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Abstract

A formulation and computational scheme are presented for predicting the scattering and absorption cross-sections, and

the scattering matrix elements, of clusters of non-intersecting spheres that are lying on or above an infinite plane surface

and exposed to plane-wave radiation. The formulation provides an exact solution to Maxwell’s equations and the

associated boundary conditions on the spheres and the plane surface, and is applicable for arbitrary refractive indices for

the spheres and the surface. A simplified strategy is presented for the calculation of the surface reflection matrix, which

transforms the reflected scattered field from one sphere into a regular vector spherical harmonic expansion centered about

another sphere. The calculation results are presented for the clusters of one, two, and four polystyrene spheres, with size

parameters of one and 10, lying on a silicon substrate, and are compared with the predictions from the normal incidence

approximation (NIA) in which the reflectance of the surface is assumed constant at the normal incidence value. The results

show that the accuracy of the NIA is highly dependent on the extent of the sphere cluster, the angle of incidence, and the

particular quantity (cross-sections, scattering matrix elements) under examination.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this paper is on developing an exact theory—and a corresponding numerical calculation
scheme—for predicting the scattering properties of the sphere clusters that are lying on a flat surface. The
ability to quantify such properties has relevance in a number of fields and applications, i.e., detection of
particles on semiconductor chips, the modeling of reflectance by pigment particle layers, assessing the effects
of soot or mineral particle deposits on the absorptivity of ice, and so on. The problem, in itself, is also
intrinsically interesting and challenging from a mathematical point of view, because it requires the matching of
the boundary conditions on geometrically distinct classes of surfaces: the sphere and the plane.

Much previous work has been performed and reported on the prediction of scattering by a single sphere on
a flat yet not-perfectly reflecting surface. A key aspect of the problem is the representation, in a spherical
harmonic basis, of the electric field produced by the reflection of an outgoing (i.e., scattered) wave, i.e., the
scattered–reflected field. Bobbert and Vlieger [1] utilized an integral representation of the outgoing vector
e front matter r 2007 Elsevier Ltd. All rights reserved.
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harmonic to develop a comprehensive exact solution to Maxwell’s time-harmonic equations for the sphere/
surface system. However, the evaluation of the sphere–surface interaction terms—which generate a matrix
relationship between the multipole orders of the outgoing harmonic and the regular harmonic expansion
representing the reflected wave—requires the numerical integration of a product of rotational and complex
exponential functions over the complex domain for each coupled multipole pair.

This feature of the problem has made the exact solution somewhat inaccessible, and has led subsequent
teams—most notably the work of Videen et al.—to develop approximate solutions which are based on
representing the reflected field as that produced by an ‘image’ source [2,3]. The rationale of this approach,
referred to here as the normal incidence approximation (NIA), is that the sphere will interact primarily with
the scattered radiation that is reflected at the near-normal incidence, and for this case the parallel and the
perpendicular Fresnel reflection coefficients of the surface can be assumed to be constant (i.e., independent of
the incident direction) and equal.

More recently, Fucile et al. [4], and Wriedt and Doicu [5], re-visited the exact solution for a sphere adjacent
to a surface and developed equivalent formulations that are more compact and amenable to numerical
evaluation than that presented in Ref. [1]. Wriedt and Doicu also generalized the solution to an arbitrary-
shaped scatterer via the T matrix representation of the scattered field. Their calculation results for spheres—
which were limited to a maximum sphere size parameter of ka � 3, a single angle of incidence, and a single
value of surface refractive index—suggested that the NIA was quite adequate in representing the distribution
of the scattered intensity. Johnson, on the other hand, compared the NIA with the numerical solutions
generated by Wojcik et al. [6], and concluded that considerable error in the NIA could occur for dielectric
surfaces [7]. The same conclusion regarding the NIA approximation was reached by Fucile et al. [4].

The current paper is concerned with multiple, mutually interacting spheres on a surface. For this case the
NIA would be expected to be of more questionable status than for a single sphere, because the scattered
radiation from one sphere will reflect off the surface to the other spheres at angles that are far from normal. In
recognition of this, the paper will utilize the exact formulation of Wriedt and Doicu [5] to represent the surface
interaction among the spheres. Fortunately, for this author, most of the heavy mathematical lifting needed for
the model has been performed in Ref. [5], and extension to the multiple spheres case will be relatively
straightforward. Such an extension has been presented by Denti et al. [8], who based their formulation on the
assumption that the scattered–reflected field produced by a sphere, for a plane surface with arbitrary reflection
properties, can be represented as a single outgoing vector spherical harmonic (VSH) expansion centered
about the image point of the sphere [4]. The interaction of the scattered–reflected field with the neighboring
spheres could then be computed using the translation theorems for the outgoing waves. However, it will be
demonstrated here that a single-origin, VSH expansion is incapable of entirely representing the
scattered–reflected field at all the points above the surface. Because of this, calculation of the
scattered–reflected interactions among each sphere pair must begin with the fundamental integral relations
for the spherical waves reflecting from plane surfaces as applied to the specific geometrical configuration for
the pair. A key objective of the paper is to make the evaluation of these interaction terms—which unavoidably
involves numerical quadrature—more tractable, and a scheme is presented which minimizes the
computational overhead in this procedure.

2. Formulation

2.1. Configuration

The situation under examination is illustrated in Fig. 1. The system consists of NS spheres, each with a
radius ai, refractive index mi, and a position ri ¼ ðxi; yi; ziÞ. The surface, characterized by a refractive index mb,
is located at z ¼ 0 and the outward normal points in the þz direction. A linearly polarized plane wave, of
wavelength l, is incident on the surface with a propagation direction defined by y ¼ bi and f ¼ ai. It is implied
that biop=2, i.e., the incident wave originates from the space above the plane. What is sought from the
analysis, in the most general sense, is a complete and exact description of the electric field above the surface.
More specifically, we wish to predict the absorption and scattering cross-sections of the individual spheres and
the far-field scattering pattern.
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Fig. 1. The coordinate system.
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The basic approach will involve a superposition solution to Maxwell’s equations. Above the surface and
exterior to the spheres the field will be represented by four basic components, being (1) the direct incident
plane wave and (2) the scattered waves originating from the spheres, along with (3) the plane wave that is
reflected off of the surface and (4) scattered waves that reflect off of the surface. The two components
involving the scattered waves can be split further into contributions from the individual spheres, so that

E ¼ E0;d þ E0;r þ
XNS

j¼1

ðEsd;j þ Esr;jÞ (1)

in which Esd;j and Esr;j denote the direct and the reflected components of the scattered field due to sphere j.
The direct scattered fields can be represented by the outgoing VSH expansions, centered about the origin of

each sphere.

