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The generalized multiparticle Mie-solution (GMM) is an extension of the well-knownMie-theory for single homo-
geneous spheres to the general case of an arbitrary ensemble of variously sized and shaped particles. The present
work explores its specific application to periodic structures, starting from one- and two-dimensional regular arrays
of identical particles. Emphasis is placed on particle arrays with a truncated periodic structure, i.e., periodic arrays
(PAs) with finite overall dimensions. To predict radiative scattering characteristics of a PA with a large number of
identical particles within the framework of the GMM, it is sufficient to solve interactive scattering for only one
single component particle, unlike the general case where partial scattered fields must be solved for every indi-
vidual constituent. The total scattering from an array as a whole is simply the convolution of the scattering from a
single representative scattering center with the periodic spatial distribution of all replica constituent units, in the
terminology of Fourier analysis. Implemented in practical calculations, both computing time and computer
memory required by the special version of GMM formulation applicable to PAs are trivial for ordinary desktops
and laptops. For illustration, the radiative scattering properties of several regular arrays of identical particles at a
fixed spatial orientation are computed and analyzed. Numerical results obtained from the newly developed ap-
proach for PAs are compared with those calculated from the general GMM computer codes (that have been avail-
able online for about a decade). The two sets of numerical outputs show no significant relative deviations.
However, the CPU time required by the specific approach for PAs could drop more than 10,000 times, in
comparison with the general approach. In addition, an example PA is also presented, which consists of as large
as 108 particles and the general solution process is unable to handle.

OCIS codes: (290.4210) Multiple scattering; (290.5825) Scattering theory; (260.1960) Diffraction theory;
(050.1755) Computational electromagnetic methods; (050.1940) Diffraction.
http://dx.doi.org/10.1364/JOSAA.30.001053

1. INTRODUCTION
The scattering and absorption of light and other electromag-
netic radiation by periodic structures has important applica-
tions in a great variety of scientific and technical fields.
Authors from diverse research areas have contributed to the
theoretical interpretation and analytical representations of the
radiative scattering by periodic structures in general or only
certain aspects using various theoretical approaches. A sub-
stantial portion of recent research is devoted to nanoparticle
arrays. It is difficult to exhaust the huge amount of literature
on this subject and to digest fully the pith and marrow of
every contribution. As a few examples, contributors include
Waterman and Pedersen [1]; Psarobas and Stefanov [2];
Yaghjian [3]; Genov et al. [4]; Draine and Flatau [5]; and García
de Abajo [6]. The work described in Waterman and Pedersen
[1] is based on the widely used T -matrix approach that he ini-
tiated. The recent work by Draine and Flatau [5] extends the
method of discrete-dipole approximation (DDA) to periodic
structures. Well known for its superior flexibility, DDA is
capable of predicting the scattering properties of a complex
and irregular shape [7–9]. A long list of relevant publications
can be found in the colloquium by García de Abajo [6].

Multiparticle scattering became rigorously and precisely
solvable after the development of the addition theorems for
scalar [10] and vector spherical wave functions (VSWFs)
[11,12], which provide indispensable mathematical tools to

transform wave expansions about a reference center to an-
other one. Following the pioneer work on bisphere scattering
by Liang and Lo [13] and Bruning and Lo [14], numerous re-
searchers studied ensemble scattering and made valuable
contributions to the development and verification of analyti-
cal multiparticle scattering solutions, as well as numerical
techniques necessary for practical implementation. For an ar-
bitrary multiparticle configuration illuminated by amonochro-
matic plane wave with an arbitrary polarization state, a
well-established, complete scattering formulation is the gen-
eralized multiparticle Mie-solution (GMM) [15–25 and the
references therein] with experimental validation [17,20,24].
It is based on the Lorenz–Mie-type multipole superposition
method. The solution for the scattering of a monochromatic
plane wave is a building block for treating complex beam
shapes. The GMM and a set of its public-domain FORTRAN
computer codes were developed more than a decade ago
and have not been revisited by this author until recently.

Provided all individual proper T -matrices of a number
of arbitrarily sized and shaped scattering bodies (i.e., the
T -matrices of each of the individual objects when they are
isolated and in independent scattering) are known or can
be calculated accurately, GMM is capable of predicting reli-
ably the radiative scattering characteristics of an arbitrary ex-
ternal aggregate of these bodies. An arbitrary polarization
state of a plane wave can be described in terms of a pair
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of orthogonal linear polarization states. All GMM scattering
formulations are thus derived from the complete analytical
solution to an arbitrary incident linear polarization state. A
number of FORTRAN source codes of GMM have been re-
leased to the public since 2001 [26]. The public-domain
GMM codes solve the individual (or partial) scattered fields
for every component particle in respective particle-centered
reference systems and place no restriction on either the con-
figuration of an aggregate or the physical and geometrical
properties of individual constituent units. However, computer
memory and computing time requirements escalate rapidly,
and accumulated numerical errors worsen, when the total
number and physical sizes of component particles increase.
Consequently, the possible maximum number of component
particles allowed in an ensemble is limited in practical calcu-
lations, which depends on the capacity of available computer
power resources and the physical and geometrical properties
of individual constituent particles.

To initiate the application of GMM to periodic arrays (PAs),
this paper presents an effective and efficient approach to the
solution of scattering by one- and two-dimensional regular ar-
rays consisting of a large number of identical particles. Taking
advantage of spatial periodicity, the general scattered-field
solution process of GMM is drastically simplified. It requires
the solution of the partial scattered field for only one single
component particle rather than for every constituent unit.
Although the simplified solution process is, strictly speaking,
derived from the special case of infinite PAs, it opens a useful
way to study scattering characteristics of PAs with finite
lengths. When the specific solution for PAs is implemented
in running computer codes, both computing time and com-
puter memory requirements are always low, insensitive to
the total number of particles in a finite PA. For arrays having
∼106 wavelength-sized particles, required CPU time is at the
level of minutes. Except for the simplification in the scattered-
field solution process, all other scattering calculations, such
as the amplitude scattering matrix, Mueller matrix, differential
and total cross sections of extinction, scattering, absorption,
back-scattering and radiation-pressure, as well as electromag-
netic fields internal to the individual scattering bodies, remain
intact either in formulation or in calculation procedure.

As the basis of the special scattering-field solution process
for periodic structures, Section 2 first revisits the most closely
related part in the GMM framework, as well as the amplitude
scattering matrix, the pivotal quantity in far-field scattering.
This brief review attempts to provide a sufficiently clear, con-
ceptual description of the foundation that the present work is
based on. For more detailed discussions, readers are referred
to relevant GMM publications [15–25]. In preparation for test-
ing the proposed new approach for PAs, numerical results are
provided for a few regular particle arrays of finite lengths at a
fixed orientation, calculated from the general GMM computer
codes that have already been available online for many years.
Then, Section 3 presents the specific GMM formulation for
PAs, showing how a spatial periodic structure helps to dra-
matically improve the efficiency of the scattered-field solution
process. The specific formulation has been implemented in
new FORTRAN codes of GMM, the “PA” series. Numerical
results obtained from the PA-type of computer codes are
compared favorably with those prepared in Section 2, while
the required CPU time shows an incredible reduction. Finally,

Section 4 includes conclusions and some discussion on poten-
tial future work.

