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Radiative scattering properties of an ensemble of variously shaped small particles

Yu-lin Xu*
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This paper presents a rigorous solution to the scattering of a monochromatic plane wave by an arbitrary
configuration of wavelength-sized small particles that can be of different shape, structure, size, and composi-
tion. A T-matrix formulation is developed for the calculation of optical cross sections and the asymmetry
parameter of such an ensemble of scatterers in both fixed and random orientations. The solution is based on the
T matrix T j l , that is, the inverse of the coefficient matrix of boundary condition equations. A linear system
containingT j l is derived to efficiently solve theT matrix, which is required in the practical implementation of
the solution.
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I. INTRODUCTION

Radiative scattering by multiple particles is a comm
subject in a wide range of scientific and technical fie
stretching from astrophysics to nanoscience and from rem
sensing to aerosol medicine. Since the work on addit
theorems for vector spherical wave functions~VSWFs! by
Stein @1# and Cruzan@2# in the early 1960s, numerous re
searchers from diverse scientific and technical areas h
contributed to a continual progress towards a complete a
lytical solution to radiative scattering of a plane wave
multiple spheres. Starting with Liang and Lo@3# and Bruning
and Lo @4#, contributors include Peterson and Stro¨m @5#,
Borgheseet al. @6,7#, Fuller and Kattawar@8,9#, Hamid,
Ciric, and Hamid@10#, Mackowski@11#, and many others. As
an extension of the Lorenz-Mie solution for single homog
neous spheres@12,13# to the multisphere case, the multipo
superposition solution to multisphere scattering has b
well established to date. Following the pioneer work by
and his colleagues@3,4#, two solution approaches have be
reported to the multisphere scattering. The first is the clu
T matrix ~CTM! approach developed initially by Peterso
and Stro¨m @5#. Representative work on CTM for the scatte
ing by an ensemble of homogeneous spheres in random
entations includes those by Mackowski@14# and Mackowski
and Mishchenko@15#. The main idea of the CTM approach
to construct a single-particle typeT matrix for an ensemble
of spheres as a whole. A requirement of this approach is
translation of radiative fields between displaced refere
systems through the use of Stein and Cruzan’s general a
tion theorems for VSWFs. With the clusterT matrix of
single-particle type determined, an ensemble of spheres
be treated as an equivalent single scatterer. In this way
scattering solutions derived for single particles remain va
and all formulations for single-body scattering can be u
directly to solve multiparticle scattering. Though rigorous
principle, CTM has an intrinsic weakness in practical imp
mentations. Its applicability is rather limited regarding t
overall size of an ensemble because the truncation of m
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pole field expansions in CTM depends on the overall dim
sion of an ensemble rather than the size of individ
spheres. The second is a far-field approach, which lead
the development of the generalized multiparticle Mie so
tion ~GMM! @16–22#. It avoids altogether the use of th
general addition theorems for VSWFs in field translatio
@17#. Field-expansion truncation in GMM depends solely
the size of individual particles and is not concerned with
overall dimension of an ensemble. Thus, GMM is complet
exempted from the overall size restriction that CTM suffe
from in practical applications.

The GMM has been extended to the general case o
arbitrary mixture of spherical and nonspherical scattere
When the properT matrices of a group of particles~i.e., T
matrices of the particles in single-body scattering! are pre-
cisely known or can be computed accurately, the scatte
by an arbitrary configuration of these particles can be sol
completely for both cases of fixed and random orientatio
The following section describes such a general solution
cross sections for extinction, scattering, and radiation p
sure, as well as the asymmetry parameter. The solution
been implemented in several computer codes@31#. A couple
of practical examples are given in Sec. III to demonstrate
numerical solutions obtained from the public domain GM
codes and to illustrate the significant difference betwe
GMM and CTM.

II. FORMULATION

Under study here is the scattering characteristics of a
lection of spherical and/or nonspherical particles that are
luminated by a monochromatic plane wave with an arbitr
linear polarization state. In the so-called ‘‘incident referen
frame,’’ in which the incident plane wave propagates in t
positivez direction, the polarization state of the incident r
diation, i.e., the linear polarization anglebp , is defined by
the angle between the incident electric vector and the p
tive x direction.

Since the development of a random-orientation scatte
formulation builds on the scattering solutions for fixed o
entations, this section starts with the discussion of fix
orientation scattering. It then addresses the calculation of
©2003 The American Physical Society20-1
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T matrixT j l , the key quantity in theT-matrix formulations of
GMM. Finally, solutions to the random-orientation cross s
tions are derived.

A. Solution of fixed-orientation scattering

Based on the Mie-type multipole superposition soluti
method, the incident electric fieldEinc and the total scattere
field Escaof an ensemble ofL particles are expanded in term
of VSWFs in an arbitrarily chosen primary reference syste

Einc52 i (
n51

Nmax

(
m52n

n

(
p51

2

EmnpmnpNmnp
(1) ~r !, ~1a!