Esd;j ¼
XNO;j

n¼1

Xn

m¼�n

X2
p¼1

aj
mnpN

ð3Þ
mnpðr� rjÞ (2)

in which Nð3Þmnp is an outgoing VSH of order n, degree m, and mode p (¼ 1 for TM, 2 for TE), and NO;j denotes
the truncation limit of the expansion. The VSH functions are defined in the Appendix. Determination of the
scattered field expansion coefficients aj is the objective of the problem.

The direct incident field, which is taken to have unit amplitude, can be represented by a regular VSH
expansion about the target coordinate origin:

E0;d ¼ ðêk cos gi þ ê? sin giÞe
iki �r ¼

X
n¼1

Xn

m¼�n

X2
p¼1

pmnpN
ð1Þ
mnpðrÞ (3)

with

pmnp ¼ �4i
nþ1 tmnpðcos biÞ cos gi � itmn3�pðcos biÞ sin gi

� �
e�imai . (4)

In the above, gi denotes the angle between the incident electric vector and the plane formed by the propagation
directions of the incident and the reflected fields; g ¼ 0 and p=2 correspond to the electric vector parallel and
perpendicular to this plane. The angular functions tmnp are defined by

tmn1ðxÞ ¼ �ð1� x2Þ
1=2 2nþ 1

nðnþ 1Þ

ðn�mÞ!

ðnþmÞ!

� �1=2
dPm

n ðxÞ

dx
, (5)

tmn2ðxÞ ¼ mð1� x2Þ
�1=2 2nþ 1

nðnþ 1Þ

ðn�mÞ!

ðnþmÞ!

� �1=2

Pm
n ðxÞ. (6)

Note that the convention 3� p in Eq. (4) is used to switch the mode from one to another.
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The reflected plane wave E0;r will be given by a regular VSH expansion, centered about the target origin,
that is similar to Eq. (3):

E0;r ¼ ðêk cos grrkðcos brÞ þ ê? sin grr?ðcos brÞÞe
ikr�r ¼

X
n¼1

Xn

m¼�n

X2
p¼1

gmnpN
ð1Þ
mnpðrÞ (7)

in which rk and r? are the reflection coefficients for the surface [9]:

rkðcos brÞ ¼ �
mb cos br � cos bt
mb cos br þ cos bt

, (8)

rkðcos brÞ ¼
cos br �mb cos bt
cos br þmb cos bt

(9)

with cos bt being the cosine of the transmission angle:

cos bt ¼ 1�
1� cos2br

m2
b

� �� �1=2

. (10)

Note that the parallel reflection coefficient rk used here is the negative of that employed in Ref. [5]. Since the
origin of the expansion is on the surface there is no need to account for the phase shift between the incident
and the reflected fields. The reflected expansion coefficients then appear as

gmnp ¼ �4i
nþ1
ðtmnpðcos brÞ cos grrkðcos brÞ � itmn3�pðcos brÞ sin grr?ðcos brÞÞe

�imar . (11)

Following the usual convention for characterizing reflection from a surface, the reflection angle br ¼ p� bi

will be used as the parameter which characterizes the incident field. In this sense normal incidence corresponds
to br ¼ 0. Furthermore, ai ¼ ar and gi ¼ p� gr. Using

tmnpð�xÞ ¼ ð�1ÞmþnþptmnpðxÞ, (12)

the incident field coefficients in Eq. (4) are reformulated as

pmnp ¼ 4ð�1Þmþnþpinþ1ðtmnpðcos brÞ cos gr � itmn3�pðcos brÞ sin grÞe
�imar . (13)

To formulate the sphere/surface interaction equations it will be necessary to expand the incident and the
reflected fields about each of the spheres in the cluster. That is, a regular VSH expansion is sought for the
incident and the reflected fields in the form of Eq. (2), with the regular harmonics centered about the origin of
sphere j. The coefficients in these expansion can be obtained by two methods. The first is to multiply the p and
g coefficients by the phase shift that occurs between the target origin and the origin of sphere j. Since the
incident field propagates in the y ¼ p� br, f ¼ ar direction, and the reflected in the y ¼ br, f ¼ ar direction,
the incident and the reflected coefficients about sphere j will be

pj
mnp ¼ pmnp exp½ik½ðxj cos ar þ yj sin arÞ sin br � zj cos br��, (14)

gj
mnp ¼ gmnp exp½ik½ðxj cos ar þ yj sin arÞ sin br þ zj cos br��. (15)

A second method is to apply the addition theorem for VSH to translate the incident and the reflected
coefficients to the various origins. For regular VSH, the addition theorem takes the form

Nð1ÞmnpðrÞ ¼
X

l

Xl

k¼�l

X2
q¼1

J
j�0
klq mnpN

ð1Þ
klqðr� rjÞ. (16)

The translation matrix Jj�0 depends solely on the distance and the direction of the translation from origin 0
(the cluster origin) to j; formulas are given in the Appendix. The number of orders l required for convergence
of the expansion will depend on the distance of the translation; in general, J

j�0
klq mnp ! 0 for jn� ljbkjrjj. By

the application of the above formula to Eqs. (3) and (7), the translated incident and reflected field coefficients



ARTICLE IN PRESS
D.W. Mackowski / Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 770–788774
are obtained by the same general formula:

pj
mnp ¼

X
l

Xl

k¼�l

X2
q¼1

J
j�0
mnp klqpklq, (17)

gj
mnp ¼

X
l

Xl

k¼�l

X2
q¼1

J
j�0
mnp klqgklq. (18)

2.2. The scattered and reflected field

Outlined here is the formulation developed by Wriedt and Doicu for obtaining a regular VSH expansion for
the field produced by the plane surface reflection of the outgoing scattered waves from the spheres [5]. For all
points r� rj such that z� zjo0, an outgoing VSH can be obtained via