2. REVIEW OF THE SCATTERED-FIELD
SOLUTION PROCESS IN GMM
Consider an ensemble of L particles, of finite overall dimen-
sions and illuminated by a linearly polarized monochromatic
plane wave of wavelength λ,

Einc � E0 exp�ik̂ · r − iωt�; (1)

where i �
������
−1

p
, ω is the circular frequency of the incident

plane wave, r is the position vector, and k̂ is the unit incident
vector. The harmonic time dependence exp�−iωt� will be sup-
pressed hereafter. Note the negative sign in the harmonic time
term. To be consistent, the first and third types of spherical
Bessel functions are used in wave expansions in GMM and
the positive sign is used for the imaginary part of the refractive
index. Throughout this paper, a boldface indicates the quan-
tity is either a vector or a matrix and ^ designates a unit vec-
tor. Also, linear dimensions are always normalized (i.e.,
multiplied) by the wave number k � 2π∕λ. The size, shape,
and material compositions of the L individual component par-
ticles can all be different. In principle, each of the component
particles can be of an arbitrary complex structure itself. In an
arbitrarily chosen, primary reference system (PRS), the posi-
tion vector of every component particle center l�l � 1; 2;…; L�
is given by

dl � êxXl � êyY l � êzZl: (2)

A lowercase italic superscript denotes the particle identifica-
tion number. Equivalently, the polar coordinates of particle
center l are �dl; ϑl;φl�, where dl � jdlj. In PRS, the incident
plane wave propagates in the direction specified by the spheri-
cal coordinates �ϑinc;φinc� and the unit incident vector k̂ in
Eq. (1) can be written as

k̂ � êx sin ϑinc cos φinc � êy sin ϑinc sin φinc � êz cos ϑinc:

(3)

When ϑinc � 0, k̂ � êz, the incident wave vector points to the
positive z direction, which will be referred to as the incident
reference system (IRS).

When all T̄l, the proper T -matrix of every component par-
ticle l (i.e., the T -matrix of particle l in single-body scattering
when it is isolated), is known or computed with sufficient pre-
cision, the radiative scattering characteristics of an ensemble
of the particles can be precisely predicted. A key step in solv-
ing the multiparticle scattering is to solve scattered and inter-
nal fields for all the component particles. This section
provides a skeleton review of the general scattered-field sol-
ution process in GMM without details. A scattered field varies
with the polarization state of the incident plane wave. Since a
complex incident polarization state can be described in terms
of two orthogonal linear polarizations, to find answers to the
scattering of a plane wave with an arbitrary polarization state,
it is necessary and sufficient to solve multiparticle scattering
for two preferred orthogonal incident linear polarization
states. In all GMM computer codes, the two cases of βp �
0° and 90° are solved separately, where βp denotes the linear
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polarization angle of the incident plane wave. In IRS,
ϑinc � 0°, the incident plane wave is x polarized when βp �
0° and y polarized when βp � 90°. When ϑinc ≠ 0°, βp is de-
fined as the angle between incident electric vector and êθ,
an orthogonal basis unit vector in the polar coordinate system;
it is measured in a plane perpendicular to k̂. When the scatter-
ing of a plane wave is solved for the two orthogonal linear
polarization states, no additional scattered-field calculation
is required to treat an elliptical or other complex incident
polarization state.

A. Expansion of the Incident Plane Wave
Based on a multipole superposition method of the Lorenz–Mie
type, the incident electric field is expanded in terms of
VSWFs. In PRS, the expansion of the incident plane wave
is expressed as

Einc � −i
XNmax

n�1

Xn
m�−n

X2
p�1

EmnpmnpN
�1�
mnp�r; θ;ϕ�; (4)

where �r; θ;ϕ� are spherical coordinates in the PRS, the lower-
case italic subscripts m and n specify degree and order of
spherical harmonics, the additional lowercase subscript index
p denotes transverse magnetic or electric (TM or TE) modes,
and Nmax is the highest scattering order required to ensure a
satisfactory numerical accuracy for the field expansion. Also,
the normalization factor used on the right-hand side of Eq. (4)
is Emn � E0inCmn with E0 � jE0j and

Cmn �
� �2n� 1��n −m�!
n�n� 1��n�m�!

�
1∕2

: (5)

The VSWFs for incoming waves, N�1�
mnp in Eq. (4), are of

the form

N�1�
mn1 �

�
êrn�n� 1�Pm

n �cos θ� jn�r�
r

� �êθτmn1�θ� � êϕiτmn2�θ��
ψ 0
n�r�
r

�
exp�imϕ�;

N�1�
mn2 � �êθiτmn2�θ� − êϕτmn1�θ��jn�r� exp�imϕ�; (6)

where jn�r� is the spherical Bessel function of the first kind,
ψn�r� � rjn�r� is a Riccati–Bessel function, a prime indicates
the derivative of a function with respect to its argument,
Pm
n �cos θ� is the associated Legendre function of the first kind,

and the angle-dependent functions, τmnp, are defined by

τmn1�θ� �
d
dθ

Pm
n �cos θ�;

τmn2�θ� �
m

sin θ
Pm
n �cos θ�: (7)

The incident field coefficients appearing in Eq. (4) are found
through the relation

pmnp � i
R
2π
0

R
π
0 exp�ik̂ · r�E0 · N

�1��
mnp sin θdθdϕ

Emn

R
2π
0

R
π
0 jN�1�

mnpj2 sin θdθdϕ
: (8)

A superscript asterisk stands for complex conjugate. From
Eq. (8) follows the explicit expression for incident plane wave
with a linear polarization angle βp,

pmnp � �−1�m�1�~τmnp�ϑinc� cos�φinc − βp�
� i~τmn3−p�ϑinc� sin�φinc − βp��; (9)

where ~τmn1 and ~τmn2 are the angular functions τmnp modified
by Cmn, i.e.,

~τmnp � Cmnτmnp: (10)

In IRS, ϑinc � 0°, Eq. (9) reduces to

pmnp � 0 �jmj ≠ 1�;

p1np �
���������������
2n� 1

p

2
exp�−iβp�;

p−1np � �−1�pp�1np: (11)

The scattered field of each of the constituent particles in an
ensemble is solved in respective particle-centered reference
systems, which demand the expansion of the incident plane
wave with respect to every particle center. In a translated
particle-centered coordinate system, the multipole expansion
of the incident plane wave is expressed as

Einc;l � −i exp�ik̂ · dl�
XNl
max

n�1

Xn
m�−n

X2
p�1

EmnpmnpN
�1�
mnp�rl; θl;ϕl�;

(12)

where �rl; θl;ϕl� are spherical coordinates in the translated
coordinate system centered on particle l. It is worthwhile
to emphasize that, with the introduction of the simple incident
phase term exp�ik̂ · dl� in Eq. (12), the incident expansion
coefficients pmnp in both Eqs. (4) and (12) are identical, inde-
pendent of the location of particle center.

