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Radiative scattering properties of an ensemble of variously shaped small particles
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This paper presents a rigorous solution to the scattering of a monochromatic plane wave by an arbitrary
configuration of wavelength-sized small particles that can be of different shape, structure, size, and composi-
tion. A T-matrix formulation is developed for the calculation of optical cross sections and the asymmetry
parameter of such an ensemble of scatterers in both fixed and random orientations. The solution is based on the
T matrix T!', that is, the inverse of the coefficient matrix of boundary condition equations. A linear system
containingT!' is derived to efficiently solve th& matrix, which is required in the practical implementation of

the solution.
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[. INTRODUCTION pole field expansions in CTM depends on the overall dimen-

sion of an ensemble rather than the size of individual

Radiative scattering by multiple particles is a commonspheres. The second is a far-field approach, which leads to
subject in a wide range of scientific and technical fieldsthe development of the generalized multiparticle Mie solu-
stretching from astrophysics to nanoscience and from remotion (GMM) [16—27. It avoids altogether the use of the
sensing to aerosol medicine. Since the work on additiomgeneral addition theorems for VSWFs in field translations
theorems for vector spherical wave functiof\SWFs by  [17]. Field-expansion truncation in GMM depends solely on
Stein[1] and Cruzan(2] in the early 1960s, numerous re- the size of individual particles and is not concerned with the
searchers from diverse scientific and technical areas hawgerall dimension of an ensemble. Thus, GMM is completely
contributed to a continual progress towards a complete angxempted from the overall size restriction that CTM suffers
lytical solution to radiative scattering of a plane wave byfrom in practical applications.
multiple spheres. Starting with Liang and [3] and Bruning The GMM has been extended to the general case of an
and Lo [4], contributors include Peterson and $rg5],  arbitrary mixture of spherical and nonspherical scatterers.
Borgheseet al. [6,7], Fuller and Kattawar8,9], Hamid,  \when the prope matrices of a group of particlege., T
Ciric, and Hamid 10], Mackowski[11], and many others. As  matrices of the particles in single-body scatteyiage pre-
an extension of the Lorenz-Mie solution for single homoge-cisely known or can be computed accurately, the scattering
neous sphereld 2,13 to the multisphere case, the multipole py an arbitrary configuration of these particles can be solved
superposition solution to multisphere scattering has beefompletely for both cases of fixed and random orientations.
well established to date. Following the pioneer work by LoThe following section describes such a general solution to
and his colleaguef3,4], two solution approaches have been ¢ross sections for extinction, scattering, and radiation pres-
reported to the multisphere scattering. The first is the clustegyre, as well as the asymmetry parameter. The solution has
T matrix (CTM) approach developed initially by Peterson peen implemented in several computer co@. A couple
and Stran [5]. Representative work on CTM for the scatter- of practical examples are given in Sec. Il to demonstrate the
ing by an ensemble of homogeneous spheres in random ofinymerical solutions obtained from the public domain GMM

entations includes those by Mackow$k#] and Mackowski  codes and to illustrate the significant difference between
and Mishchenk@15]. The main idea of the CTM approach is gpMM and CTM.

to construct a single-particle type matrix for an ensemble
of spheres as a whole. A requirement of this approach is the
translation of radiative fields between displaced reference
systems through the use of Stein and Cruzan’s general addi-
tion theorems for VSWFs. With the clustdr matrix of Under study here is the scattering characteristics of a col-
single-particle type determined, an ensemble of spheres cdection of spherical and/or nonspherical particles that are il-
be treated as an equivalent single scatterer. In this way, allminated by a monochromatic plane wave with an arbitrary
scattering solutions derived for single particles remain validinear polarization state. In the so-called “incident reference
and all formulations for single-body scattering can be usedrame,” in which the incident plane wave propagates in the
directly to solve multiparticle scattering. Though rigorous in positive z direction, the polarization state of the incident ra-
principle, CTM has an intrinsic weakness in practical imple-diation, i.e., the linear polarization anglg,, is defined by
mentations. Its applicability is rather limited regarding thethe angle between the incident electric vector and the posi-
overall size of an ensemble because the truncation of multitive x direction.
Since the development of a random-orientation scattering
formulation builds on the scattering solutions for fixed ori-
*Electronic address: xu@astro.ufl.edu; URL:http:/ entations, this section starts with the discussion of fixed-
www.astro.ufl.edut xu orientation scattering. It then addresses the calculation of the
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T matrix T, the key quantity in th@-matrix formulations of Noa N
GMM. Finally, solutions to the random-orientation cross sec-  plsca j expli k-d E 2 2 E_ 4 pN(s)
tions are derived. 24 2 o =y EmrPmngNmingl