Esca5 i (
n51

Nmax

(
m52n

n

(
p51

2

EmnamnpNmnp
(3) ~r !, ~1b!

whereNmnp
(1) andNmnp

(3) denote the VSWFs for incoming an
outgoing waves, which are associated with the spher
Bessel and Hankel functions of the first kind, respective
i 5A21, Emn5E0i nCmn , and

Cmn5F ~2n11!~n2m!!

n~n11!~n1m!! G
1/2

. ~2!

Linear dimensions appearing in all equations in this work
normalized by the wave numberk52p/l, wherel is the
incident wavelength. Note that the normalization factorEmn
in the field expansions defined above is different from w
the author used before, which wasE0i n(2n11)(n
2m)!/(n1m)!. Note also that, to save space, an additio
index ‘‘p’’ is used in field expansions@15#: p51 stands for
the TM mode of electric fields andp52 for the TE mode. In
the incident reference frame, the primary incident coe
cientspmnp in Eq. ~1a! are specifically

pmnp50 ~ umuÞ1!, ~3a!

p1np5
A2n11

2
exp~2 ibp!, ~3b!

p21np5~21!pp1np* , ~3c!

where the superscript asterisk represents complex conju
In solving multiparticle scattering, the partial scattered fie
Elsca of component particlesl must be solved in respectiv
particle-centered reference systems in order to appropria
apply boundary conditions at each particle. Similar to E
~1!, the incident and the partial scattered fields of particl
are expanded in the reference system centered inside pa
l,

El inc52 i exp~ i k̂•dl ! (
n51

Nmax
l

(
m52n

n

(
p51

2

Emnpmnp
l Nmnp

(1) ~r l !,

~4a!
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Elsca5 i exp~ i k̂•dl ! (
n51

Nmax
l

(
m52n

n

(
p51

2

Emnamnp
l Nmnp

(3) ~r l !,

~4b!

whereNmax
l is determined by the size of particlel, k̂ is unit

vector along the incident direction,dl is the position vector
of particle centerl in the primary reference system,

dl5êxX
l1êyY

l1êzZ
l , ~5!

(Xl ,Yl ,Zl) are the dimensionless~normalized byk) Carte-
sian coordinates of particle centerl, and (êx ,êy ,êz) are Car-
tesian basis unit vectors. Note the appearance of the inci
phase term exp(ik̂•dl) in Eqs.~4!. By the introduction of the
incident phase shift, the incident coefficients in Eq.~4a! re-
main the same as the primary incident coefficients. In
incident reference frame,pmnp

l [pmnp that are given by Eqs
~3!.

In formulating fixed-orientation scattering, GMM uses th
incident frame so that in Eqs.~4!

k̂5êz , k̂•dl5Zl . ~6!

When particlel is a homogeneous sphere, the scattering
efficientsamnp

l in Eq. ~4b! can be expressed as@16#

amnp
l 5ānp

l Pmnp
l , ~7!

where ānp
l is the Mie scattering coefficents of spherel and

Pmnp
l denotes the expansion coefficients of the total incid

field for particle l, which includes the exciting plane wav
and scattered waves from all other particles in an ensem
In the incident reference frame, the total incident coefficie
Pmnp

l are given by@16#

Pmnp
l 5pmnp1~d l l 821!exp~ iZll 8!Amnm8n8

l 8 lpp8 am8n8p8
l 8 , ~8!

whereZll 85Zl 82Zl , d l l 8 is the Kronecker delta symbol, an

Amnm8n8
l 8 lpp8 are vector translation coefficients@1,2# characteriz-

ing the transformation of scattered waves from particlel 8
into incident waves for particlel, which are associated with
the spherical Hankel function of the first kind. To suppre
continual summation signs in equations, a tensorial conv
tion @15# is used in Eq.~8! and hereafter. No summation sig
in an equation implies summation over all superscript and
subscript indices in lower case italics not appearing on
left-hand side of the equation. The linear system of bound
condition equations of Eq.~7! valid for spheres can easily b
extended to the case of nonspherical particles@23,24#,

amnp
l 5T̄mnmn

lpq Pmnq
l , ~9!

i.e.,

amnp
l 5T̄mnmn

lpq @pmnq1~d l l 821!exp~ iZll 8!Amnm8n8
l 8 lqp8 am8n8p8

l 8 #,

~10!
0-2
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where T̄mnmn
lpq represents the elements ofT̄ l , the properT

matrix of particlel. It is easy to see that Eqs.~8! and ~10!
involve relative particle positions only, which are determin
by the configuration of an ensemble and independent of
choice of the primary reference system. Also, the linear s
tem of Eq.~10! places no restriction on particle shape a
structure. The only requirement is thatT̄ l of all component
particles in an ensemble be known accurately. With the s
tering coefficientsamnp

l solved through the linear system o
Eq. ~10!, all fundamental scattering parameters can
readily calculated, using the existingamnp

l -based scattering
formulations of GMM@17,18#. In addition,amnp

l can also be
expressed in terms of theT matrix T j l , that is, the formal
inverse of the linear system of Eq.~10!, which is of the form
@21#

amnp
l 5exp~ iZl j !Tmnmn

j lpq pmnq , ~11!

i.e.,

amnp
l 5

A2n11

2
exp~ iZl j !@Tmn1n

j lpq exp~2 ibp!