Nð3Þmnpðr� rjÞ ¼ �
ð�iÞnþ1

2p

Z 2p

0

Z p

p=2þi1
ðtmnpðcos bÞb̂þ itmn3�pðcos bÞâÞeimaeik�ðr�rjÞ dO ð19Þ

in which dO ¼ sin bdbda, b̂ and â correspond to unit vectors in the b and a directions, and

k � ðr� rjÞ ¼ k½ððx� xjÞ cos aþ ðy� yjÞ sin aÞ sin bþ ðz� zjÞ cos b�. (20)

By a comparison with Eq. (4), Eq. (19) can be viewed as a representation of the outgoing VSH by a plane-wave
spectrum, although the spectrum of propagation directions b covers both the real and imaginary (i.e.,
evanescent) angles. Nevertheless, along the surface at z ¼ 0, each plane-wave component—real and
imaginary—will be reflected according to the Fresnel relations. By using the same relations employed in
the formulation of Eq. (11), the reflected field produced by the outgoing VSH will be

Nð3Þmnpðr� rjÞjr ¼ ð�1Þ
mþnþp ð�iÞ

nþ1

2p

Z 2p

0

Z p=2�i1

0

ðtmnpðcos bÞrkðcos bÞb̂

þ itmn3�pðcos bÞr?ðcos bÞâÞeimaeik�ðr�rj Þe2ikzj cos b dO. ð21Þ

Note that the integration now occurs for the upwards directions. The range of convergence of the formula is
z4� zj; this formally includes all of the region of interest yet this limit will become relevant when Eq. (21) is
cast as an expansion of regular VSH.

As per Eq. (3), the phase factor involving k � ðr� rjÞ can be cast into a plane-wave VSH expansion centered
about a second origin i with the parallel and perpendicular components equivalent to b̂ and â. That is,

ðb̂; âÞ expðk � ðr� rjÞÞ ¼ ðb̂; âÞ expðk � ðr� riÞÞ expðk � ðri � rjÞÞ

¼ �4eðk�ðri�rjÞÞ
X
l¼1

Xl

k¼�l

X2
q¼1

ilþ1ðtklqðcos bÞ;�itkl3�qðcos bÞÞe�ikaN
ð1Þ
klqðr� riÞ. ð22Þ

Combining this with Eq. (21) results in

Nð3Þmnpðr� rjÞjr ¼ �
2

p
ð�1Þmþnþp

X
l¼1

Xl

k¼�l

X2
q¼1

N
ð1Þ
klqðr� riÞðiÞ

l�n

Z 2p

0

Z p=2�i1

0

ðtmnpðcos bÞrkðcos bÞtklqðcos bÞ

þ tmn3�pðcos bÞr?ðcos bÞtkl3�qðcos bÞÞeiðm�kÞae2ikzj cos beik�ðri�rjÞ sin bdbda. ð23Þ

The above formula can be condensed into a matrix transformation that gives the regular VSH expansion,
about origin ri, produced by the reflection of the outgoing VSH centered at rj:

Nð3Þmnpðr� rjÞjr ¼
X
l¼1

Xl

k¼�l

X2
q¼1

R
i�j
klq mnpN

ð1Þ
klqðr� riÞ. (24)
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The formula for the coefficients of the reflection matrix Ri�j can be simplified considerably from that
appearing in Eq. (23). The integration over a can be performed analytically viaZ 2p

0

exp½iððm� kÞaþ k½ðxi � xjÞ cos aþ ðyi � yjÞ sin a� sin bÞ�da

¼

Z 2p

0

exp½iððm� kÞaþ krij sin b cosða� fijÞÞ� da ¼ 2pijm�kjJ jm�kjðkrij sin bÞe
iðm�kÞfij ð25Þ

in which Jn is the ordinary Bessel function of order n, and

rij ¼ ½ðxi � xjÞ
2
þ ðyi � yjÞ

2
�1=2; eifij ¼

ðxi � xjÞ þ iðyi � yjÞ

rij

. (26)

The products involving the angular functions tmnptklq can also be linearized. The angular functions are related
to the general spherical functions D

ðnÞ
mk (defined in the Appendix) by

tmnpðxÞ ¼ �
1
4
ð2nþ 1Þ1=2ðð�1ÞpD

ðnÞ
�m1ðxÞ þD

ðnÞ
�m�1ðxÞÞ. (27)

The product of two spherical functions, each with the same argument, can be expanded into

DðnÞ�msðxÞD
ðlÞ
�ktðxÞ ¼ ð�1Þ

kþt
X

w

Cw
mn;�klC

w
�sn;tlD

ðwÞ
k�ms�tðxÞ (28)

in which Cw
mn; kl is shorthand for the Clebsch–Gordan coefficient Cðn;m; l; k;w;mþ kÞ and the sum over w runs

from jn� lj to nþ l. By using

Cw
sn;�tl ¼ ð�1Þ

nþlþwCw
�sn; tl (29)

and introducing the integrals

Qi�j
vwu ¼ ijvj

Z 1

0þi1

ðrkðxÞ þ iur?ðxÞÞD
ðwÞ
vu ðxÞJ jvjðrijð1� x2Þ

1=2
Þeikðziþzj Þx dx, (30)

the matrix elements can be expressed as

R
i�j
klq mnp ¼

1

4
ð�1Þmþkþnþpil�n

½ð2nþ 1Þð2l þ 1Þ�1=2eiðm�kÞfij

�
X

w

Cw
mn;�kl ½ðð�1Þ

pþqþnþlþw
þ 1ÞCw

1n;�1lQ
i�j
k�m w0

þ ð�1ÞqCw
1n;1lðð�1Þ

pþqþnþlþwQ
i�j
k�m w2 þQ

i�j
k�m w�2Þ�. ð31Þ

With the exception of a perfectly reflecting surface, for which a simple image-based formula for the
reflection matrix can be derived, evaluation of the elements of the reflection matrix will require numerical
integration of the Qi�j

vwu functions in Eq. (30). By linearizing the rotation function products, a result is obtained
which minimizes the parameter space over which the integration must be performed, i.e., integration is
performed for the vector elements u ¼ �2; 0; 2, w ¼ juj; juj þ 1; . . ., and v ¼ 0; 1; . . .w, with
Q�vwu ¼ ð�1Þ

vQvw�u, as opposed to integrating for each matrix element klq; mnp in Eq. (23). For a maximum
order on n and l in Eq. (24) of NO;j and NO;i, respectively, the maximum required order w for the Qvwu

functions will be NO;j þNO;i.
For the displacement between the arbitrary origins j and i, the reflection matrix has the symmetry

property of

R
i�j
klq mnp ¼ R

i�j
�mnp�klq ¼ ð�1Þ

mþkR
j�i
klq mnp. (32)