(4b)
A. Solution of fixed-orientation scattering whereN;,,, is determined by the size of partidek is unit
Based on the Mie-type multipole superposition solutionyector along the incident direction! is the position vector
method, the incident electric fiel" and the total scattered of particle centet in the primary reference system,
field ES“®of an ensemble df particles are expanded in terms
of VSWFs in an arbitrarily chosen primary reference system, d=eX'+gY'+ez, (5)

(X', Y',Z") are the dimensionlessormalized byk) Carte-

sian coordinates of particle centerand €€, ,&,) are Car-
tesian basis unit vectors. Note the appearance of the incident

Nmax n 2
E"‘°=—in§l > 2 EnPmnNiagr), (18

m=-n p=1

Nmax phase term expf-d') in Egs.(4). By the introduction of the
Esca E 2 2 Emn@mnN mnp(r) (1b)  incident phase shift, the incident coefficients in E4p) re-
=1 m=-np=1 main the same as the primary incident coefficients. In the

incident reference framqezmnp Pmnp that are given by Egs.
whereN{), andN(),  denote the VSWFs for incoming and (3).
outgoing waves, which are associated with the spherical In formulating fixed-orientation scattering, GMM uses the

Bessel and Hankel functions of the first kind, respectivelyjncident frame so that in Eq$4)
=v—-1, Enn=Eoi"Cpn, and

(2n+1)(n—m)!
n(n+1)(n+m)!

k=e,, k-d=Z. (6)
1/2
2 When particlel is a homogeneous sphere, the scattering co-

mn=—
efficientsa'mnp in Eq. (4b) can be expressed §%6]

Linear dimensions appearing in all equations in this work are a = a pl ’ 7
normalized by the wave numbér=2m/\, where\ is the mnp- Snpt mnp

incident wavelength. Note that the normalization fadiqy, wherea , is the Mie scattering coefficents of sphdrand

in the field expansions defined above is d|ff<?1rent from WhatP' denotes the expansion coefficients of the total incident
tb?n Ifliu:frrn Iusl\eldt b(leforteh tV\;h'ChV wak,l (ZT_ %:i)d(g n If|eld for particlel, which includes the exciting plane wave
)!( )!. Note also that, to save space, an additio &and scattered waves from all other particles in an ensemble.

index “p” is used in field expansiongl5]: p=1 stands for | L s e
D n the incident reference frame, the total incident coefficients
the TM mode of electric fields angl=2 for the TE mode. In lenp are given by[16]

the incident reference frame, the primary incident coeffi-
cientspmnp in Eq. (18 are specifically

Pl o= pmnp+(6|,,—1)exp(iz”')A'm'npn‘}n,am vprr ®
=0 m|#1 f 3 ’ ’ .
Pmnp (Jmi 1) (33 wherez""' =7""—Z7', 5, is the Kronecker delta symbol, and
n+1 Al'lPP' " are vector translation coefficients,2] characteriz-
plnp=Texr(—i/3p), (3b)  ing the transformation of scattered waves from particle

into incident waves for particle which are associated with
the spherical Hankel function of the first kind. To suppress
p_lnp=(—1)pp’1‘np, (30 continual summation signs in equations, a tensorial conven-

tion [15] is used in Eq(8) and hereafter. No summation sign
where the superscript asterisk represents complex conjugaté.an equation implies summation over all superscript and/or
In solving multiparticle scattering, the partial scattered fieldssubscript indices in lower case italics not appearing on the
E's@ of component particles must be solved in respective l€ft-hand side of the equation. The linear system of boundary
particle-centered reference systems in order to appropriate§ondition equations of Eq7) valid for spheres can easily be
apply boundary conditions at each particle. Similar to Eqs€xtended to the case of nonspherical parti¢&3524),
(1), the incident and the partial scattered fields of particle

are expanded in the reference system centered inside particle a'mnp ﬂ’?ﬂwplﬂyq, 9
|!
ie.,
~ Nlmax | Sii—1 ZII | lap’
ElinC: —i exqik'dl) E E 2 Emr‘lplmnpNEr}%p(r ) amnp mn,u,v[p/,wq"_( 1’ )eXFm ) wvm’ n’am n’p’ ]
n=1 m=-n p=1
(48 (10
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whereﬂﬁﬁw represents the elements ®f, the properT cos7'(B,a)=sinB sind'cod a— ¢') + cosB cos?',
matrix of particlel. It is easy to see that Eq&8) and (10) (15)

involve relative particle positions only, which are determined . . oy
b P Y here @', 9',¢") are the spherical coordinates of oridiin

by the configuration of an ensemble and independent of th i ) S
y g b the primary coordinate system. For afidirection incidence,

choice of the primary reference system. Also, the linear sys: =~ " - - .
tem of Eq.(10) places no restriction on particle shape andthe incident coefficients in Eqéla) and(4a) will be denoted