B. Partial Scattered Fields and their Solution in
Fixed-Orientation Scattering
Total scattered field Esca from an ensemble of particles is
the superposition of the partial scattered fields Esca;l from
all component particles,

Esca �
XL
l�1

Esca;l: (13)

In PRS, the expansion of the total scattered field Esca in terms
of VSWFs takes the form

Esca � i
XNmax

n�1

Xn
m�−n

X2
p�1

EmnamnpN
�3�
mnp�r; θ;ϕ�: (14)

N�3�
mnp is VSWF for outgoing waves, having the same expres-

sions as Eq. (6) except for the type of the involved spherical
Bessel functions,

N�3�
mn1 �

�
êrn�n� 1�Pm

n �cos θ� h
�1�
n �r�
r

� �êθτmn1�θ� � êϕiτmn2�θ��
ξ0n�r�
r

�
exp�imϕ�;

N�3�
mn2 � �êθiτmn2�θ� − êϕτmn1�θ��h�1�n �r� exp�imϕ�; (15)
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where h�1�n �r� represents the spherical Hankel functions of the
first kind (also called the spherical Bessel function of the third
kind), and ξn�r� � rh�1�n �r� is also a Riccati–Bessel function.
Partial scattered fields of every component particle l are ex-
panded in respective particle-centered reference systems,

Esca;l � i exp�ik̂ · dl�
XNl
max

n�1

Xn
m�−n

X2
p�1

EmnalmnpN
�3�
mnp�rl; θl;ϕl�:

(16)

Exactly the same phase term used in Eq. (12) appears on the
right-hand side of the Eq. (16) above. A key step in solving
multiparticle scattering is to solve partial interactive scatter-
ing coefficients almnp for every component particle by impos-
ing standard boundary conditions at surfaces of the particles
[15], given the incident coefficients pmnp. All partial interac-
tive scattering coefficients, almnp, consist of two parts,

almnp � ālmnp � a⃗lmnp: (17)

The first part ālmnp is the proper scattering coefficients of par-
ticle l, which are connected with incident coefficients through
the proper T -matrix T̄l,

ālmnp �
XNl
max

ν�1

Xν
μ�−ν

X2
q�1

T̄ l
mnpμνqpμνq: (18)

The second part on the right-hand side of Eq. (17), a⃗lmnp, arises
from multiple scattering, i.e., the interaction of particle l with
scattered waves from other component particles,

a⃗lmnp �
XNl
max

ν�1

Xν
μ�−ν

X2
q�1

T̄ l
mnpμνqp⃗lμνq;

p⃗lμνq � −
XL
l0�1

XNl0
max

n0�1

Xn0

m0�−n0

X2
p0�1

�1 − δll0 �

× exp�ik̂ · dll
0 �All0

μνqm0n0p0a
l0
m0n0p0 : (19)

In the above Eq. (19), δll0 is the Kronecker delta symbol, dll
0 �

dl
0
− dl is the relative position vector extended from particle

center l to particle center l0, and All0
μνqm0n0p0 are vector transla-

tion coefficients [11,12] characterizing the transformation of
the scattered waves from particle l0 into incident waves for
particle l. Note the notations used in this work for T -matrix
elements and vector translation coefficients, such as in
Eqs. (18) and (19), are slightly different from those used in
earlier publications by this author: T̄ l

mnpμνq and All0
μνqm0n0p0

replace T̄ lpq
mnμν and Al0 lqp0

μνm0n0 .
Addition theorems play a key role in formulating and cal-

culating multiparticle scattering. Explicit expressions and re-
currence formulae used in GMM for vector translation
coefficients can be found elsewhere [24,27–31], which are
based mainly on the work of Cruzan [12]. Cruzan’s formulas
use Gaunt coefficients [32] and Wigner 3jm symbols [33]. The
analytical expressions for the vector addition coefficients
derived by Cruzan were not considered flawless by several
researchers, including this author [28,29]. But after comparing
with those derived in alternative ways [18,24,31], clearly,
Cruzan’s derivation and formulae are correct.

The linear system represented by Eqs. (17)–(19) can be
alternatively written as

almnp �
XL
l0�1

XNl0
max

n0�1

Xn0

m0�−n0

X2
p0�1

XNl
max

ν�1

Xν
μ�−ν

X2
q�1

�1 − δll0 �

× exp�ik̂ · dll
0 �T̄ l

mnpμνqAll0
μνqm0n0p0a

l0
m0n0p0 � ālmnp: (20)

When an individual component particle l is a homogeneous
sphere, its proper T -matrix elements T̄ l

mnpμνq are simply the
Mie scattering coefficients ālnp,

T̄ l
mnpμνq � ālnpδmμδnνδpq; (21)

and for sphere l, Eq. (20) reduces to

almnp � ālnp
XL
l0�1

XNl0
max

n0�1

Xn0

m0�−n0

X2
p0�1

�1 − δll0 �

× exp�ik̂ · dll
0 �All0

mnpm0n0p0a
l0
m0n0p0 � ālnppmnp: (22)

To solve the linear system for the desired partial interactive
scattering coefficients almnp of the L component particles, all
GMM public-domain computer codes use BICGSTAB, the
bi-conjugate gradient method [34,35].

GMM has another form of linear system for solving the
partial interactive scattering coefficients that is based on
the T -matrix Tlj ,

almnp �
XL
j�1

XNj
max

ν�1

Xν
μ�−ν

X2
q�1

exp�ik̂ · dlj�Tlj
mnpμνqpμνq; (23)

where

Tlj
mnpμνq � j0�djl�T̄ l

mnpμνq �
XL
j0�1

j0�djj0 �
�
�δjj0 − 1�Tlj0

mnpμνq

�
XNl
max

ν0�1

Xν0
μ0�−ν0

X2
q0�1

XL
l0�1

XNl0
max

n0�1

Xn0

m0�−n0

X2
p0�1

�δll0 − 1�

× T̄ l
mnpμ0ν0q0A

ll0
μ0ν0q0m0n0p0T

l0j0
m0n0p0μνq

�
; (24)

with j0 being the zero-order spherical Bessel function of the
first kind. When particle l is a homogeneous sphere, Eq. (24)
becomes

Tlj
mnpμνq � j0�dlj�ālnpδmμδnνδpq �

XL
j0�1

j0�djj0 �

×
�
�δjj 0 − 1�Tlj0

mnpμνq �
XL
l0�1

XNl0
max

n0�1

Xn0

m0�−n0

X2
p0�1

�δll0 − 1�

× ālnpAll0
μ0ν0q0m0n0p0T

l0j0
m0n0p0μνq

�
: (25)

The two linear systems represented by Eqs. (17)–(19) and
Eqs. (23) with (24) are equivalent, as regards the solution
of the partial scattered fields.
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C. Scattered Far-Field and the Amplitude Scattering
Matrix
The amplitude scattering matrix that relates scattered ampli-
tudes with those of incident radiation is of pivotal importance,
both to the description of far-field scattering and to treat the
scattering of a plane wave with a general incident polarization
state. The scattering Mueller matrix, which relates scattered
and incident Stokes vectors, can be directly calculated from
the amplitude scattering matrix [36,37]. What follows is a brief
review of the solution and formulation of the 2 × 2 amplitude
scattering matrix in GMM, with emphasis on some subtle
points concerning its definition. The derivation of the ampli-
tude matrix in GMM follows the way provided in van der Hulst
[36] and Bohren and Huffman [37]. However, it is important to
recall that the definition of the amplitude matrix, finally used
in the GMM and all its computer codes, is slightly different
from the one defined by van der Hulst and Bohren and
Huffman, although there is no essential difference in principle.
For the matrix adopted in GMM, the concept of “scattering
plane” is no longer used, i.e., there is no need to consider in-
cident amplitude components with respect to a “scattering
plane.”