The special case of self-interaction will have Qj�j
vwu ¼ 0 for va0 and R

j�j
klq mnp ¼ 0 for mak.
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A generalized, adaptive Romberg algorithm is used to evaluate the integrals in Eq. (30), and the integration
domain is split according to [10]Z 1

0þi1

f ðxÞdx ¼

Z 1

0

f ðxÞdx� i

Z 1
0

f ði xÞdx. (33)

2.2.1. Normal incidence approximation

Videen et al. developed an approximation for the reflection matrix by taking the Fresnel coefficients to be
constant and equal to the normal incidence values, i.e., rk ¼ r? ¼ r0 [2]. By doing so, the scattered–reflected
field from sphere j becomes equivalent to that produced by an image source at jR, with the electric field
modified by the reflectance r0. The regular VSH expansion, centered about the sphere origin i, of the
scattered–reflected field can then be obtained by the application of the addition theorem to the image field. The
end result is

R
i�j
klq mnp � �ð�1Þ

mþnþpr0H
i�jR

klq mnp (34)

in which Hi�jR is a translation matrix which transforms, analogous to Eq. (16), an outgoing VSH at the origin
of the image point jR, with rjR

¼ ðxj ; yj ;�zjÞ, into a regular VSH expansion about origin i.
The single-sphere rationale for the NIA is based on a geometrical optics argument, in that the maximum

reflection angle for the rays leaving one point on the sphere and striking another point on the same sphere

will be 30�, and within this range the Fresnel coefficients for most surfaces are fairly constant. The sphere
therefore ‘sees’ its reflection over a surface with a uniform reflectivity. On the mathematical side, the
NIA will analytically result from the exact formula for the reflectance matrix for the condition rk ¼ r? ¼

constant [5,11].

2.2.2. Image source model

Fucile et al. made the assumption that the scattered–reflected field produced by a sphere, for a surface with
arbitrary reflection properties, could be represented at all the points in the half space zX0 by a single outgoing
VSH expansion centered about the image point of the sphere [4]. That is, the model assumes that, for sphere j,

Nð3Þmnpðr� rjÞjr ¼
X
l¼1

Xl

k¼�l

X2
q¼1

F
j
klq mnpN

ð3Þ
klqðr� rjR

Þ. (35)

Their approach to determining the expansion matrix F was to transform, via the addition theorem, the
outgoing harmonics in Eq. (35) into an expansion of regular harmonics about the source sphere j, and then
match the resulting formula with Eq. (24). This gives (in matrix form)

Fj ¼ ðHj�jR Þ
�1
� Rj�j. (36)

This model represents a heuristic extension of the NIA to arbitrary surface properties. The main
computational advantage of the model is that the reflection matrix R need only be calculated for each
individual sphere (i.e., Rj�j), and the interactions among the neighboring spheres can be obtained from the
application of the addition theorem via

Ri�j ¼ Hi�jR � Fj. (37)

However, the image source model does not appear to be consistent with the exact formulas for the outgoing
and the scattered–reflected VSH as given in Eqs. (19) and (21). Making use of the axial symmetry between the
source (j) and the image (jR) points, the image source model implies an expansion of the form

� ð�1Þmþnþp
ðtmnpðcos bÞrkðcos bÞb̂þ itmn3�pðcos bÞr?ðcos bÞâÞ

¼
X
k;l;q

F klq mnpðtklqðcos bÞb̂þ itkl3�qðcos bÞâÞ. ð38Þ

The tðcos bÞ functions have useful orthogonality properties which could be employed to determine F from the
above expansion, yet these properties apply only to integration over the unit sphere, i.e., real b, whereas
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Eq. (38) must hold for real as well as imaginary b. Conversely, neither side of Eq. (38) will converge when
integrated over the complex half-sphere domain b ¼ ð0;p=2� i1Þ. Because of this, the relationship in
Eq. (38)—which is central to the validity of the image source model—cannot be established for the integration
domain of b appearing in Eq. (21). This flaw will have no effect on the model when applied or the case of a
single sphere on or near a surface, for which the self-interaction matrix, via Eqs. (36) and (37), will return the
exact result, yet it will have bearing on the multiple sphere case.

A conclusion is that the scattered–reflected field, for arbitrary surface properties, cannot be represented for

all the points above the surface as a single outgoing VSH expansion centered about a single point. That such is
the case is not surprising when one considers that, in the most general sense, the scattered–reflected field must
be equivalent to the radiation scattered from a collection of dipole sources that collectively represent the
surface medium. An expansion of the form of Eq. (35) would be valid for radii jr� rjj that enclose all of the
dipole sources—which is impossible except in the far field.

2.3. The interaction equations

The formulas for the reflected incident field (Eq. (7)) and the scattered–reflected field (Eq. (24)) can now be
appended into the equations for electromagnetic wave interaction among multiple spheres. The interaction
equations represent a generalization of a T matrix relationship for each sphere; in that the coefficients for the
scattered field from the sphere, aj

mnp, will be linearly related to the coefficients describing the net exciting field
at the sphere. Note that the latter will be comprised of four components, being the direct and the reflected
incident fields, the direct scattered fields from other spheres, and the reflected scattered field. The direct
scattered field, from the neighboring spheres, can be cast in a regular VSH expansion about the origin of j by
the application of the addition theorem, and the other three components have already been represented by
regular VSH expansions in the previous formulas. Putting all together, the interaction equations will appear as

1

aj
m

aj
m �

XNS

i¼1
iaj

X
n

Hj�i
mn ai

n �
XNS

i¼1

X
n

Rj�i
mn ai

n ¼ pj
m þ gj

m. (39)

In the above, Greek subscripts m and n are shorthand for degree/order/mode, i.e., m � ðmnpÞ. The quantity
aj
m � aj

np is the T matrix coefficient for the sphere; these are typically referred to as the Lorenz–Mie coefficients
although they are the negative of the commonly defined LM coefficients, e.g., Ref. [9].