1~21!qTmn,21,n
j lpq exp~ ibp!#. ~12!

This shows that, in the incident reference frame, the solu
of the scattering coefficientsamnp

l involves the determination
of Tmnmn

j lpq for m561 only.
Through the use of Eq.~11! that relatesamnp

l with the T
matrix T j l , the amnp

l -based fixed-orientation scattering sol
tion of GMM has been converted to aT j l -basedT-matrix
formulation @21#. The T matrix T j l is also the pivotal quan
tity in the T-matrix formulation of GMM derived here fo
random-orientation scattering. AlthoughT j l is formally the
inverse of the coefficient matrix of boundary condition equ
tions, the method of direct matrix inversion is infeasible
most circumstances unless the total number and the siz
particles in an ensemble are both sufficiently small. It is th
of critical importance to have a general means of solvingT j l .

B. Solution of the T matrix T j l

To solveT j l , the general case of an arbitrary direction
incidence needs to be considered. An arbitrary direction
incidence can be described by the rotation of thez-pointing
plane wave vector (k̂5êz) in terms of three Euler angle
(a,b,g) and the unit incident vector after rotation becom

k̂5êxsinb cosa1êysinb sina1êzcosb. ~13!

While the incident phase shift in Eqs.~4! is simply Zl in the
incident reference frame, it will be denoted byZ̆l for the off-
z-direction incidence,

Z̆l5 k̂•dl . ~14!

When a5b5g50, Z̆l5Zl . In spherical polar coordinate
system,Z̆l5dlcosh l(b,a) and
04662
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cosh l~b,a!5sinb sinq lcos~a2w l !1cosb cosq l ,

~15!

where (dl ,q l ,w l) are the spherical coordinates of originl in
the primary coordinate system. For off-z-direction incidence,
the incident coefficients in Eqs.~1a! and~4a! will be denoted
by p̆mnp

l [ p̆mnp and

p̆mnp5~21!m11exp~ img!@ t̃mnp~b!cos~a2bp!

1 i t̃mn32p~b!sin~a2bp!#, ~16!

wheret̃mnp are the normalized angular function

t̃mnp5Cmntmnp, ~17!

and the regular angular functiontmnp are defined by

tmn1~u!5
d

du
Pn

m~cosu!, ~18a!

tmn2~u!5
m

sinu
Pn

m~cosu!, ~18b!

with Pn
m being the associated Legendre function of the fi

kind. When a5b5g50, p̆mnp5pmnp, i.e., Eq. ~16! re-
duces to Eqs.~3!. Extended to the general case of o
z-direction incidence, Eq.~10! becomes

ămnp
l 5T̄mnmn

lpq @ p̆mnq1~d l l 821!

3exp~ i k̂•dl l 8!Amnm8n8
l 8 lqp8 ăm8n8p8

l 8 #, ~19!

wheredl l 85dl 82dl is the position vector extended from or
gin l to origin l 8,

k̂•dl l 85Z̆ll 85dll 8cosh l l 8~b,a!, ~20!

and coshll8 is similarly defined by Eq.~15!. Accordingly, Eq.
~11! becomes

ămnp
l 5exp~ i k̂•dl j !Tmnmn

j lpq p̆mnq . ~21!

Using Eq.~21! in Eq. ~19! for both ămnp
l andăm8n8p8

l 8 leads to

Tmnmn
j lpq 5~d j j 821!exp~ i k̂•dj j 8!Tmnmn

j 8 lpq 1T̄mnmn
lpq exp~ i k̂•dj l !

1~d l l 821!exp~ i k̂•dj j 8!T̄mnm8n8
lpq8 Am8n8m8n8

l 8 lq8p8 Tm8n8mn
j 8 l 8p8q .

~22!

All quantities in Eq.~22! are independent of the direction o
incidence except for the incident phase terms. Averag
over all possible directions of incidence, Eq.~22! becomes

Tmnmn
j lpq 5~d j 8 j21! j 0~dj j 8!Tmnmn

j 8 lpq 1 j 0~djl !T̄mnmn
lpq

1~d l l 821! j 0~dj j 8!T̄mnm8n8
lpq8 Am8n8m8n8

l 8 lq8p8 Tm8n8mn
j 8 l 8p8q ,

~23!
0-3
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where j 0 is the zero-order spherical Bessel function of t
first kind, which results from the integration over the thr
Euler angles,

j 0~djl !5
1

8p2EÃ
exp~ i k̂•dj l !dÃ

5
1

4pE0

2pE
0

p

exp~ id jl cosh j l !~sinb!db da.

~24!