In far field �r → ∞�, the radial component in Eq. (15)
vanishes,

ξn�r� → �−i�n�1 exp�ir�; ξ0n�r� → �−i�n exp�ir�; (26)

and Eq. (15) becomes asymptotically

N�3�
mn1 � �−i�n exp�ir�

r
�êθτmn1�θ� � êϕiτmn2�θ�� exp�imϕ�;

N�3�
mn2 � �−i�n exp�ir�

r
�êθτmn2�θ� � êϕiτmn1�θ�� exp�imϕ�:

(27)

Thus, the two scattered far-field transverse components are

Esca
θ �θ;ϕ�� iE0

exp�ir�
r

XNmax

n�1

Xn
m�−n

X2
p�1

amnp ~τmnp�θ�exp�imϕ�;

Esca
ϕ �θ;ϕ��−E0

exp�ir�
r

XNmax

n�1

Xn
m�−n

X2
p�1

amnp ~τmn3−p�θ�exp�imϕ�:

(28)

In GMM, the amplitude scattering matrix for either an individ-
ual component particle or an entire ensemble is first solved
analytically for an arbitrary linear polarization state of an
incident plane wave, which is applicable to either one of a pre-
ferred pair of orthogonal linear incident polarization states.
Following the convention used by van der Hulst [36] and
Bohren and Haffman [37], the derivation is based on the con-
cept of “scattering plane,” defined by scattering and incident
directions in IRS, in which the incident vector points to the
positive z direction. Accordingly, the basic equation used
in the derivation of the 2 × 2 amplitude matrix in GMM is
[15–25]

�
Esca
∥

Esca
⊥

�
�

�
Esca
θ

−Esca
ϕ

�
� exp�ir�

−ir
~S
�
Einc
∥

Einc
⊥

�

� exp�ir�
−ir

~S
�
cos ϕ − sin ϕ
sin ϕ cos ϕ

��
E0 cos βp
−E0 sin βp

�

� exp�ir�
−ir

�
~S2

~S3
~S4

~S1

��
E0 cos�ϕ − βp�
E0 sin�ϕ − βp�

�
: (29)

The four elements of ~S, which relate scattered and incident
amplitudes when the incident plane wave is linearly polarized
with an arbitrary linear polarization angle βp, are obtained for
particle l as [15]

~Sl
2�θl;ϕl� �

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp exp�iϕm�

− �−1�m�pal−mnp exp�−iϕm��~τmnp�θl�;

~Sl
3�θl;ϕl� � i

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp exp�iϕm�

� �−1�m�pal−mnp exp�−iϕm��~τmnp�θl�;

~Sl
4�θl;ϕl� � −i

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp exp�iϕm�

− �−1�m�pal−mnp exp�−iϕm��~τmn3−p�θl�;

~Sl
1�θl;ϕl� �

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp exp�iϕm�

� �−1�m�pal−mnp exp�−iϕm��~τmn3−p�θl�; (30)

where

ϕm � �m − 1�ϕl � βp; f m � �1� δ0m�−1: (31)

The analytical expressions in Eq. (30) are derived in terms of
two incident-amplitude components, which are parallel and
perpendicular to the scattering plane and vary with azimuth
angle ϕ [15]. The 2 × 2 ϕ-dependent matrix appearing on
the right-hand side of Eq. (29), which governs the variation
of the two parallel and perpendicular components of the in-
cident amplitude in different scattering planes, is not included
in the matrix ~S. What is actually used in GMM is slightly differ-
ent from ~S, as defined in the following relation [15–25],

�
Esca
θ

−Esca
ϕ

�
� exp�ir�

−ir
S
�

E0 cos βp
−E0 sin βp

�
: (32)

The equation above is the same as Eq. (29), except for the
absorption of the four-element ϕ-dependent matrix into the
amplitude matrix,

S � ~S
�
cos ϕ − sin ϕ
sin ϕ cos ϕ

�
: (33)

With the use of S instead of ~S, one does not need to refer to
“scattering plane” any more. From Eqs. (30) with (31) and
(33), it readily follows that
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Sl
2 �

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp ~τmnp exp�imϕl� exp�iβp�

� al−mnp ~τ−mnp exp�−imϕl� exp�−iβp��;

Sl
3 � i

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp ~τmnp exp�imϕl� exp�iβp�

− al−mnp ~τ−mnp exp�−imϕl� exp�−iβp��;

Sl
4 � −i

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp ~τmn3−p exp�imϕl� exp�iβp�

� al−mnp ~τ−mn3−p exp�−imϕl� exp�−iβp��;

Sl
1 �

XNl
max

n�1

Xn
m�0

X2
p�1

f m�almnp ~τmn3−p exp�imϕl� exp�iβp�

− al−mnp ~τ−mn3−p exp�−imϕl� exp�−iβp��: (34)

It is apparent that only the two elements S2 and S4 of the am-
plitude matrix are obtained when βp � 0° and, similarly, only
S3 and S1 are evaluated when βp � 90°. Written explicitly in
terms of the two orthogonal linear incident polarizations of
βp � 0° and 90° that are normally used in scattering calcula-
tions, Eq. (34) becomes [21–25]

Sl
2 �

XNl
max

n�1

Xn
m�−n

X2
p�1

al�0°�mnp ~τmnp�θl� exp�imϕl�;

Sl
3 � −

XNl
max

n�1

Xn
m�−n

X2
p�1

al�90°�mnp ~τmnp�θl� exp�imϕl�;

Sl
4 � −i

XNl
max

n�1

Xn
m�−n

X2
p�1

al�0°�mnp ~τmn3−p�θl� exp�imϕl�;

Sl
1 � i

XNl
max

n�1

Xn
m�−n

X2
p�1

al�90°�mnp ~τmn3−p�θl� exp�imϕl�: (35)

The superscripts (0°) and (90°) of the scattering coefficients
indicate the associated linear incident polarization angle. Note
that Eqs. (34) and (35) are general, applicable to a general in-
cident direction. The total scattering far-field coefficients in
Eq. (14), amnp, and the total amplitude scattering matrix of
an ensemble of particles are, respectively,

amnp �
XL
l�1

exp�idl · �k̂ − r̂��almnp;

S �
XL
l�1

exp�idl · �k̂ − r̂��Sl: (36)

Expressed in terms of the total scattering coefficients, amnp,
the four elements of the total amplitude matrix are of the same
form as Eq. (35) but with all superscript l removed.