— b I
structure. The only requirement is tHgt of all component bY Prnp=Pmnp and
particles in an ensemble be known accurately. With the scat- < imel . ~ _

tering coefficientsa'mnp solved through the linear system of Pmnp= (= 1)™" “expimy)[ 7mng B)COL = Bp)

Eq. _(10), all fundam_ental scat_terlng parameters can be +i~Tmn3—p(,3)Sil"(a—Bp)]. (16)
readily calculated, using the emstmsdnnp-based scattering

formulations of GMM[17,18§. In addition,aj, ,, can also be where 7, are the normalized angular function
expressed in terms of th€ matrix T)', that is, the formal

inverse of the linear system of EAL0), which is of the form ?mnpz CmnTmnp: (17
[21]
o and the regular angular functiom,,, are defined by
Anp=XPIZ) TR P g (11) ]
ie. Tmm(0) = @an(COSGL (183
V2r+1 L ) m
A= — eXpiZ") [ Thid exp —iy) Tre(6) = 5 Pi(c0s6), (18
+(=D)ITRN | expli Bp)]. (12 with P being the associated Legendre function of the first

This shows that, in the incident reference frame, the solutiorlfmd' When a=5=y=0, Pmnp=Pmnp, i-€., EQ.(16) re-

. . . N duces to Egs(3). Extended to the general case of off-
of th‘le scattering coefﬂuenta{nnplnvolves the determination z-direction incidence, Eq(10) becomes
of T/P4 “for u=+1 only.

mnuv
Through the Iuse of Eq11) that relates.a'mnp with the T élmnp:?lnggw[bqur(g”,_ 1)

matrix T/!, the amnpbased fixed-orientation scattering solu-

tion of GMM has been converted to B'-basedT-matrix Xexr(ik.dll’)A'ﬂ"V‘j]f,'nlé'n;,n,p,], (19

formulation[21]. The T matrix T!' is also the pivotal quan-
t|w in the T-matriX formulation Of GMM derived here fOI’ Whered”’:dll_dl is the position vector extended from ori-
random-orientation scattering. AlthougH' is formally the gin | to origin1”,

inverse of the coefficient matrix of boundary condition equa-

tions, the method of direct matrix inversion is infeasible in k-d"'=2""=d"cosy" (B, a), (20)
most circumstances unless the total number and the size of

of critical importance to have a general means of soliiig (11) becomes

B. Solution of the T matrix T é'mnp= exp(ik- d'j)Tm‘ﬁ‘wﬁWq . (21

To solveT!', the general case of an arbitrary direction of ) ‘| o
incidence needs to be considered. An arbitrary direction obSing Ed.(21) in Eq. (19 for botha,,,,anda, ,,, leads to
incidence can be described by the rotation of #qointing ilpg o iing | TTpg e
plane wave vectorkK=¢,) in terms of three Euler angles Ty = (8jjr = 1) explik- A" ) Top,+ T, €XATK- A7)
(a,B,v) and the unit incident vector after rotation becomes A =g 1'g'p’ —j'l'p’
+( &= Dexplik-d )T ALY TS

k=egsinB cosa+6,sin B sina+€,cosp. (13 22)

While the incident phase shift in Eqgl) is simplyZ' in the  All quantities in Eq.(22) are independent of the direction of
incident reference frame, it will be denoted BYyfor the off-  incidence except for the incident phase terms. Averaging

z-direction incidence, over all possible directions of incidence, E§2) becomes
S_k.d. (14) T = (8= Djo(d ) Thipd +jo(d) TR,

. . ) _ . ”, —rpq/ Irlq/p/ J-/Irp/q
When a=B=y=0, Z'=Z'. In spherical polar coordinate (0= Dol d ) T Aprirmns Tt

system,Z'=d'cosp'(8,a) and (23)
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wherej, is the zero-order spherical Bessel function of theandd{" is the reduced rotation matrix elemef2$]. Insert-
first kind, which results from the integration over the threeing Egs.(3) and(28) into Eq. (27) leads to
Euler angles,