Here, dÃ represents (sinb)dbdadg. Because bothj 0 and

Am8n8m8n8
l 8 lq8p8 drop steeply when separation distance betw

particles increases, interactions between the scattered w
from particlel and the particles not in its vicinity are insig
nificant. Therefore, Eq.~23! includes in fact only particles
that are sufficiently close to particlel. When particlel is a
sphere, Eq.~23! reduces to

Tmnmn
j lpq 5~d j j 821! j 0~dj j 8!Tmnmn

j 8 lpq 1ānp
l @ j 0~djl !dmmdnndpq

1~d l 8 l21! j 0~dj j 8!Amnm8n8
l 8 lpp8 Tm8n8mn

j 8 l 8p8q
#. ~25!

With the properT matricesT̄ l of all individual particles pro-
vided,T j l of an ensemble can be efficiently solved from t
linear system of Eq.~23! successively for each set o
(m,n,q).

C. Integral representation of vector translational addition
coefficients

In formulating multiparticle scattering for fixed orienta
tions, the following integral expression for vector translati
coefficients ~that are associated with the spherical Bes
function of the first kind! obtained in GMM@18# plays an
important role,

Ãvnsn
l jqp 5

1

4pE0

2pE
0

p

~sinu!du df exp~ i r̂•dl j !exp@ i ~s2v!f#

3@ t̃snp~u!t̃vnq~u!1 t̃sn32p~u!t̃vn32q~u!#, ~26!

where r̂•dl j 5dl j coshlj(u,f) is the scattered phase shift an
r̂5êxsinu cosf1êysinu sinf1êzcosu is unit position vec-
tor. The above equation forÃvnsn

l jqp has an alternative form in
terms of the reduced rotation matrix elements in quant
mechanics @25#. Based on rotational addition theorem
@1,25#, the primary incident coefficients for an arbitrary d
rection of incidence@see Eq.~16!# can also be expressed
terms of those in the incident reference frame@see Eqs.~3!#

p̆mnp5Dsm
(n)~Ã!psnp, ~27!

where@25,26#

Dsm
(n)~Ã!5exp~ isa!dsm

(n)~b!exp~ img!, ~28!
04662
n
ves

l

anddsm
(n) is the reduced rotation matrix elements@25#. Insert-

ing Eqs.~3! and ~28! into Eq. ~27! leads to

p̆mnp5
A2n11

2
exp~ img!$@d1m

(n)~b!

1~21!pd21m
(n) ~b!#cos~a2bp!1 i @d1m

(n)~b!

1~21!p11d21m
(n) ~b!#sin~a2bp!%. ~29!

Comparing Eq.~29! with Eq. ~16! reveals that

t̃mnp5
A2n11

2
@dm1

(n)1~21!pdm,21
(n) #. ~30!

A similar relation has been given for rotation functions
Mackowski and Mishchenko@see Eq.~31! in Ref. @15##. It
follows from Eq.~30! that

t̃snp~b!t̃vnq~b!1 t̃sn32p~b!t̃vn32q~b!

5
A~2n11!~2n11!

2
@ds1

(n)~b!dv1
(n)~b!

1~21!p1qds,21
(n) ~b!dv,21

(n) ~b!#. ~31!

This shows that Eq.~26! can alternatively be written as

Ãvnsn
l jqp 5

A~2n11!~2n11!

8p E
0

2pE
0

p

~sinb!dbda

3exp~ i k̂•dl j !exp@ i ~s2v!a#@ds1
(n)~b!dv1

(n)~b!

1~21!p1qds,21
(n) ~b!dv,21

(n) ~b!#, ~32!

where k̂•dl j 5dl j coshlj(b,a) @see Eq.~20!#. Both Eqs.~26!
and~32! are useful in the derivation of the analytical expre
sions for orientation-averaged scattering parameters.

D. Solution of random-orientation scattering

Orientation-averaged cross sections for extinction^Cext&,
scatterinĝ Csca&, and radiation pressurêCpr& have a simple
relation

^Cpr&5^Cext&2^Csca&^cosu&, ~33!

where a pair of ‘‘̂ & ’’ indicates an average over all possib
particle orientations,^cosu& is the orientation-average
asymmetry parameter, defined as^Cscacosu&/^Csca&. With T j l

determined,̂ Cext&, ^Csca&, ^Cpr&, and ^cosu& can be accu-
rately calculated through the analytical solutions deriv
here. Explicit expressions for these orientation-avera
scattering quantities are obtained by integrating over th
Euler angles that completely determine particle orientatio
This method for obtaining an orientational average by
integration over the Euler angles was first used by Mi
chenko@27# in scattering calculations for the special case
a single axially symmetric particle and by Khlebtsov@28# for
a general scatterer. It has also been used by Mackowski@14#
0-4
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and Mackowski and Mishchenko@15# in the derivation of a
CTM random-orientation scattering formulation for an e
semble of spheres.