D. Numerical Examples: One- and Two-Dimensional
Regular Particle Arrays
Table 1 lists five examples for regular arrays of identical par-
ticles. These five finite PAs include two linear chains and three
square arrays, in which all component particles have the same
refractive index of (1.6, 0.1). IRS is used in all the scattering
calculations. Labeled with the ID of “L1,” the first example is a
linear chain of 3001 identical prolate spheroids, illuminated by
a monochromatic plane wave of wavelength 31.416 mm. An
individual spheroid is of aspect ratio 0.5 (i.e., the minor-to-
major axis ratio). A sphere of diameter 1 mm has an equivalent
volume. The orientation of the spheroids is such that their ma-
jor (rotational) axes are parallel to the z axis, i.e., aligned
along the incident direction. All particle centers fall on the
x axis, spaced at equal 1 mm intervals. The second example
of “L2” is a linear chain of identical homogeneous spheres of
1 mm diameter. The wavelength of the incident plane wave is
3.1416 mm and each individual sphere has a size parameter of
1.0. All sphere centers are on the x axis, spaced equally 1 mm
apart, i.e., neighboring spheres are in contact. The third exam-
ple of “S1” is a 101 × 101 square array of identical prolate sphe-
roids with rows parallel to the x axis and columns parallel to
the y axis. An individual spheroid has exactly the same geo-
metrical and physical parameter and spatial orientation as the
first example of the linear array L1. The wavelength of the in-
cident plane wave is 31.416 mm. All spheroid centers are in
the x–y plane, spaced equally 1 mm apart in each row or col-
umn. The fourth and fifth examples of “S2” and “S3” are sim-
ilar 101 × 101 and 201 × 201 square arrays. For both S2 and S3,
each individual component particle is a sphere of 1 mm diam-
eter and the incident wavelength is 3.1416 mm.

Numerical solutions shown are for a single fixed orienta-
tion, obtained from the GMM computer codes currently avail-
able online. Table 2 shows the computer memory and CPU
time required for the calculations using an 8-Core 2.4GHz
DELL PRECISION T7500 desktop computer. Calculations
for the two arrays of L1 and S1 use the public-domain
GMM code “gmm03s.f” and L2, S2, and S3 use “gmm01s.f”.
Table 3 presents numerical results of total cross sections
for extinction, absorption, scattering, back-scattering, and
radiation pressure, which are the average over the two
orthogonal linear polarization states of the incident plane
wave. This means the total cross sections shown in Table 3
are for an unpolarized incident plane wave.

Outputs of the scattering calculations include the amplitude
scattering matrix and thus, the Mueller matrix. Results of 4 out
of the 16 Mueller matrix elements are presented in Figs. 1–4

Table 1. Five Examples for Regular Arrays of Identical Particles

Individual-Particle Parameter

Array ID Array Type No. of Particles Shape Size Parameter Referactive Index

L1 Linear 3001 Prolate spheroid (1∶2) 0.1 (volume equiv.) 1.6� i0.1
L2 Linear 3001 Sphere 1.0 1.6� i0.1
S1 Square 101 × 101 Prolate spheroid (1∶2) 0.1 (volume equiv.) 1.6� i0.1
S2 Square 101 × 101 Sphere 1.0 1.6� i0.1
S3 Square 201 × 201 Sphere 1.0 1.6� i0.1
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for the linear array L1, showing, respectively, the variation of
S11, S22∕S11, S33∕S11, and S44∕S11, with scattering angle θ and
azimuth angle ϕ. Each of the figures have four panels. The left
two panels are for the forward hemisphere of 0° ≤ θ ≤ 90°
(with θ � 0° for the exact forward scattering direction) and
the right two panels are for the backward hemisphere of

90° ≤ θ ≤ 180°, with θ � 180° being the exact backward scat-
tering direction. The lower two panels present the same data
shown in the upper two panels in an alternative way. Because
of limited space, the other 12 Mueller matrix elements of L1
and the Mueller matrices of other arrays are not shown.

E. Scattering Characteristics of an Individual
Component Particle and the Edge Effect
The total scattering from an array of particles includes contri-
butions from every individual constituent particle. Shown in
Fig. 5 are the individual extinction and absorption cross sec-
tions of the 3001 spheroids in the linear array of L1. The par-
ticle identification numbers shown in Fig. 5 reflect the
locations of the component spheroids in the linear array from
end-to-end.

We see from Fig. 5 that the individual extinction and ab-
sorption cross sections are the same for the majority of the
3001 particles, with the exception of several particles near
both ends. A multiparticle scattering formulation must take
into account the interaction effect, i.e., the response of an indi-
vidual component particle to the scattered radiation from
other component particles. For the PAs of identical particles
under consideration, the proper scattering is identical for all
component particles. The interactive scattering of an individ-
ual component particle depends on its location in an array. As
Eq. (19) indicates, given the physical and geometrical proper-
ties of an individual particle, its interactive scattering is deter-
mined by the local spatial distribution of other component
particles around the particle with respect to its center. The
change in scattering behavior of the particles near edges, in
comparison with inner ones, is caused by a change in the

Table 2. Computer Memory and CPU Time

Required in the Scattering Calculations on an 8-Core

2.4 GHz DELL PRECISION T7500 Desktop Computer

for the Regular Arrays of Identical Particles Listed in

Table 1 (When Using the General GMM Computer

Codes that are Currently Available Online)

Array-ID L1 L2 S1 S2 S3

CPU (min) 38.2 101.8 450.9 3088.3 52135.3
Memory (Gb) 1.3 0.22 3.7 0.57 2.1

Table 3. Total Cross Sections for Extinction,

Absorption, Scattering, Backscattering, and

Radiation Pressure (mm2) Calculated from the

General GMM Computer Codes “gmm01s.f” or

“gmm03s.f” for the Regular Arrays of Identical

Particles Listed in Table 1

Array-ID Cext Cabs Csca Cbak Cpr

L1 44.966 43.544 1.4222 329.98 44.957
L2 1711.8 586.55 1125.3 1.3734e6 1369.9
S1 239.82 174.12 65.702 4467.8 239.16
S2 5204.1 1599.5 3605.8 9.0231e6 2993.0
S3 20604 6309.1 14292 1.4099e8 1.1805e4

Fig. 1. Dependence of the Mueller matrix element S11 on scattering angle θ and azimuth angle φ (shown as variation with x � sin θ cos φ and
y � sin θ sin φ) for the particle array L1 (see Table 1), which is a linear chain of 3001 identical prolate spheroids of refractive index (1.6, 0.1). The
incident plane wave is of wavelength 31.416 mm, propagating in the positive z direction. An individual spheroid has an aspect ratio (i.e., the minor-
to-major axis ratio) of 0.5. Its volume-equivalent sphere diameter is 1 mm. Geometrical centers of the spheroids are aligned along the x axis, equally
spaced by 1 mm. The major (rotational) axes of the spheroids are parallel to the z axis. In the four panels, the left two are for the forward hemi-
sphere of 0° ≤ θ ≤ 90° (with θ � 0° being the exact forward scattering direction) and the right two are for the backward hemisphere of 90° ≤ θ ≤
180° (with θ � 180° being the exact backward scattering direction). The lower two panels are equivalent to the upper two, simply presenting the
same data in an alternative way.
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spatial distribution pattern of other component particles
around them, referred to as an “edge effect.” As the total par-
ticle number in an array increases, the edge effect will gradu-
ally weaken and fade away.