-

VZ2n+1 )
. 1 . pmnp:TeXF('mY){[d(lTy)](ﬁ)
jo(dJ')=FJ expik-d')dw o .
" (= 1)Pd"( B)Icog a— By) +i[dIN(B)

2@ [ .
=4i f exp(id!'cos7!')(sinB)dB da. +(=1)P ") (B)Isin(a— Bp)}. (29
mJo 0
(24 Comparing Eq(29) with Eqg. (16) reveals that
~ v2n+1
Here, dw represents (sif)dpdady. Because botfj, and rmnp=nT[d§T?}+(—1)pd§T’]"),l]. (30)
Al'la’p drop steeply when separation distance between

/V/m/n/
pgrticles increases, interactions between the scattered wavassimilar relation has been given for rotation functions by
from particlel and the particles not in its vicinity are insig- Mackowski and Mishchenk@see Eq.(31) in Ref. [15]]. It
nificant. Therefore, Eq(23) includes in fact only particles follows from Eq.(30) that
that are sufficiently close to particle When particlel is a

sphere, Eq(23) reduces to Tsnd B) Tong(B) + Tora—p(B) Twra—o(B)
. _ . Ly L i . \/—
THES = (8= Djo(@ ) Thibs +-a 1 o(c) 5010 LD i prdp)
+(8n—Djo(diHAPE TP 9T, (25

+(—1)PHad™  (B)d) 1 (B)]. (31)

With the properT matricesT' of all individual particles pro-  This shows that Eq(26) can alternatively be written as
vided, T!' of an ensemble can be efficiently solved from the

linear system of EQ.(23) successively for each set of - (2n+1)(2v+1) (27 (7
) Al 2 [ [ (sing)dsda
C. Integral representation of vector translational addition xexp(ik-dexdi(s— w)a][déﬁ)(ﬁ)dﬁfl)(ﬂ)
coefficients
+(=1)PH 9 4 (B)d) 1(B)], (32

In formulating multiparticle scattering for fixed orienta-

tions, the following integral expression for vector translation

k.di=qgl Jj
coefficients (that are associated with the spherical Besse\Nherek d’=d cos7y (B.2) [see_Eq.(ZO)]. Both E_qs.(26)
function of the first kingl obtained in GMM[18] plays an a_nd(32) are usefL_JI in the derivation of_the analytical expres-
important role sions for orientation-averaged scattering parameters.

2m D. Solution of random-orientation scattering

. 1
ljagp — _—
wrsn 477 0

fw(sin 6)dode explir-di)exdi(s—w)d]
0

Orientation-averaged cross sections for extinctién,),

~ ~ ~ - scattering(Csco, and radiation pressux&,,) have a simple
X[Tsnp(e) vaq( 0)+ Tsn3—p( 0) TwVS—q( 0)]: (26) relation

wherer -d'=d'Icos7/i(6,¢) is the scattered phase shift and (Cpr) = (Cexd —(Csca{cosb), (33

I =e,sin Hcosg+e,sin fsin ¢+e,cosé is unit position vec- . . .
; e'xl'h b ¢re i f(%’”qepz h it P five f . where a pair of {)” indicates an average over all possible
or. 1he above equation Ia,, s, Nas an atternative form in nParticIe orientations,{cos#) is the orientation-averaged

terms of the reduced rotation matrix elements in quantu ' I
mechanics[25]. Based on rotational addition thgorems asymmetry parameter, defined(@c£0s0)/(Csca - With T!
[1,25], the primary incident coefficients for an arbitrary di- determinedCey), (Cscas (Cpp), and(cose) can be accu-
rection of incidencdsee Eq.(16)] can also be expressed in rately calcglgted throu'gh the analytical 'solutllons derived
terms of those in the incident reference frafaee Eqs(3)] here. I_Epr|C|t expressions fqr these_ orlenta_ltlon-averaged
scattering quantities are obtained by integrating over three
Euler angles that completely determine particle orientations.

pmnp:@g%(m)psnp’ (27) This method for obtaining an orientational average by the

integration over the Euler angles was first used by Mish-

where[25,26] chenko[27] in scattering calculations for the special case of
a single axially symmetric particle and by Khlebtd@8] for
2 (w)=expisa)d{N(B)expimy), (28)  a general scatterer. It has also been used by Mackdgki
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and Mackowski and MishchenKd5] in the derivation of a Sk 2l o o i Tpa il P
; . . . =explik-d Hexplik-d' HT: “5 7T,
CTM random-orientation scattering formulation for an en- mnpPm'n’p Xpli Jexuli ) mnu'v’ T m'n’py
semble of spheres.
Based on the result for fixed-orientation scattering