Based on the result for fixed-orientation scatteri
@11,16,17#, the orientation-averaged extinction cross sect
is given in the incident reference frame by

^Cext&5
4p

k2
Rê pmnp

l* amnp
l &, ~34!

where pmnp
l* and amnp

l should be expressed for an arbitra
orientation of an ensemble in the incident reference fra
After the rotation of an ensemble by (a,b,g) in the incident
reference frame,amnp

l of the component particles can be e
pressed as

amnp
l 5exp~ i k̂•dl j !Dsm

(n)~Ã!Dvm
(n)* ~Ã!Tsnvn

j lpq pmnq , ~35!

whereTsnvn
j lpq are theT-matrix elements ofT j l at the orienta-

tion of a5b5g50 and k̂ is given by Eq. ~13!. Also,
pmnp

l* 5pmnp* . These show that

^pmnp
l* amnp

l &5
A~2n11!~2n11!

16p
Tsnvn

j lpq E
0

2pE
0

p

sinbdbda

3exp~ i k̂•dl j !exp@ i ~s2v!a#@ds1
(n)~b!dv1

(n)~b!

1~21!p1qds,21
(n) ~b!dv,21

(n) ~b!#. ~36!

It follows readily from Eqs.~36! and ~32! that

^pmnp
l* amnp

l &5
1

2
T̃vnvn

( j j )qq , ~37!

and

^Cext&5
2p

k2
ReT̃vnvn

( j j )qq , ~38!

where

T̃vnvn
( j j )qq5Ãvnsn

l jqp Tsnvn
j lpq . ~39!

The expression for the scattering cross section of an
semble of particles in fixed orientations@18# shows that
random-orientation averaged scattering cross section ca
written in the form

^Csca&5
1

8p2k2
ReE

V
E

Ã
dÃ dVămnp

l* ăm8n8p8
l 8 exp~ i r̂•dl 8 l !

3exp~ i k̂•dl l 8!exp@ i ~m82m!f#

3@ t̃mnp~u!t̃m8n8p8~u!1 t̃mn32p~u!t̃m8n832p8~u!#,

~40!

wheredV5(sinu)du df and
04662
-

n

e.

n-

be

ămnp
l* ăm8n8p8

l 8 5exp~ i k̂•dj 8 j !exp~ i k̂•dl 8 l !Tmnm8n8
j 8 lpq8* Tm8n8mn

j l 8p8q

3Dv8m8
(n8)* ~Ã!Dvm

(n) ~Ã!pv8n8q8
* pvnq . ~41!

By using Eqs.~3!, ~26!, ~32!, and ~41! in Eq. ~40!, it is
straightforward to show that

^Csca&5
2p

k2
Re@T̃mnmn

( j l )pq* T̃mnmn
( j l )pq#, ~42!

where

T̃mnmn
( j l )pq5Ãmnm8n8

l 8 lpp8 Tm8n8mn
j l 8p8q , ~43a!

T̃mnmn
( j l )pq5Tmnm8n8

j 8 lpq8 Ãm8n8mn
j j 8q8q . ~43b!

Similarly, the orientation-averaged asymmetry parameter
be obtained from the equation

^Cscacosu&5
1

8p2k2
ReE

V
E

Ã
dÃ dV k̂• r̂ ămnp

l* ăm8n8p8
l 8

3exp~ i r̂•dl 8 l !exp~ i k̂•dl l 8!exp@ i ~m82m!f#

3@ t̃mnp~u!t̃m8n8p8~u!

1 t̃mn32p~u!t̃m8n832p8~u!#, ~44!

where

k̂• r̂5sinb cosa sinu cosf1sinb sina sinu sinf

1cosb cosu. ~45!

Along the same line described above, it can be shown
the final result of̂ cosu& is

^cosu&5
2p

k2^Csca&
Re@F̃mnmn

( j l )pq1G̃mnmn
( j l )pq1H̃mnmn

( j l )pq#, ~46!

where

F̃mnmn
( j l )pq5@ f 1~m,n!T̃mnmn

( j l )32pq1 f 2~m,n!T̃mn11mn
( j l )pq

1 f 3~m,n!T̃mn21mn
( j l )pq #@ f 1~m,n!T̃mnmn

( j l )p32q*

1 f 2~m,n!T̃mnmn11
( j l )pq* 1 f 3~m,n!T̃mnmn21

( j l )pq* #,

~47a!

G̃mnmn
( j l )pq5 1

2 @ f 4~m,n!T̃m11nmn
( j l )32pq1 f 5~m,n!T̃m11n11mn

( j l )pq

1 f 6~m,n!T̃m11n21mn
( j l )pq #@ f 4~2m,n!T̃mnm21n

( j l )p32q*

2 f 5~2m,n!T̃mnm21n11
( j l )pq* 2 f 6~2m,n!T̃mnm21n21

( j l )pq* #,

~47b!
0-5
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H̃mnmn
( j l )pq5 1

2 @ f 4~2m,n!T̃m21nmn
( j l )32pq2 f 5~2m,n!T̃m21n11mn

( j l )pq

2 f 6~2m,n!T̃m21n21mn
( j l )pq #@ f 4~m,n!T̃mnm11n

( j l )p32q*

1 f 5~m,n!T̃mnm11n11
( j l )pq* 1 f 6~m,n!T̃mnm11n21

( j l )pq* #.