3. APPLICATION OF GMM TO PERIODIC
PARTICLE ARRAYS
The general GMM solution process, briefly reviewed in the last
section, is devised for an arbitrary configuration of noninter-
secting scattering bodies with mixed shapes, sizes, material
compositions, and structures. In practical calculations using

the general GMM codes available online, required computer
memory and computing time are determined by the maximum
size and total number of component scattering units. Ceilings
exist for the maximum total number and the largest size of
constituent scattering bodies allowed in an ensemble. When
applied to periodic structures, the favorable spatial periodic-
ity helps to remarkably simplify the scattered-field solution
process and to relax the limitations.

This section presents a special version of the GMM formu-
lation for one- and two-dimensional PAs of identical particles,
which has been implemented in a new PA-series of GMM
codes. The PA-type codes do not demand excessive computer

Fig. 2. Dependence of the Mueller matrix element ratio S22∕S11 on scattering angle θ and azimuth angle φ (shown as variation with x � sin θ cos φ
and y � sin θ sin φ) for the same linear spheroid array of L1 as shown in Fig. 1.

Fig. 3. Dependence of the Mueller matrix element ratio S33∕S11 on scattering angle θ and azimuth angle φ (shown as variation with x � sin θ cos φ
and y � sin θ sin φ) for the same linear spheroid array of L1 as shown in Fig. 1.
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memory or computing time and thus, are able to handle PAs
with a huge number of particles. To demonstrate, a regular
array consisting of as large as 108 particles is calculated.
Numerical solutions, obtained from the special GMM formu-
lation for the same particle arrays listed in Table 1, are com-
pared with those calculated from the general GMM codes
presented in the previous section. While numerical results
are similar, there are tremendous savings in computing time.
It is also evident that, since a substantial part of computations
are bypassed, numerical errors otherwise accumulated in rel-
evant computations are circumvented.

A. Infinite-Dimension Periodic Arrays
As the GMM general formulation clearly shows, despite a
constant phase shift, the scattered fields from two identical
constituent units will be exactly the same when surrounding

component units for the two have exactly the same physical
and geometrical properties and the same local spatial distri-
bution. In this regard, since infinite PAs of identical particles
have no edges, the partial scattered fields from all individual
component particles are identical (when incidence phase shift
terms about different particle centers are excluded, as in the
GMM formulation). This is to say, for infinite arrays, partial
scattering coefficients almnp are identical for all component
particles; in Eq. (19), the interactive scattering part of any indi-
vidual component particle l reduces to

a⃗lmnp �
XNl
max

ν�1

Xν
μ�−ν

X2
q�1

T̄ l
mnpμνqp⃗lμνq;

p⃗lμνq � −
XNl
max

n0�1

Xn0

m0�−n0

X2
p0�1

Cl
μνqm0n0p0a

l
m0n0p0 ;

Cl
μνqm0n0p0 �

X
l0
�1 − δll0 � exp�ik̂ · dll

0 �All0
μνqm0n0p0 : (37)

This leads to the following linear system, which involves
partial scattering coefficients of only one single component
particle,

almnp �
XNl
max

n0�1

Xn0

m0�−n0

X2
p0�1

XNl
max

ν�1

Xν
μ�−ν

X2
q�1

T̄ l
mnpμνq

× Cl
μνqm0n0p0a

l
m0n0p0 � ālmnp: (38)

The crucial difference of the above Eqs. (37) and (38) from
Eqs. (19) and (20) is that all al

0
m0n0p0 (with l0 � 1; 2;…; L) in

Eqs. (19) and (20) are replaced by alm0n0p0 of a single compo-
nent particle l. As a result, the C-coefficients are emerged in
Eqs. (37) and (38), which are irrelevant to the intrinsic proper-
ties of the component particles in a PA and completely
determined by the inherent geometrical structure of the

Fig. 4. Dependence of the Mueller matrix element ratio S44∕S11 on scattering angle θ and azimuth angle φ (shown as variation with x � sin θ cos φ
and y � sin θ sin φ) for the same linear spheroid array of L1 as shown in Fig. 1.
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to the edge effect.
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component-particle centers. The C-coefficients can thus be
evaluated by summing over only the vector translation
coefficients (with appropriate incident phase terms) of all par-
ticles l0 without involving scattering coefficients. For PAs of
identical spheres, it is further simplified,

almnp � ālnp
XNl
max

n0�1

Xn0

m0�−n0

X2
p0�1

Cl
mnpm0n0p0a

l
m0n0p0 � ālnppmnp: (39)

The number of unknowns to be solved in the above linear sys-
tems is the possible minimum that one can assume for this
type, which only depends on the intrinsic properties of an indi-
vidual particle.

To solve the above linear system for the scattered field of
an individual particle in an infinite PA, the calculation of the
C-coefficients does not need to include an infinite number of
component particle centers. The reason for this is very simple.
Numerical values of vector translation coefficients drop
steeply as translation distance increases, implying the values
of the C-coefficients are determined merely by the component
particle centers within a certain distance from particle l. In
other words, all component particles sufficiently far from par-
ticle l have a negligible contribution, as if they did not exist.
The largest translation distance needed to ensure a satisfac-
tory accuracy of numerical solutions can be determined easily
in practical calculations by setting an error tolerance, say,
10−12 or other small value, as desired. When evaluating a
C-coefficients, the vector translation coefficients for the com-
ponent particle center nearest to particle l are calculated first
and then gradually stretched out until the relative change in its

value is within the preferred tolerance, as implemented in the
new PA-type computer codes of GMM.

As a demonstration, the scattered field of an individual
component spheroid in an infinite array of identical prolate
spheroids is calculated. The individual prolate spheroid has
a refractive index (1.6, 0.1) and an aspect ratio of 0.5, having
a volume-equivalent sphere diameter of 1 mm. The prolate
spheroid’s major axes are all parallel to the z axis. All particle
centers are in the x–y plane, equally spaced by 10 mm in the x
direction and 1 mm in the y direction. The incident plane wave
of wavelength 31.416 mm propagates in the positive z direc-
tion. Shown in Fig. 6 is the variation of Stokes parameters I
and Q with scattering and azimuth angles when the incident
plane wave is linearly x polarized. Similarly, Fig. 7 shows
Stokes parameters of U and V when the incident wave is
right-circularly polarized. In solving the partial scattered field
of an individual component spheroid when the error tolerance
is set to 10−12, it is necessary to include ∼105 particle centers.