[11,16,17, the orientation-averaged extinction cross sectio . . o
is given in the incident referencg frame by By using Eqs.(3), (26), (32, and (41) in Eq. (40, it is
straightforward to show that

<D0 % (@)D (@)L, g Purg- (4D

(Cord= " REBHngang 34 (Cood = FRATYL TS @2)

wherep p and amn should be expressed for an arbitrary

0r|entat|on of an ensemble in the incident reference framevhere

After the rotation of an ensemble bw (B3, y) in the incident ” .

reference frameay, ,, of the component particles can be ex- FUpa_Al tbp’ T b (439
pressed as

. , &(hpa_i'lpa’ Aji'a’q 43b
= explik-d) D (w) D () THRLP g, (39 ey St (430
whereTiPd are theT-matrix elements off!' at the orienta- Similarly, the orientation-averaged asymmetry parameter can

shov be obtained from the equation
tion of a=B=7y=0 and k is given by Eq.(13). Also,

Pmnp=Pmnp- These show that
Cscf£0s6 Ref J dw dQk-ra* 3
J2n+ 1)(2y+1 T (Ceopost) = 0 g
A= nggvf f singdda o
xexp(ir-d" expik-d" exgi(m' —m)¢]
xexpik-dV)exdi(s— ) a][dP(B)d M (B) K [ O) o (6)
+(—1)PTad™ (8)d) : 36 ~ ~
( ) l(B) 1(B)] ( ) +7—mn3—p(9)7'm'n’3—p’(9)]v (44)
It follows readily from Eqs(36) and(32) that where
o @Bmng = 5 890?3, 37 k-r=sinB cosa sin @ cose -+ sin B sina sin 6 sin ¢
+cosp cosé. (45)
and
Along the same line described above, it can be shown that
(Cor)= _Re—rgjv)ﬁyq’ (39) the final result of cosé) is
where (c0sh) =z RELFNEI+ Gt + HONES,  (46)
SC
T = AN TR, (39

where

The expression for the scattering cross section of an en- Hipa_ =(i1)3-pg =(ih)pq
semble of particles in fixed orientatiof48] shows that maer = LE1 (M) T, T+ fa(mun) Tiaty ),
random-orientation averaged scattering cross section can be ~i| ~(i1)p3—
written in the form + fs(m,n)T%B?W][fl(M,V)T%rg,fu i

+ fz(MyV)i(“)pq*l'i”fs(M:V)i(”)pq* ]

mnuv+ mnuy—11»

(Csca = Ref f dw dQal, Ao pexpir-d’) (479
><exp(iR-d”')exp[i(m’—m)¢] GonPd= 3 f4(mm)TONS, Po+ f5(m,n)TE8A,
X[;mnp(B)Fm’n'p’(0)+;mn3—p(0);m’n’3—p’(0)]v +fﬁ(m’n)?glﬁzgg—lyv][fd_/‘L'V)igjllrwi_lg*

40 ~fs(— ) TR, 1= o= ) TWRT, 4],
wheredQ = (sin§)déd¢ and (47b
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HOPI= 31 f4(—m,m)TI3 PI—f5(—m,n)TU8 .,

—fe(—mm T8 I Fal, ) LS

~ (il =~ (il
+ fs(/.L, V)s%[zﬁﬂﬁ_v+l+ fe(/_[,, V)S’E]!]r?/i)iﬁv—l]

(479
Thef coefficients in these equations are given by
m
fl(m,n):m, (483)
_ 1 [n(n+2)(n—m+1)(n+m+1)]*
fa(mn)=17 (2n+1)(2n+3) ’
(48b
B 1 (n2_1)(n2_m2) 1/2
fa(mn) = G 2n+1) | (489
n—m)(n+m+1)]*?
f4(m,n)=—[( nEn+1) ] , (480
1 [ (ntm+(ntm+2) |¥2
fs(mn) = T ntn+2)(2n 1y(2n+3y| | MM+

(n—=m)(n+m+3) (n+m)(h—m+1)
2 2

(480

1/2,
{m(er 1)

fe(m,n)=— E{(”_m)(n—m_l)

Nl (n2-1)(4n%>-1)

(n—=m-=2)(n+m+1) (n+m)(n—m+1)
2 2

(48f)

When the total particle numbér=1 in an ensemble, all

PHYSICAL REVIEW E 67, 046620 (2003

TABLE I. Comparison of the calculated and measured asymme-
try parameters of eight linear chains of identical spheres at a
random-orientation average.