~47c!

The f coefficients in these equations are given by

f 1~m,n!5
m

n~n11!
, ~48a!

f 2~m,n!5
1

n11 Fn~n12!~n2m11!~n1m11!

~2n11!~2n13! G1/2

,

~48b!

f 3~m,n!5
1

n F ~n221!~n22m2!

~2n21!~2n11! G1/2

, ~48c!

f 4~m,n!52
@~n2m!~n1m11!#1/2

n~n11!
, ~48d!

f 5~m,n!5
1

n11 F ~n1m11!~n1m12!

n~n12!~2n11!~2n13!G
1/2Fm~m11!

1
~n2m!~n1m13!

2
1

~n1m!~n2m11!

2 G ,
~48e!

f 6~m,n!52
1

n F ~n2m!~n2m21!

~n221!~4n221!
G 1/2Fm~m11!

1
~n2m22!~n1m11!

2
1

~n1m!~n2m11!

2 G .
~48f!

When the total particle numberL51 in an ensemble, al
the results discussed above for both fixed- and rand
orientation scatterings reduce to the solution for a single p
ticle. WhenL51, neither phase shift nor interaction betwe
particles is involved. In this special case,j [ l[1, Ãvnsn

j jqp

5dvsdnndpq so thatT̃mnmn
( j l )pq5T̃mnmn

( j l )pq5Tmnmn
pq , whereTmnmn

pq

is the elements of theT matrix T of a single scatterer. With
T̃mnmn

( j l )pq replaced byTmnmn
pq andT̃mnmn

( j l )pq* by Tmnmn
pq* , Eqs.~38!,

~42!, and ~46!–~48! become the formulas for orientation
averaged scattering parameters of a single scatterer.
single-particle solution should be of exactly the same form
the CTM multiparticle solution@5,14,15# with T understood
as the single-particle type clusterT matrix.

III. PUBLIC DOMAIN CODES AND ILLUSTRATIVE
EXAMPLES

As the practical implementation of the solution discuss
above, several Fortran codes have been developed@31#.
These public-domain codes can be used to test the form
04662
-
r-

his
s

d

la-

tions developed here by comparing numerical solutions w
laboratory scattering measurements and with numerical s
tions obtained from other solution techniques. Practical
amples of using the codes and comparison with CTM can
found in Xu and Khlebtsov@22#. A couple of numerical ex-
amples are also given below for illustrative purposes.

A. Comparison between theory and experiment

Experimental scrutiny is a powerful means to test scat
ing solutions. Microwave analog to light scattering measu
ments are especially suitable for this purpose. As an illus
tive example, theoretical predictions for the asymme
parameter obtained from Eqs.~46!–~48! are compared with
laboratory microwave scattering measurements. In the 19
Wang and Gustafson@29# determined experimentally th
orientation-averaged asymmetry parameters of a set of m
tisphere configurations. Table I lists the physical and g
metrical parameters of eight linear sphere chains that W
and Gustafson measured, each consisting of 2, 3, or 5 id
tical spheres in various intersphere separations. The sca
ing by these ensembles of spheres is calculated by using
GMM01TRA.F code @31#, which is an implementation of the
solution described above. The experimental data and theo
ical predictions are also shown in Table I, which indicate th
the numerical solutions agree with experimental resu
Relative deviations between the theoretical and experime
results are within 5%.

B. Configuration-dependence of scattering properties

Scattering characteristics of an ensemble of particles
largely configuration dependent. Figure 1 is such an
ample, which refers to an ensemble consisting of only t
spheres that have the same size parameter ofka51 but dif-
ferent refractive indices of~1.6, 0.1! and ~2.5155, 0.0213!.
The two spheres are gradually pulled apart, which means

TABLE I. Comparison of the calculated and measured asymm
try parameters of eight linear chains of identical spheres a
random-orientation average.

La xb Refractive index kSc ^cosu& d%d

Calculated Measured

2 2.176 ~1.629, 0.0125! 4.352 0.659 0.647 1.8
5 2.176 ~1.629, 0.0125! 4.352 0.712 0.677 4.9
2 3.083 ~1.610, 0.0040! 6.166 0.689 0.685 0.6
2 3.083 ~1.610, 0.0040! 8.030 0.673 0.662 1.6
2 3.083 ~1.610, 0.0040! 12.510 0.669 0.658 1.6
3 3.083 ~1.610, 0.0040! 6.166 0.725 0.731 0.8
2 4.346 ~1.630, 0.0100! 8.692 0.662 0.651 1.7
2 4.346 ~1.630, 0.0100! 10.760 0.650 0.619 4.8

aNumber of spheres in each of the linear chains.
bSize parameter of a single component sphere.
ck is the wave number andS is the center-to-center separation di
tance between each pair of neighboring spheres.
dRelative deviation calculated byd5u12M /Cu, where M is the
measured̂cosu& andC is the calculated̂cosu&.
0-6
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the overall size of the sphere ensemble gradually increa
Figure 1 shows the random-orientation-averaged volu
equivalent extinction efficiencies and asymmetry parame
as function of the separation-to-diameter ratioS/d, whereS
is the center-to-center separation distance andd is the diam-
eter of the two spheres. The numerical solutions are obta
from two independent codes. One is GMM co
GMM01TRA.F. The other is CTM codeSCSMTM1.FORdevel-
oped by Mackowski@32#. From the figure we see that bot
codes provide identical theoretical results in their comm
region of validity. However, the CTM code fails to wor
whenS/d exceeds;32, which is the maximum overall di
mension that the code can handle.