B. Periodic Particle Arrays of Finite Lengths
In practice, arrays with finite dimensions are meaningful and
of interest. Based on Eqs. (36)–(38), the total scattered far-
field and the total amplitude matrix of a PA consisting of L
identical particles can be written approximately as

amnp � almnp

XL
j�1

exp�idj · �k̂ − r̂��;

S � Sl
XL
j�1

exp�idj · �k̂ − r̂��: (40)

Fig. 6. Dependence of the Stokes parameters I and Q on scattering angle θ and azimuth angle φ (shown as variation with x � sin θ cos φ and
y � sin θ sin φ) for an individual spheroid in an infinite array of identical prolate spheroids of refractive index (1.6, 0.1). The incident plane wave of
wavelength 31.416 mm is x polarized, propagating in the positive z direction. An individual spheroid has an aspect ratio of 0.5. Its volume-equivalent
sphere diameter is 1 mm. Themajor axes of the spheroids are parallel to the z axis. All particle centers are in the x–y plane, equally spaced by 10mm
in the x direction and 1 mm in the y direction.
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Note the important differences between Eq. (36) and Eq. (40).
As discussed in the last subsection, the partial scattering
coefficients almnp are identical in a PA for all replica compo-
nent particles (with l � 1; 2;…; L). Therefore, ajmnp (with
j � 1; 2;…; L) in Eq. (36) can all be replaced by almnp of
any single component particle l in Eq. (40) and taken out from
the summation over the component particles. The total inci-
dent and scattered phase term on the right-hand side of the
two equations in Eq. (40) involves only incident direction
and the geometrical structure of an array and is independent
of the partial scattering coefficients of the component par-
ticles. Recall that a displacement of an array of particles in
PRS, or the PRS itself, causes only a constant phase shift
and will not affect any scattering solutions under study.

For one-dimensional periodic particle arrays, it follows
from Eqs. (2) and (3) that

dj · �k̂ − r̂� � dj �cos ηj�ϑinc;φinc� − cos ηj�θ;ϕ��;
cos ηj�β; α� � sin β sin ϑj cos�α − φj� � cos β cos ϑj : (41)

The phase terms have two parts. The first part is an incident
phase shift and the second part is a scattered phase term that
varies with scattered direction. In Eq. (41), �ϑj ;φj� defines the
spatial orientation of the axis of a linear chain, on which all
particle centers are located. Since �ϑj ;φj� is independent of
the location of a component particle center, �ϑlin;φlin� and
cos ηlin can be used to replace �ϑj ;φj� and cos ηj for all replica
particles. It is straightforward to show that, for a linear PA of
particles,

XL
j�1

exp�idj · �k̂ − r̂�� � sin�L · Δd ·Φlin∕2�
sin�Δd ·Φlin∕2� ;

Φlin � cos ηlin�ϑinc;φinc� − cos ηlin�θ;ϕ�; (42)

where Δd is the separation distance between a pair of adja-
cent component particle centers. For the case of normal inci-
dence in IRS, when the axis of a linear chain is parallel to the x
axis, Eq. (42) becomes much simpler,

XL
j�1

exp�idj · �k̂ − r̂�� � sin�L · Δx · sin θ cos ϕ∕2�
sin�Δx · sin θ cos ϕ∕2� : (43)

For a rectangular array of L � N row · Ncol identical particles, it
can be shown that

XL
j�1

exp�idj · �k̂ − r̂�� � sin�N row ·Δdrow ·Φrow∕2�
sin�Δdrow ·Φrow∕2�

·
sin�Ncol ·Δdcol ·Φcol∕2�

sin�Δdcol ·Φcol∕2� ;

Φrow � cos ηrow�ϑinc;φinc� − cos ηrow�θ;ϕ�;
Φcol � cos ηcol�ϑinc;φinc�− cos ηcol�θ;ϕ�: (44)

Here, cos ηrow and cos ηcol are associated with �ϑrow;φrow�
and �ϑcol;φcol� that define, respectively, the orientation of
row and column, whereas Δdrow and Δdcol are the separation
distance between a pair of adjacent particles in each row
or column. At normal incidence in IRS, when all the L � Nx ·
Ny particle centers are in the x–y plane with rows parallel
to the x axis and columns parallel to the y axis, Eq. (44)
reduces to

Fig. 7. Same as Fig. 6 but for the Stokes parameters U and V when the incident plane wave is right-circularly polarized.
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XL
j�1

exp�idj · �k̂ − r̂�� � sin�Nx · Δx · sin θ cos ϕ∕2�
sin�Δx · sin θ cos ϕ∕2�

·
sin�Ny · Δy · sin θ sin ϕ∕2�

sin�Δy · sin θ sin ϕ∕2� : (45)

With the use of the simple results shown in Eqs. (42)–(45),
an evaluation of the total incident and scattered phase terms
bypasses the computation of the phase shift for an individual
particle. These equations, especially Eqs. (43) and (45), are
reminiscent of the analogous formulas for the Fraunhofer dif-
fraction of light concerning a large number of apertures. In
fact, the phase terms discussed above are nothing else but
the Fourier transform of comb functions that represent the
spatial distribution of particle centers in a linear chain or a
rectangular array. Since a displacement of a scattering center
causes only a phase shift term, the angular distribution of the
scattered radiation from a regular particle array is simply the
convolution of the scattered pattern of a single component
particle with the comb functions, consistent with Fourier
analysis. Being beyond the scope of this paper, it will not
be discussed further.

C. Numerical Results: Comparison with Those Obtained
from General GMM Codes
Numerical results obtained from the PA-type FORTRAN
codes are shown below for the same particle arrays listed
in Table 1. The nonspherical particle arrays L1 and S1 are cal-
culated using “gmm03_PA.f” and the sphere arrays L2, S2, and
S3 use “gmm01_PA.f”. Presented in Table 4 are total cross-
sections for extinction, absorption, scattering, back-scattering
and radiation pressure, the same outputs as given in Table 3.
Table 5 lists relative deviations in the calculated cross
sections, using the corresponding results shown in
Table 3 as benchmarks. We see the relative deviations are
larger for the three square arrays S1, S2, and S3, compared
to those for the two linear chains L1 and L2. One reason is
that the ratio of overall dimension to the size of an individual
component particle is much smaller for the square arrays.
Also, the larger the size parameter of an individual particle,
the higher the scattering order required and the larger the
numerical errors that will be accumulated in the scattering
calculations. Results from these and other similar compari-
sons suggest that the larger the total number of components
in a particle array, the weaker the edge effect and the lower
the relative deviations. This is evident from the results for the
square arrays S2 and S3. Note that every aspect is the same for
the two arrays, except that the total particle number of S3 is

four times larger than S2. Nevertheless, calculating large par-
ticle arrays through the general solution procedure may de-
mand an unacceptably long computing time, even when
sufficient computer memory is available. In contrast, both
CPU and computer memory will not be an issue for periodic
particle arrays when using the special PA-type codes, which
do not increase appreciably when the total number of compo-
nent particles increases.