L2 x° Refractive index kS (cosf) 5%
Calculated Measured

2 2176 (1.629, 0.012b6 4.352 0.659 0.647 1.8
5 2.176 (1.629, 0.012b 4.352 0.712 0.677 4.9
2 3.083 (1.610, 0.004p 6.166 0.689 0.685 0.6
2 3.083 (1.610, 0.004p 8.030 0.673 0.662 1.6
2 3.083 (1.610, 0.004p 12.510 0.669 0.658 1.6
3 3.083 (1.610, 0.004D 6.166 0.725 0.731 0.8
2 4.346 (1.630, 0.010p 8.692 0.662 0.651 1.7
2 4.346 (1.630, 0.010p 10.760  0.650 0.619 4.8

®;Number of spheres in each of the linear chains.

bSize parameter of a single component sphere.

°k is the wave number an8is the center-to-center separation dis-
tance between each pair of neighboring spheres.

YRelative deviation calculated by=|1—M/C|, whereM is the
measuredcos6) andC is the calculatedcos6).

tions developed here by comparing numerical solutions with
laboratory scattering measurements and with numerical solu-
tions obtained from other solution techniques. Practical ex-
amples of using the codes and comparison with CTM can be
found in Xu and Khlebtsoy22]. A couple of numerical ex-
amples are also given below for illustrative purposes.

A. Comparison between theory and experiment

Experimental scrutiny is a powerful means to test scatter-
ing solutions. Microwave analog to light scattering measure-
ments are especially suitable for this purpose. As an illustra-
tive example, theoretical predictions for the asymmetry
parameter obtained from Eqgl6)—(48) are compared with
laboratory microwave scattering measurements. In the 1980s
Wang and Gustafsof29] determined experimentally the
orientation-averaged asymmetry parameters of a set of mul-

the results discussed above for both fixed- and randomtisphere configurations. Table | lists the physical and geo-
orientation scatterings reduce to the solution for a single pametrical parameters of eight linear sphere chains that Wang
ticle. WhenL =1, neither phase shift nor interaction betweenand Gustafson measured, each consisting of 2, 3, or 5 iden-
particles is involved. In this special casp=l=1, "Aial;ggn tical spheres in various intersphere separations. The scatter-
= 8,50y 85q SO thatrfg'g,fﬁ=§g'gﬁﬁ=Tﬁqqnw, WhereT%q,W ing by these ensembles o_f sp_heres _is calculateo_l by using the
is the elements of th& matrix T of a single scatterer. With GMMOLTRA.F che [31], which is an |mplementat|on of the
FUDPA renlaced byT?d  andEUDPH by TP Eqs.(38) solution described above. The experimental data and theoret-
Tmno replaced byln, , may PY Tmngys BAS-(99)jea) predictions are also shown in Table I, which indicate that
(42), and (46)—(48) become the formulas for orientation- o ‘numerical solutions agree with experimental results.
averaged scattering parameters of a single scatterer. Thigs|ative deviations between the theoretical and experimental
single-particle solution should be of exactly the same form agoqits are within 5%.

the CTM multiparticle solutiof5,14,13 with T understood

as the single-particle type clust@matrix. B. Configuration-dependence of scattering properties

Scattering characteristics of an ensemble of particles are
largely configuration dependent. Figure 1 is such an ex-
ample, which refers to an ensemble consisting of only two

As the practical implementation of the solution discussedspheres that have the same size parametkaefl but dif-
above, several Fortran codes have been develdBéfl  ferent refractive indices of1.6, 0.1 and (2.5155, 0.0213
These public-domain codes can be used to test the formuldhe two spheres are gradually pulled apart, which means that

Ill. PUBLIC DOMAIN CODES AND ILLUSTRATIVE
EXAMPLES
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the overall size of the sphere ensemble gradually increasetveen scattered waves from different component particles.
Figure 1 shows the random-orientation-averaged volumeThe far-field interference is caused by both incident and scat-
equivalent extinction efficiencies and asymmetry parametertered phase differences with regard to different component
as function of the separation-to-diameter re8ial, whereS  particles. GMM deals directly with precise phase relations
is the center-to-center separation distance @igdthe diam-  for both incident and scattered waves, while CTM expresses
eter of the two spheres. The numerical solutions are obtainetthe phase factors in terms of infinite series expansions. Dif-
from two independent codes. One is GMM codeferent theoretical treatments lead to significantly different
GMMO1TRA.F. The other is CTM codescsmTmi.FORdevel-  ways for translating the incident and scattered fields between
oped by Mackowsk[32]. From the figure we see that both displaced reference systems.

