish generated properties into a map-backed provider. 
This can be injected directly into components.
MapBackedPropertyProvider pp =

BootstrapMain.withApplicationName("my-awesome-app").publishTo(newMap());

• [useful?] Publish generated properties into a ThreadGroup-
local provider, visible to all threads within that group. Useful 
for configuring different multi-threaded services in one JVM.

ThreadGroup g = Thread.current().getThreadGroup(); // or another group
ThreadGroupPropertyProvider pp = BootstrapMain

.withApplicationName("my-awesome-app").publishTo(threadGroup(g));