For equal-sized spheres, and assuming that the truncation orders for the individual scattered field expansions
are the same at NO, Eq. (39) represents 2NSNOðNO þ 2Þ complex-valued equations for the set of scattering
coefficients. The scattering and absorption properties of the spheres, for a specified incidence angle and
polarization, can be obtained directly from the scattering coefficients via formulas presented in the next section.

2.4. Far-field scattering

In the far-field region the direct scattered field, from sphere j, is obtained using the asymptotic form of the
outgoing VSH:

Esd;j;ff ¼
1

ik r
eikjr�rj j

X
n

Xn

m¼�n

X2
p¼1

ð�iÞnþ1ðtmnpðcos yÞêy þ itmn3�pðcos yÞêfÞeimfaj
mnp. (40)

The far-field scattered–reflected field from sphere j can be obtained from Eq. (21) in the limit of kjrjbn [3,5],
and leads to the simple result

Esr;j;ff ¼ �
1

ik r
eikjr�rjR

j
X

n

Xn

m¼�n

X2
p¼1

ð�iÞnþ1ðtmnpðcos yÞrkðcos yÞêy

þ itmn3�pðcos yÞr?ðcos yÞêfÞeimfð�1Þmþnþpaj
mnp, ð41Þ

where rjR
¼ ðxj ; yj ;�zjÞ again refers to the location of the image source for sphere j.
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In the far field, outgoing harmonics will obey the same translation formula in Eq. (16), and this formula can
be used to shift Eqs. (40) and (41), which represent sources at the points rj and rjR

, to expansions based on the
target origin. By applying the property

J
0�jR

mnp klq ¼ ð�1Þ
mþnþp

ð�1ÞkþlþqJ
0�j
mnp klq (42)

the total (direct and reflected) scattered field from the entire ensemble can be cast as

Es ¼
1

ik r
eik r

X
n

Xn

m¼�n

X2
p¼1

ð�iÞnþ1ðtmnpðcos yÞð1� ð�1Þ
mþnþprkðcos yÞÞêy

þ itmn3�pðcos yÞð1� ð�1Þ
mþnþpr?ðcos yÞÞêfÞeimfamnp ð43Þ

in which the total scattered field coefficients are obtained from

amnp ¼
XNS

j¼1

XNO;j

l¼1

Xl

k¼�l

X2
q¼1

J
0�j
mnp klqa

j
klq. (44)

These results are consistent with the far-field formulation for multiple spheres on a surface developed by Denti
et al. [8].

The usual scheme that is applied to an isolated particle will be used to define the amplitude and the
scattering matrices of the sphere–surface system. The scattering plane is defined by the plane containing the
direct incident and the scattering directions, and the amplitude matrix is obtained as the relationship between
the incident and the scattered field components that are parallel and perpendicular to this plane. However, for
the sphere–surface system it is most practical to retain the surface-normal-based polar coordinate system for
mapping the amplitude and the scattering matrix, and to do this will require some geometric manipulations
because the scattering plane will not, in general, contain the surface normal.

The value of gr, which denotes the polarization angle in Eqs. (4) and (11), that results in the incident electric
vector parallel to the scattering plane will be given by

tan gr ¼
sin y sinðar � fÞ

sin yðsinðar � fÞ � cos br cosðar � fÞÞ � cos y sin br

. (45)

The fact that gr—and, by an extension, the right-hand side to the interaction equations in Eq. (39)—depends
on the scattering direction y and f would appear to imply that the equations would need to be solved anew
to calculate the amplitude and the scattering matrices for each scattering direction. This, however, is not
the case because the values of the incident field coefficients pj

mnp and gj
mnp, for an arbitrary value of gr, will

be a linear combination of the coefficients evaluated for gr ¼ 0 and p=2, i.e., for the incident field parallel
and perpendicular to the surface normal. In this sense, define as amnp;1 and amnp;2 the total scattering
coefficients that are calculated for a given value of br and ar and for gr ¼ p=2 and 0, respectively. The
values of the scattering coefficients, for the incident field parallel and perpendicular to the scattering plane, will
then be

amnp;k ¼ amnp;2 cos gr þ amnp;1 sin gr, (46)

amnp;? ¼ �amnp;2 sin gr þ amnp;1 cos gr. (47)

With regard to the scattered field, the components that are parallel and perpendicular to the scattering plane
will be given by

Es;k ¼ Es;y cos gs þ Es;f sin gs, (48)

Es;? ¼ �Es;y sin gs þ Es;f cos gs (49)

with the angle gs given by

tan gs ¼
sin b sinðar � fÞ

sin bðsinðar � fÞ þ cos y cosðar � fÞÞ þ cos br sin y
. (50)
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Putting it all together, the amplitude matrix elements are obtained from the following formulas:

Pmnp;1 � ið�iÞnþ1tmnpðcos yÞð1þ ð�1Þ
mþnþpr?ðcos yÞÞeimf, (51)

Pmnp;2 � ð�iÞ
nþ1tmnpðcos yÞð1� ð�1Þ

mþnþprkðcos yÞÞeimf, (52)

S1 ¼
X

n

Xn

m¼�n

X2
p¼1

ð�Pmnp;2 sin gs þPmn3�p;1 cos gsÞ; amnp?, (53)

S2 ¼
X

n

Xn

m¼�n

X2
p¼1

ðPmnp;2 cos gs þPmn3�p;1 sin gsÞ; amnpk, (54)

S3 ¼
X

n

Xn

m¼�n

X2
p¼1

ðPmnp;2 cos gs þPmn3�p;1 sin gsÞ; amnp?, (55)

S4 ¼
X

n

Xn

m¼�n

X2
p¼1

ð�Pmnp;2 sin gs þPmn3�p;1 cos gsÞ; amnpk. (56)

Given the amplitude matrix, the elements of the scattering matrix can be obtained from the standard
formulas [9]. In particular, the scattered intensity for the incident radiation of the irradiance I0 will be

Isðy;fÞ ¼ I0S11 ¼
1

2
I0
X4
i¼1

jSij
2. (57)

2.5. Cross-sections

One of the most relevant goals of the current investigation is to formulate how the interactions between the
spheres and the surface affect energy transfer to the spheres and to the surface. Such an analysis can be
performed by the calculation of the appropriate cross-sections of the cluster and comparison to the isolated
particle values. However, it is important to note that the present sphere/surface situation offers multiple ways
in which the particle cross-sections can be defined. In general, a cross-section is obtained as the ratio of the
power—either scattered or extinction—crossing a (usually closed) surface to the incident irradiance I0. In the
present case, the surface can either conform to the sphere surfaces—which results in the traditional aerosol
definitions of cross-sections—or over a hemisphere enclosing the cluster and extending laterally along the
surface to infinity. As was noted by Johnson [7], the latter definition is, in many respects, more relevant with
regard to measurable quantities.