codes provide identical theoretical results in their common In CTM, for an ensemble of particles in a given orienta-
region of validity. However, the CTM code fails to work tjon, the total scattering coefficientg, , in Eq. (1b) for an
when S/d exceeds~32, which is the maximum overall di- arbitrary direction of incidence are given @;{4]

mension that the code can handle.

max

N v 2
amnp:E 2 ET%anbeyqy

v=1 pu=—-v q=1

IV. REMARKS (49

The solution process of GMM is substantially different o ]
from that of CTM starting with the treatment of one of the WhereTmp,,, are the elements of the clustématrix T de-
multiple scattering effects—the far-field interference be-fined by T=A'°TI'AY e,

|
L Nmax n max v 2 2 , ., ,
_ 2 l0pp ilp"q”  R0ja’q
Tanqn V_E E E E z 2 2 Amnn‘(n’Tm/n/ ’v’A "v'uv? (50)
,u =1 1=1 ’ roor ’ ’oa ’ H I I
=li=ln/=1m'=—n" v =1 pu'=—v»' p'=19'=1
and thus
Nmax ¥ 2 L Nlmax n’ 2 NJrnax v’ 2
~ _ ~|Oppl le!q/ NO]q,q ~
= 2 2 2 23 2 XX 2 Ao Tt A Para (5)
v=1p=-vq=11=1]=1p/ g m'=—n’ p'=1 =1 u'=—»' q'=1

Nmax in EQs.(49) and(51) required in practical calculations All T' of individual spheres are.then translated to the prjmary
is roughly proportional to the overall size of an ensemblereference system to form the single-centered cluteatrix
A% D,.q on the right-hand side of EG51) is to translate
the incident plane wave from the primary into the reference

systemj andA PP, TIP 9 | is to translate the partial scat-

L Nlnr’]a)< n’ 2
mn,uyzz E 2 E

~|!Opp! |!p!q
Amnm’n’Tm’n’/,w'

Tha (53

tered field of particlel into the primary reference system.
CTM does not us&’! directly and, instead, transforffi!
into the clusterT matrix T through the use of two large-
dimensional translation matrices AP! andA!°. In practical
scattering calculations, CTM bypasses the calculatiohl'of
To obtain the clustem matrix T for ensembles of homoge-
neous spheres, Mackowski and Mishchefk8] use the fol-
lowing linear system to directly calculaf€'=TI'A% and
skip the calculation off!' [see Eqs(63) and (64) in Ref.

[15]],

1’ '
Nimax n

L

I"'=1n"=1m'=-n’

T'Pg

mnpv

2
> (81-1)
p'=1

Illpp! I!p!q
><Amnr’rfn’-rm’n’,uv '

(52

I'=1n'=1m'=-n’ p'=1

There is another recursivematrix algorithm developed by
Wang and Chew30], which uses a successive transforma-
tion method to calculate the clust&rmatrix T. When the
single-particle typerl is obtained, an ensemble of particles
can be treated as an equivalent single particle and all scatter-
ing solutions developed for a single scatterer can be simply
used to calculate the scattering properties of an ensemble of
particles. As mentioned above, a drawback of this CTM ap-

proach is that the dimensions & and A'° required in
practical scattering calculations depend on translation dis-
tances and are proportional to the overall dimension of an

ensemble. The use of either one or bothA3f andA'® sets

a ceiling for the overall size of an ensemble that can be
handled in practical calculations. This overall size restriction
is not related to the availability of computer memory. Ac-
cordingly, the choice of the primary coordinate system in the
implementation of CTM is not trivial and cannot be arbitrary.
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O L B B L B ently that the field expansion truncations required in practical
oocoo scsm - calculations are associated with individual particle size only

9 gmm | and not concerned with the separation distances between par-

ticles. In Eq. (54), Tmfwzo whenevern>N! _ or v

>N! ., whereN! .. andN! . are determined solely by the

sizes of particled andj, respectively. By comparison be-

. _ tween Egs.(51) and (54) we see that the two large-

dimensional translation matrice&”! andA'® in Eq. (51) of
A T D R T CTM are, respectively, equivalent to the simple incident and

