Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
raspberryturk/raspberryturk/embedded/vision/chessboard_perspective_transform.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
87 lines (64 sloc)
2.48 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import logging | |
from raspberryturk import lib_path, RaspberryTurkError, setup_console_logging | |
def _chessboard_perspective_transform_path(): | |
return lib_path('chessboard_perspective_transform.npy') | |
def get_chessboard_perspective_transform(): | |
try: | |
M = np.load(_chessboard_perspective_transform_path()) | |
return M | |
except IOError: | |
raise RaspberryTurkError("No chessboard perspective transform found. Camera position recalibration required.") | |
def recalibrate_camera_position(): | |
import cv2 | |
from itertools import product | |
from sklearn.linear_model import LinearRegression | |
from sklearn.preprocessing import PolynomialFeatures | |
from scipy.spatial.distance import euclidean | |
board_size = (7,7) | |
_, frame = cv2.VideoCapture(0).read() | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
found, corners = cv2.findChessboardCorners(gray, board_size, flags=cv2.CALIB_CB_NORMALIZE_IMAGE|cv2.CALIB_CB_ADAPTIVE_THRESH) | |
assert found, "Couldn't find chessboard." | |
z = corners.reshape((49,2)) | |
board_center = z[24] | |
frame_center = frame.shape[1] / 2.0, frame.shape[0] / 2.0 | |
assert euclidean(board_center, frame_center) < 20.0, "Camera is not centered over chessboard." | |
X_train = np.array(list(product(np.linspace(-3, 3, 7), np.linspace(-3, 3, 7)))) | |
poly = PolynomialFeatures(degree=4) | |
X_train = poly.fit_transform(X_train) | |
m_x = LinearRegression() | |
m_x.fit(X_train, z[:, 0]) | |
m_y = LinearRegression() | |
m_y.fit(X_train, z[:, 1]) | |
def predict(i, j): | |
features = poly.fit_transform(np.array([i, j])) | |
return m_x.predict(features), m_y.predict(features) | |
P = [] | |
Q = [] | |
P.append(predict(-4.0, -4.0)) | |
Q.append((0.0, 0.0)) | |
P.append(predict(-4.0, 4.0)) | |
Q.append((0.0, 480.0)) | |
P.append(predict(4.0, -4.0)) | |
Q.append((480.0, 0.0)) | |
P.append(predict(4.0, 4.0)) | |
Q.append((480.0, 480.0)) | |
Q = np.array(Q, np.float32) | |
P = np.array(P, np.float32).reshape(Q.shape) | |
ind = np.lexsort((P[:,1],P[:,0])) | |
P = P[ind] | |
M = cv2.getPerspectiveTransform(P, Q) | |
np.save(_chessboard_perspective_transform_path(), M) | |
def main(): | |
setup_console_logging() | |
logger = logging.getLogger(__name__) | |
logger.info("Begin camera position recalibration...") | |
try: | |
recalibrate_camera_position() | |
except AssertionError as e: | |
logger.error(e) | |
else: | |
logger.info("Camera position recalibration successful.") | |
if __name__ == '__main__': | |
main() |