The hemispherical (or surface-based) extinction cross-section is defined so that I0Cext;S is the rate at which
the cluster removes energy from the beam in the reflected (or forward) direction of y ¼ br, f ¼ ar. This
quantity is predicted via the optical theorem, in which the reflected beam is represented by the transverse plane
wave of Eq. (7) [7]. For perpendicular and parallel incident field states, the cross-sections are

Cext;S;1 ¼ �
4p

k2
Reðr	?ðcos brÞS1ðcos br; arÞÞ, (58)

Cext;S;2 ¼ �
4p

k2
Reðr	kðcos brÞS2ðcos br; arÞÞ. (59)

The extinction cross-section for the unpolarized incident radiation will be the average of the one and two
values.

Analogous to the surface extinction cross-section, a surface scattering cross-section can be defined so that
I0Csca is the rate at which the cluster scatters energy from the surface. For the unpolarized incident radiation,
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the cross-section is obtained from

Csca;S ¼
p

k2

Z 2p

0

Z p=2

0

S11ðy;fÞ sin ydy df. (60)

Except for the limiting case of perfect surface reflection, the quadrature methods must be used to perform the
integration over y. Since I0Csca describes the scattered energy leaving the surface, it follows from an energy
balance that I0Cabs;S ¼ I0ðCext;S � Csca;SÞ describes the net change in the energy transfer into the surface due to
the presence of the cluster. The surface absorption cross-section accounts for both the absorption by the
cluster and scattered radiation from the cluster that is absorbed by the surface. And unlike the corresponding
absorption cross-section for the isolated particle, the surface absorption cross-section can be positive or
negative—indicating that the cluster either enhances or decreases the absorptivity of the surface.

Indeed, an effective surface absorptivity can be defined; say particles (single spheres or clusters) are lying on
the surface with a surface number density of N 00 (particles/unit area), and that the particles are spaced
sufficiently far apart so that they can be assumed to scatter independently. The absorbed flux of energy by the
surface would be

q00 ¼ I0½ð1� jrj
2Þ cos br þN 00hCabs;Si�, (61)

where hCabs;Si denotes the ensemble-averaged surface absorption cross-section. By defining an efficiency factor
via Cabs;S ¼ pa2

CQabs;S, where pa2
C is the projected area of the particle in the surface-normal direction, and

denoting the particle/surface area fraction as f A ¼ N 00pa2
C, the effective absorptivity of the surface is

aeff ¼
q00

I0 cos br

¼ 1� jrj2 þ
f AhQabs;Si

cos br

. (62)

As mentioned above, the surface-based cross-sections represent the quantities which are accessible by
measurement of the scattered radiation from the cluster/surface system. The cluster-based cross-sections, on
the other hand, can be viewed as the quantities which naturally fall out of the conservation-of-energy
properties of Eq. (39). To demonstrate this, Eq. (39) is multiplied throughout by aj	

m , and the result is summed
over m and j. By making use of the properties of the translation matrices, and by introducing the single-origin
expansion of the scattered field, the following result is obtained:

�
XNS

j¼1

X
m

Re 1þ
1

aj
m

 !
jaj

mj
2 þ

X
m

jamj
2 þRe

XNS

j;i¼1

X
m;n

aj	
m Rj�i

mn ai
n ¼ �Re

X
m

amðpm þ gmÞ
	. (63)

When multiplied throughout by p=k2, the first term on the left-hand side corresponds to the absorption cross-
section Cabs;C of the cluster—which is the sum of the absorption cross-sections of the individual spheres. The
second and the third terms on the left represent the scattering cross-sections based on the direct scattered flux
(Csca;C;d) and the interference between the direct and the reflected scattered fields (Csca;C;r), with the total
scattering cross-section Csca;C being the sum of the two parts. And the two parts of the right-hand side
correspond to extinction cross-sections for the direct (Cext;C;d) and the reflected (Cext;C;r) incident fields.

Of these quantities, the cluster absorption cross-section has the most relevance with respect to the
observable properties of the cluster/surface system, in that the energy absorbed by the cluster would be
I0Cabs;C. Likewise, I0Csca;C is the total energy scattered in all the directions by the cluster, yet only a fraction of
this energy will be directed away from the surface. Accordingly, Csca;SpCsca;C, with the equality holding for a
perfectly reflecting surface.

By using the formulas for the incident field coefficients (Eqs. (4) and (11)) and the amplitude matrix
(Eq. (51)), it turns out that the surface and the cluster extinction cross-sections are related by

Cext;S ¼ jrðcos brÞj
2Cext;C;d þ Cext;C;r (64)

in which r is the Fresnel reflection coefficient evaluated for the particular polarization state (parallel or
perpendicular) of the incident field. This relation has a simple interpretation, in that I0Cext;C;d represents the
energy removed from the direct incident beam due to absorption and scattering by the cluster. A fraction
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jrðcos brÞj
2 of this energy is removed from the reflected beam via surface reflection. In addition, the cluster also

removes, via absorption and scattering, I0Cext;C;r from the reflected beam.

3. Results and discussion

Codes for implementing the formulation were developed in Mathematica and in Fortran-77; the former was
used to test the veracity of the various elements of the solution, whereas the latter was to produce an optimized
computational procedure. The codes were run on a standard, MS-windows desktop PC.

The sphere cluster/surface scattering problem suffers from what may be called a crowded parameter space.
That is, there are a relatively large number of variables which affect the optical properties (sphere size
parameters, refractive indices, positions, surface refractive index, angle of incidence) and an equally large
number of computable quantities to examine (cross-sections based on surface or sphere formulations,
scattering matrix elements as a function of scattering direction). Obviously, a comprehensive investigation of
the effects of the variables on the observables is beyond the scope of this paper. In this respect, the calculation
results that are provided is meant only as a rough sample that is intended to illustrate some of the interesting
features that arise from interactive sphere–surface scattering.