0 0.5 1 1.5 2 2.5 3 scattered phase terms @x-d)] and exp—i(r-d')] in Eq.
(54) of GMM. In field translations, GMM does not involve
the use of the general addition theorems for VSWifes, the

use of eitherA% or A'°). It is thus completely free from
CTM's overall size limitation. GMM expresses all scattering
quantities in terms of th@ matrix T!', unlike CTM that
needs to transfornT!' into the clusterT matrix T. Also,
when all separation distances between particles in an en-
semble are sufficiently large, all individual particles become
independent scattering units afil is block diagonal. In this
particular case, GMM automatically reduces to the noninter-
acting (i.e., independentscattering solution and requires
little computational effort in practical scattering calculations.
log,,(S/d) It needs to be mentioned that CTM and GMM are both
- . . o rigorous approaches to the multiparticle scattering in prin-
FIG. 1. Variation of random-orientation-averaged extinction ef‘ciple. Numerical solutions from both formulations should be

ficiency and asymmetry parameter of two spheres of identical size } . . .
(ka=1) with separation-to-diameter rat&/d (“ S is the center- identical when both can provide a practical solution. The

to-center separation distance between spheres dhis the sphere scattering formulations of GMM should be of exactly the

diamete). Refractive indices of the two spheres &ie6, 0.1 and same form of CTM When‘_zl' i.e., for a single'particlg.'
(2.5155, 0.0218 respectively. The numerical solutions shown are S0Me of the GMM formulations can also be obtained within

obtained from two double-precision codes sfsvtmirorand  the framework of CTM. For example, Eq28) and(42) for
GMMO1TRA F (labeled “scsm” and “gmm”). (Cexp and(Cscp can be derivgd Trom QTM by simply ap-
plying the identity ofA))9 = KijfnﬁranL:Pann and eliminat-
Itis prob_ably best for CTM to placg the primary origin at the ing A% andA'°, as shown by MackowskKil4]. However,
geometric center of an ensemble_ in order to kee_p the trangnce the solution processes of CTM and GMM are radically
lation distances between the primary and particle center§igterent, CTM is unable to turn all scattering formulas to the
smallest. 5 GMM type. Also, an important point is that the GMM type
In GMM, the total scattering coefficients,,, for far field  of Ti'-based formulations have never been effectively used,
are given by[17-22 because there was no efficient scheme available for obtaining
T!!' before. The direct matrix inversion is of limited use in
practical scattering calculations. By using the linear system

<Qext>

00000 scsm
—  gmm

0.5

{cosB)

0.4|||||||||||||||||||||||||||||
0 0.5 1 1.5 2 2.5

w

L

8mnp= Z«l expli(k—r)-d'] of Eq. (23), T can be solved efficiently and the practical
_ application of the GMM-typeT!'-based formulations be-
L N 7 2 comes generally feasible. With!' solved for an arbitrary
XD > X explik-d)TIRY b .., (54  ensemble of particles, even the clusfenatrix T can also be
j=1v=1p=-va=1 easily obtained through E@50).

o o . It also needs to be emphasized that this work concentrates
which includes both incident and scattered phase shifts. Thgn far-field solution and does not address the near-field cal-

incident phase term varies with incident direction and thecylations, which are beyond the scope of this article.
scattered phase term changes with scattering direction. These
phase terms result from the asymptotic spherical Hankel
functions valid in the far-field zone, the use of which intro-
duces no approximation to the scattering solutions under dis-
cussion[17]. One obvious advantage of this far-field ap- A far-field solution of GMM has been extended to the
proach is clearly that the primary origin can be arbitrarily general case of an arbitrary mixture of particles of different
placed. The displacement of the primary coordinate systershapes for either fixed- or random-orientation scattering.
causes no additional computational efforts. Replacing th&his solution places no restriction on the overall dimension
primary origin does not affect any results and the calculatiorfor an ensemble of particles in practical applications. It does
of the cross sections. Another advantage of GMM is apparnot require the use of general addition theorems for VSWFs

V. SUMMARY
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in field translations. Field-expansion truncations depend oithe primary reference system has no effect on scattering cal-
individual particle size only. The choice of the primary ref- culations. The kernel quantity in tlematrix formulation of
erence center can be arbitrary and it does not need to be clo&MM is the T matrix T!'. An efficient scheme has been
to the geometric center of an ensemble. The displacement dfevised to solved!' effectively.
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