IV. REMARKS

The solution process of GMM is substantially differe
from that of CTM starting with the treatment of one of th
multiple scattering effects—the far-field interference b
s
le

c

t-
.

-

-

04662
es.
e-
rs

ed

n

-

tween scattered waves from different component partic
The far-field interference is caused by both incident and s
tered phase differences with regard to different compon
particles. GMM deals directly with precise phase relatio
for both incident and scattered waves, while CTM expres
the phase factors in terms of infinite series expansions.
ferent theoretical treatments lead to significantly differe
ways for translating the incident and scattered fields betw
displaced reference systems.

In CTM, for an ensemble of particles in a given orient
tion, the total scattering coefficientsămnp in Eq. ~1b! for an
arbitrary direction of incidence are given by@14#

ămnp5 (
n51

Nmax

(
m52n

n

(
q51

2

Tmnmn
pq p̆mnq , ~49!

whereTmnmn
pq are the elements of the clusterT matrix T de-

fined byT5Ã l0T j l Ã0 j , i.e.,
Tmnmn
pq 5(

l 51

L

(
j 51

L

(
n851

Nmax
l

(
m852n8

n8

(
n851

Nmax
j

(
m852n8

n8

(
p851

2

(
q851

2

Ãmnm8n8
l0pp8 Tm8n8m8n8

j lp 8q8 Ãm8n8mn
0 jq8q , ~50!

and thus

ămnp5 (
n51

Nmax

(
m52n

n

(
q51

2

(
l 51

L

(
j 51

L

(
n851

Nmax
l

(
m852n8

n8

(
p851

2

(
n851

Nmax
j

(
m852n8

n8

(
q851

2

Ãmnm8n8
l0pp8 Tm8n8m8n8

j lp 8q8 Ãm8n8mn
0 jq8q p̆mnq . ~51!
ary

a-

s
tter-
ply

le of
ap-

dis-
an

be
ion
c-
the
y.
Nmax in Eqs.~49! and ~51! required in practical calculation
is roughly proportional to the overall size of an ensemb

Ãm8n8mn
0 jq8q pmnq on the right-hand side of Eq.~51! is to translate

the incident plane wave from the primary into the referen

systemj andÃmnm8n8
l0pp8 Tm8n8m8n8

j lp 8q8 is to translate the partial sca
tered field of particlel into the primary reference system
CTM does not useT j l directly and, instead, transformT j l

into the clusterT matrix T through the use of two large

dimensional translation matrices ofÃ0 j andÃ l0. In practical
scattering calculations, CTM bypasses the calculation ofT j l .
To obtain the clusterT matrix T for ensembles of homoge
neous spheres, Mackowski and Mishchenko@15# use the fol-

lowing linear system to directly calculateT l5T j l Ã0 j and
skip the calculation ofT j l @see Eqs.~63! and ~64! in Ref.
@15##,

Tmnmn
lpq 5ānp

l F Ãmnmn
0lpq 1 (

l 851

L

(
n851

Nmax
l 8

(
m852n8

n8

(
p851

2

~d l 8 l21!

3Amnm8n8
l 8 lpp8 Tm8n8mn

l 8p8q G . ~52!
.

e

All T l of individual spheres are then translated to the prim
reference system to form the single-centered clusterT matrix
T,

Tmnmn
pq 5 (

l 851

L

(
n851

Nmax
l 8

(
m852n8

n8

(
p851

2

Ãmnm8n8
l 80pp8 Tm8n8mn

l 8p8q . ~53!

There is another recursiveT-matrix algorithm developed by
Wang and Chew@30#, which uses a successive transform
tion method to calculate the clusterT matrix T. When the
single-particle typeT is obtained, an ensemble of particle
can be treated as an equivalent single particle and all sca
ing solutions developed for a single scatterer can be sim
used to calculate the scattering properties of an ensemb
particles. As mentioned above, a drawback of this CTM
proach is that the dimensions ofÃ0 j and Ã l0 required in
practical scattering calculations depend on translation
tances and are proportional to the overall dimension of
ensemble. The use of either one or both ofÃ0 j and Ã l0 sets
a ceiling for the overall size of an ensemble that can
handled in practical calculations. This overall size restrict
is not related to the availability of computer memory. A
cordingly, the choice of the primary coordinate system in
implementation of CTM is not trivial and cannot be arbitrar
0-7
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It is probably best for CTM to place the primary origin at th
geometric center of an ensemble in order to keep the tr
lation distances between the primary and particle cen
smallest.