A key item which deserves examination is the accuracy of the NIA, especially when applied to the clusters of
spheres lying on a surface. Some indication of how this approximation fares is given in Figs. 2–4, which show
the surface extinction and the absorption efficiencies vs. the incidence angle br for single, two, and four spheres
that have size parameters of either one or 10. The sphere clusters are straight touching chains, and the axis of
the chain and the incident direction are in the same plane. Values of the optical constants for the spheres and
the surface are the same as those used in Ref. [5], which correspond to polystyrene spheres (mS ¼ 1:59þ 0i)
lying on a silicon surface (mb ¼ 3:88þ 0:02i). Efficiency factors are defined as the cross-section divided by the
projected area NSpa2, and the results are shown for parallel and perpendicular polarization of the incident
field.

Even for the ‘largest’ computational case in this set—that being the four-sphere chain with xS ¼ 10—
calculation of the exact solution does not require a long computer run. For this case the individual sphere
expansions were truncated at NO ¼ 15 orders, and calculation of all the 4� 4 submatrices of the reflection
matrix Ri�j from Eq. (31) required around 20 s on the PC. Solution of the interaction equations, which was
performed iteratively using a biconjugate gradient method, required around 10 s for each incident angle.

Overall, the results indicate that the efficiency factors calculated from the NIA match reasonably the exact
values. The difference between the two formulations is largest for the four-sphere chain, yet is also relatively
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and 10 (right).
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similar for the two size parameters. The effect due to the elongation of the particle is to be expected; forward-
scattered radiation from the spheres nearest to the incident source reflects and interacts with spheres farthest
from the source. The reflection angles that characterize this interaction are relatively large, and accordingly the
Fresnel coefficients that modify the interaction will not be equal to the normal incidence values. Wriedt
and Doicu reached a similar conclusion when examining the surface interactions by elongated ellipsoidal
particles [5].

As would be gathered from Eq. (58), the extinction efficiency curves display behavior that has features of
both the sphere scattering and the surface reflection. The Brewster angle for the nonabsorbing silicon with
mb ¼ 3:88 is 76�, and, as expected, the extinction efficiency for parallel incident polarization becomes small
near this angle. An interesting phenomenon, seen for the xS ¼ 1 results at angles slightly smaller than the
Brewster angle, is the negative value of extinction for parallel polarization. Such a behavior implies that
scattering from the particle has the net effect of adding energy to the reflected plane wave. Unfortunately, this
is not due to some exotic, previously unrecognized mechanism for negative absorption or scattering; rather,
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the effect is simply an outcome of the surface extinction definition used herein, i.e., the interference of the
scattered field with the reflected plane wave. The scattered field arises from the scattering of the incoming
(direct) and the reflected plane wave. For both the incident and the scattering angles near the Brewster angle,
the latter component will be small as will be the amplitude of the reflected plane wave. The former component,
however, will depend almost entirely on the scattering characteristics of the spheres. Depending on these
characteristics, the amplitude and the phase of the scattered field in the direction y ¼ br could constructively
interfere with the reflected plane wave, thus leading to a negative extinction.

The surface absorption plots for the xS ¼ 1 case all show similar trends—which depend strongly on the
polarization state of the incident field—for all three cluster configurations. For parallel polarization the
surface absorption becomes negative for the reflection angles greater than around 45�, whereas the surface
absorption for the perpendicular polarization is positive throughout all the angles. As discussed in the
previous section, the positive and the negative surface absorption implies that the net effect of the sphere(s) is
to decrease and increase, respectively, the reflectivity of the surface. As was the case with negative extinction,
the negative absorptivity occurs in regions near the Brewster angle where the surface reflectivity is low, and
results from the effect of scattering of the direct incident field by the spheres into directions away from the
surface. The net effect of the spheres on the surface would therefore be to reduce the polarizing effects of
surface reflection near the Brewster angles, i.e., for unpolarized incident radiation, the spheres would increase
the effective parallel polarized reflectivity and decrease the perpendicular reflectivity.

At near-normal incidence, a noticeable effect of cluster configuration for the xS ¼ 1 case is the difference
between the parallel and the perpendicular extinction and, to a lesser extent, the absorption efficiencies for the
NS ¼ 2 and 4 chains. For the particular orientation of the sphere chains, parallel incident polarization results
in the incident electric field parallel to the chain axis, and such a state—for spheres with relatively small size
parameters—enhances the field coupling among the spheres. Similar effects are observed for the isolated
clusters of spheres [12].

In contrast, the results for the xS ¼ 10 case show a significant effect of the chain length at relatively large
incident angles. For the single sphere, zero extinction and negative absorption is observed for parallel incident
polarization near the Brewster angle—as is the case with xS ¼ 1—yet the perpendicular extinction shows a
strong peak at near-grazing incidence angles. The perpendicular Fresnel coefficient is near unity at these
angles, and this can result in a strong coupling of the direct and the reflected components of the forward-
scattered field for y slightly less than 90�. Indeed, the peak value of the perpendicular surface extinction for the
single sphere, xS ¼ 10 case, is around twice that of the isolated sphere extinction efficiency of 2.6, which
indicates a direct addition of the direct and the reflected scattered field into the forward direction. A similar
enhancement of the perpendicular extinction is observed for the NS ¼ 2 case, although the peak has become
much more compressed around a smaller range of incident angles. And for NS ¼ 4 the enhancement has been
washed out by the ripple structure.

Attention is now turned to the distribution and polarization characteristics of the scattered radiation from
the clusters. Shown in Figs. 5–7 are the values of S11 and S12=S11 vs. scattering angle y, calculated using the
exact and the NIA models, for the three cluster configurations used in the previous plots (single, double, and
four sphere), and for xS ¼ 10 and normal incidence. Refractive index values are the same as before. The
scattering plane is defined by f ¼ 0, i.e., in the direction of the cluster axis. The S11 element is scaled by NSpa2

so that it integrates over the hemisphere to Qsca;S.
As was the case with the efficiency factors, the NIA becomes less accurate in predicting the distribution of

S11 as the number of spheres in the cluster increases. In general, the approximation represents well the
backscattering peak in intensity for all three sphere cluster configurations, yet deviates appreciably from the
exact results for larger scattering angles. This behavior is even more apparent in the results for the polarization
ratio S21=S11. Again, the behavior near backscattering is well represented by the NIA, yet the predictions
diverge considerably at larger scattering angles.

