Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Code repository for the paper "Constraining Effective Field Theories with Machine Learning"

Johann Brehmer, Kyle Cranmer, Gilles Louppe, and Juan Pavez

Note: If you want to use these methods for a particle physics problem, please have a look at our new tool MadMiner -- you will likely find that much easier to use than this repo!

Folder structure

  • cluster_scripts: SLURM scripts that start the preprocessing and experiments on the NYU HPC cluster.
  • data: The data set, including both the original weighted event sample as well as the unweighted training, calibration, and evaluation samples. Some of these are quite large and not on GitHub.
  • evaluation: IPython notebooks that extract metrics and figures from the experiments.
  • figures: Here the figures are stored.
  • higgs_inference: The main folder for the inference experiments.
    • models: The keras model code at the heart of many inference strategies.
    • strategies: Training and evaluation routines for the different inference strategies.
    • various: Different utility functions.
    • experiments.py: Main executable that starts the different training and evaluation pieces.
    • settings.py: Most settings and constants, including the main directories, event numbers, architecture parameters, and benchmark thetas.
  • preprocessing: Unweighting routines that generate the different training, calibration, and evaluation samples from the original weighted event file.
  • postprocessing: Code for the Neyman construction.
  • prototypes: Toy experiments and cross-checks on other data. Includes the flow folder with a PyTorch implementation of normalizing flows.
  • results: The predictions of the different algorithms on the test data set.

About

Code repository for the paper "Constraining Effective Field Theories with Machine Learning"

Resources

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.