In GMM, the total scattering coefficientsămnp for far field
are given by@17–22#

ămnp5(
l 51

L

exp@ i ~ k̂2 r̂ !•dl #

3(
j 51

L

(
n51

Nmax
j

(
m52n

n

(
q51

2

exp~ i k̂•dl j !Tmnmn
j lpq p̆mnq , ~54!

which includes both incident and scattered phase shifts.
incident phase term varies with incident direction and
scattered phase term changes with scattering direction. T
phase terms result from the asymptotic spherical Han
functions valid in the far-field zone, the use of which intr
duces no approximation to the scattering solutions under
cussion @17#. One obvious advantage of this far-field a
proach is clearly that the primary origin can be arbitrar
placed. The displacement of the primary coordinate sys
causes no additional computational efforts. Replacing
primary origin does not affect any results and the calculat
of the cross sections. Another advantage of GMM is app

FIG. 1. Variation of random-orientation-averaged extinction
ficiency and asymmetry parameter of two spheres of identical
(ka51) with separation-to-diameter ratioS/d ~‘‘ S’’ is the center-
to-center separation distance between spheres and ‘‘d’’ is the sphere
diameter!. Refractive indices of the two spheres are~1.6, 0.1! and
~2.5155, 0.0213!, respectively. The numerical solutions shown a
obtained from two double-precision codes ofSCSMTM1.FOR and
GMM01TRA.F ~labeled ‘‘scsm’’ and ‘‘gmm’’!.
04662
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ently that the field expansion truncations required in pract
calculations are associated with individual particle size o
and not concerned with the separation distances between
ticles. In Eq. ~54!, Tmnmn

j lpq [0 whenever n.Nmax
l or n

.Nmax
j , whereNmax

l andNmax
j are determined solely by th

sizes of particlesl and j, respectively. By comparison be
tween Eqs. ~51! and ~54! we see that the two large
dimensional translation matricesÃ0 j and Ã l0 in Eq. ~51! of
CTM are, respectively, equivalent to the simple incident a
scattered phase terms exp@i(k̂•dj )# and exp@2i(r̂•dl)# in Eq.
~54! of GMM. In field translations, GMM does not involve
the use of the general addition theorems for VSWFs~i.e., the
use of eitherÃ0 j or Ã l0). It is thus completely free from
CTM’s overall size limitation. GMM expresses all scatterin
quantities in terms of theT matrix T j l , unlike CTM that
needs to transformT j l into the clusterT matrix T. Also,
when all separation distances between particles in an
semble are sufficiently large, all individual particles becom
independent scattering units andT j l is block diagonal. In this
particular case, GMM automatically reduces to the nonin
acting ~i.e., independent! scattering solution and require
little computational effort in practical scattering calculation

It needs to be mentioned that CTM and GMM are bo
rigorous approaches to the multiparticle scattering in pr
ciple. Numerical solutions from both formulations should
identical when both can provide a practical solution. T
scattering formulations of GMM should be of exactly th
same form of CTM whenL51, i.e., for a single particle.
Some of the GMM formulations can also be obtained with
the framework of CTM. For example, Eqs.~38! and~42! for
^Cext& and ^Csca& can be derived from CTM by simply ap

plying the identity ofÃmnmn
l jqp 5Ãmnm8n8

0 jqp8 Ãm8n8mn
l0p8p and eliminat-

ing Ã0 j and Ã l0, as shown by Mackowski@14#. However,
since the solution processes of CTM and GMM are radica
different, CTM is unable to turn all scattering formulas to t
GMM type. Also, an important point is that the GMM typ
of T j l -based formulations have never been effectively us
because there was no efficient scheme available for obtai
T j l before. The direct matrix inversion is of limited use
practical scattering calculations. By using the linear syst
of Eq. ~23!, T j l can be solved efficiently and the practic
application of the GMM-typeT j l -based formulations be
comes generally feasible. WithT j l solved for an arbitrary
ensemble of particles, even the clusterT matrix T can also be
easily obtained through Eq.~50!.

It also needs to be emphasized that this work concentr
on far-field solution and does not address the near-field
culations, which are beyond the scope of this article.

V. SUMMARY

A far-field solution of GMM has been extended to th
general case of an arbitrary mixture of particles of differe
shapes for either fixed- or random-orientation scatteri
This solution places no restriction on the overall dimens
for an ensemble of particles in practical applications. It do
not require the use of general addition theorems for VSW

-
e
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in field translations. Field-expansion truncations depend
individual particle size only. The choice of the primary re
erence center can be arbitrary and it does not need to be
to the geometric center of an ensemble. The displaceme
p

on

,

04662
n

se
of

the primary reference system has no effect on scattering
culations. The kernel quantity in theT-matrix formulation of
GMM is the T matrix T j l . An efficient scheme has bee
devised to solveT j l effectively.
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