An indication of the scattering patterns produced by the off-normal incident radiation is given in Figs. 8
and 9. Shown are color contour plots for S11 and S12=S11 for the two cluster configurations of a four-sphere
straight chain and a four-sphere tetrahedral cluster. The chain is aligned along the x-axis, as before, and the
tetrahedron has three of the spheres in contact with the surface and a pair of these three parallel to the x-axis.
Sphere size parameters are xS ¼ 10 for both the sets, and the refractive index values are the same as before.
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Incident radiation is characterized by br ¼ 20� and ar ¼ 45�; these values were chosen explicitly so that the
incident propagation direction was not parallel or perpendicular to an axis or plane of symmetry of the cluster.
The contour plots show a 2-D rectangular projection of the scattering pattern centered about the normal
direction, with the opposite corners of the plots corresponding to f; y ¼ �135�; 45� and f; y ¼ 45�; 45�. Note
that the horizontal and the vertical edges of the plots are parallel to the x and y directions of the target frame.
Results are given for the exact and the NIA.

For both the cluster configurations, the S11 plots show the strong reflection (or forward-scattering) peak at
y ¼ br ¼ 20� and f ¼ ar ¼ 45�, and a smaller backscattering peak at y ¼ br ¼ 20�, f ¼ ar � p ¼ �135�. Aside
from this, the two configurations produce distinctly different patterns. The straight chain produces, via
interference, a ring-like structure (i.e., vertical lines), which is due to the axial symmetry of the cluster. On the
other hand, little organized structure is evident in the tetrahedron S11 distribution, except perhaps the three-
lobed pattern centered about the forward-scattering lobe. Another item to note is that, for the S11 patterns, the
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exact and the NIA methods are very much in line for both the clusters; small differences in magnitude are
discernable yet the overall structure is well mapped by the NIA.

Similar cluster-dependent structure—or lack thereof—is observed in the polarization ratio. Both types of
clusters show a region of zero polarization ratio about the forward-scattering direction, and the line patterns
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due to the chain symmetry are again visible. As was the case with Figs. 5–7, differences between the exact and
the NIA methods are much more evident in the depolarization ratio results.

4. Conclusions

The intention of this work has not been to comprehensively examine the scattering and absorption features
of sphere clusters on surfaces. Rather, the objective has been to develop a formulation and a code which
will make tractable the exact calculation of such features. Even though the NIA works reasonably
well in many conditions for many properties, it has been shown that parameter space exists in which the
discrepancies between the NIA and the exact formulations are considerable. Except in conditions where
the NIA formulation is known to hold in a limiting sense, such as a perfectly reflecting surface or clusters
that are relatively far removed from the surface, it is difficult to predict a priori the accuracy of the
approximation.

In some respects and for some conditions, the NIA can offer a significant computational advantage. The
translation matrix in Eq. (34) can be factored into rotational and axial translation parts, and by doing so the
matrix–vector multiplication process can be made faster and the memory requirements lower [11]. The exact
reflection matrix, on the other hand, does not appear to offer this factorization potential. In addition, the NIA
can be used to generate an outgoing VWH expansion for the scattered and reflected field that is convergent at
all the points above the surface. In contrast, the exact, regular VWH expansion of the field has a limited radius
of convergence; this does not pose a problem as far as the solution of the interaction equations is concerned,
yet it could be problematic in terms of calculating the exterior field in the near-field neighborhood of the
spheres and the surface.
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The above points aside, a reason for using the NIA should not be the computational complexity of the exact
method. Indeed, the exact computation of the surface reflection matrix poses little extra computational burden
on the overall calculation procedure, a procedure in which, it should be emphasized, the dominant
computational effort typically involves the numerical solution of the interaction equations.
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Appendix A

A.1. Vector spherical harmonics

The VSH functions used in this work are defined by

N
ðnÞ
mn2ðrÞ ¼

2nþ 1

4nðnþ 1Þ

� �1=2

r� rcðnÞmnðrÞ
� �

, ð65Þ

N
ðnÞ
mn1ðrÞ ¼

1

k
r �N

ðnÞ
mn2ðrÞ, ð66Þ

where

cðnÞmnðrÞ ¼

ðn�mÞ!

ðnþmÞ!

� �1=2

jnðkrÞPm
n ðcos yÞe

imf n ¼ 1;

ðn�mÞ!

ðnþmÞ!

� �1=2

hnðkrÞPm
n ðcos yÞe

imf n ¼ 3:

8>>>><
>>>>:

(67)

A.2. Generalized spherical functions

The spherical functions D
ðnÞ
kmðcos yÞ, which appear in Eq. (30), are given by

D
ðnÞ
kmðcos yÞ ¼ ð�1Þ

mþk ðnþmÞ!ðn�mÞ!

ðnþ kÞ!ðn� kÞ!

� �1=2
1þ cos y

2

� �ðmþkÞ=2
1� cos y

2

� �ðm�kÞ=2

Pðm�k;mþkÞ
n�m ðcos yÞ (68)

with Pðm�k;mþkÞ
n�m ðcos yÞ representing the Jacobi Polynomial. Special cases are

D
ðnÞ
kmðxÞ ¼ D

ðnÞ
�m�kðxÞ ¼ ð�1Þ

mþkD
ðnÞ
�k�mðxÞ, ð69Þ

D
ðnÞ
0mðxÞ ¼

ðn�mÞ!

ðnþmÞ!

� �1=2

Pm
n ðxÞ. ð70Þ

A.3. Translation matrix

Elements for the translation matrix J
j�i
mnp klq are given by

J
i�j
mnp klq ¼ �ð�1Þ

m
ð2nþ 1Þð2l þ 1Þ½ �

1=2in�l
X

w

iwCw
�mn;klC

w
�1n;1lc

ð1Þ
k�mwðri�jÞ (71)

in which ri�j is the position vector of origin i relative to origin j. The order w in the sum takes on the values of
w ¼ jn� lj; jn� lj þ 2; . . . nþ l when p ¼ q, and w ¼ jnþ lj þ 1; jn� lj þ 3; . . . nþ l � 1 when paq. The
formula for Hi�j is the same, with cð1Þ replaced by cð3Þ.
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