Table 6 shows the CPU time and computer memory re-
quired on an 8-Core 2.4GHz DELL PRECISION T7500 desktop
computer using PA-type codes to calculate the example regu-
lar arrays listed in Table 1. Table 7 compares the required CPU
and computer memory reported in Table 6 with those required
correspondingly by the general solution process of GMM as
listed in Table 2. The comparisons are shown in Table 7 as
PA-to-General ratios. The ratios for large arrays are as notable
as one to tens of thousands. The larger the particle arrays, the
more prominent the ratios. Figures 8–11 are almost the same
as Figs. 1–4. The only difference is that the numerical results
shown in Figs. 8–11 are from the new PA-type codes, while
those in Figs. 1–4 are calculated from the general GMM codes.
We see that noisy spikes appearing in Figs. 1–4, which are
most likely due to random numerical errors, are cleaned up
in Figs. 8–11, mainly because a considerable amount of com-
putations are sidestepped, as mentioned earlier.

D. Example Regular Array of 108 Identical Spheres
Shown in Table 8 are the total cross sections of a 10001 ×
10001 rectangular array of identical homogeneous spheres,

Table 4. Total Cross Sections (mm2) Calculated

from the Newly Developed GMMComputer Codes for

Periodic Structures (“gmm01_PA.f” or

“gmm03_PA.f”) for the Regular Arrays of Identical

Particles Listed in Table 1

Array-ID Cext Cabs Csca Cbak Cpr

L1 44.980 43.555 1.4246 330.03 44.971
L2 1712.1 586.58 1125.6 1.3735e6 1370.1
S1 246.11 177.11 68.996 4329.1 245.36
S2 5414.0 1657.5 3756.6 9.9586e6 3108.9
S3 20752 6483.1 14269 1.5086e8 1.1675e4

Table 5. Relative Deviations of the Total Cross

Sections Calculated from the Newly Developed GMM

Codes “gmm01_PA.f” or “gmm03_PA.f” Using the

Results Shown in Table 3 as a Benchmark

Array-ID Cext Cabs Csca Cbak Cpr

L1 3.1e−4 2.5e−4 1.7e−4 1.5e−4 3.1e−4
L2 1.8e−4 5.1e−5 2.7e−4 7.3e−5 1.4e−4
S1 0.026 0.017 0.048 0.032 0.025
S2 0.039 0.035 0.040 0.094 0.037
S3 0.0072 0.028 0.0016 0.070 0.011

Table 6. Computer Memory and CPU Time

Required for the Scattering Calculations on an

8-Core 2.4 GHz DELL PRECISION T7500 Computer

for the Regular Arrays of Identical Particles Listed

in Table 1 When Using the New PA-Type of

GMM Codes

Array-ID L1 L2 S1 S2 S3

CPU (min) 0.11 0.12 0.11 0.21 0.73
Memory (Gb) 0.27 0.053 0.27 0.053 0.053

Table 7. Ratios of the CPU and Computer Memory

Required in the PA-type GMM Calculations to Those

Shown in Table 2

Array-ID L1 L2 S1 S2 S3

CPU-Ratio 1∶350 1∶850 1∶4100 1∶14700 1∶71400
Memory-Ratio 1∶5 1∶4 1∶14 1∶11 1∶39
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calculated from “gmm01_PA.f” for a z propagating, linearly
x- or y-polarized plane wave of wavelength 31.416 mm. An
individual sphere with a 1 mm diameter has the refractive in-
dex of (1.6, 0.1). All sphere centers are on the x–y plane with
rows parallel to the x axis and columns parallel to the y axis,
equally spaced 1 cm apart in the x direction and 1 mm in the y
direction. Spheres are more densely packed in the y direction.
Figure 12 shows the spatial distribution of the Stokes param-
eter Q for the rectangular sphere array when the incident
plane wave is unpolarized. The required computer memory
is 0.053 Gb, the same as for the linear array L2 and square
arrays S2 and S3, independent of the total particle number.

The required CPU time is 19.3 minutes, used mostly in the
computation of C-type coefficients and the cross sections
for radiation pressure.

4. REMARKS AND FUTURE WORK
When applying GMM to PAs, the general scattered-field solu-
tion process is radically simplified; only that of a single com-
ponent particle needs to be solved. The total number of
unknowns in the linear system for solving partial scattering
coefficients is reduced to its possible minimum. Except for
this simplification, all other parts of GMM remain unchanged.

Fig. 8. Same as Fig. 1 except the numerical results shown are obtained from the newly developed “gmm03_PA.f” instead of “gmm03s.f”.

Fig. 9. Same as Fig. 2 except the numerical results shown are obtained from the newly developed “gmm03_PA.f” instead of “gmm03s.f”.
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The special version of the scattering formulation has been
implemented in new PA-type of GMM computer codes for one-
and two-dimensional regular arrays of identical particles. This
special formulation is derived from periodic structures of in-
finite dimensions. When applied to particle arrays of finite
lengths, the truncation in the spatial periodic structure intro-
duces inevitable truncation errors into numerical results, due
to the edge effect. However, practical numerical examples
show the special PA-type codes are able to provide numerical
solutions with acceptable accuracy when the total number of
replica particles is sufficiently large and the edge effect be-
comes insignificant.

To run the new PA-type codes, the required computer
memory only depends on the physical size and shape of an
individual particle. Therefore, it stays low, as it is insensitive
to the total number of component particles in an array. Sim-
ilarly, the required computing time will not be intolerable,
making it feasible to quickly calculate an array with a huge
number of particles, say ∼108, which the solution procedure
generally used for arbitrary ensembles of scattering bodies
cannot presently do. This paves a new way to investigate scat-
tering characteristics of finite periodic structures.

The formulation presented in this work can be extended to
three-dimensional PAs. Also, the basis unit in a PA can be of

Fig. 10. Same as Fig. 3 except the numerical results shown are obtained from the newly developed “gmm03_PA.f” instead of “gmm03s.f”.

Fig. 11. Same as Fig. 4 except the numerical results shown are obtained from the newly developed “gmm03_PA.f” instead of “gmm03s.f”.
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an arbitrarily complex structure itself. The only requirement is
that the proper T -matrix of the complex unit cell can be com-
puted with sufficient accuracy.

It would be beneficial to have an efficient way to evaluate
the C-coefficients in Eqs. (38) or (39), which are determined
only by the geometrical structure of an array. Future research
may develop explicit expressions or efficient schemes for
evaluating the coefficients in an integrated way, rather than
adding each component unit center individually. This will help
to improve further the efficiency of the scattering solution
process.

Future work may also include a thorough study of the edge
effect. The specific approach for PAs provides only approxi-
mate numerical solutions to arrays with finite lengths. An ex-
tensive investigation of the edge effect will help to determine
how large an array must be to ensure a desired accuracy for
numerical solutions. The investigation may also be extended
to particle arrays with complex boundaries.
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