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The generalized multiparticle Mie-solution (GMM), a Lorenz–Mie-type rigorous theory for the scattering of a
monochromatic plane wave by an arbitrary configuration of nonintersecting scattering bodies, has lately been
revisited and further developed. A recent progress is the initiation of a special version applied to one- and
two-dimensional (1D and 2D) periodic arrays (PAs) of identical particles [J. Opt. Soc. Am. A 30, 1053 (2013)].
As a continuous advance, the present work extends the initiative PA-type solution from 1D and 2D to the more
involved three-dimensional (3D) regular arrays. Analytical formulations applicable to the 3D PAs are derived,
including the special PA-type explicit expressions for cross sections of extinction, scattering, backscattering,
and radiation pressure. The specific PA-version is a complement to the general formulation and solution process
of the standard GMM. In either 1D and 2D or 3D cases, the newly devised PA-approach is capable of providing
expeditiously theoretical predictions of radiative scattering characteristics for periodic structures consisting of a
huge number of identical unit cells, which the general approach of the GMM is unable to handle in practical
calculations, owing to excessive computing time and/or computer memory requirements. To illustrate practical
applications, sample numerical solutions obtained via the PA-approach are shown for 3D PAs of finite lengths that
have ∼5 × 107 component particles, including structures having a rectangular opening. Also discussed is potential
future work on the theory and its tests. © 2014 Optical Society of America

OCIS codes: (290.4210) Multiple scattering; (290.5825) Scattering theory; (260.1180) Crystal optics;
(260.1960) Diffraction theory; (260.5430) Polarization.
http://dx.doi.org/10.1364/JOSAA.31.000322

1. INTRODUCTION
Analogous to the Mie theory for single homogeneous spheres
[1,2], there are widely tested, comprehensive analytical solu-
tions to the ensemble scattering of light and other electromag-
netic radiation. The generalized multiparticle Mie-solution
(GMM) [3–12], developed more than a decade ago, is such
an example for an arbitrary collection of scattering bodies il-
luminated by a monochromatic plane wave. Constituent units
in an ensemble can have arbitrarily mixed intrinsic properties
and structures, both physical and geometrical. The only pre-
requisite is that the T -matrices [13–20] of all individual scat-
tering units in their independent scattering (i.e., when they are
isolated) are known analytically (such as for spheres) or can
be computed with satisfactory precision for given physical
and geometrical parameters. As practical implementation of
the multibody scattering formulation for the general applica-
tion to an arbitrary ensemble of scattering entities, a set of
FORTRAN computer codes of GMM have been publicly acces-
sible since 2001 [21], and are used and scrutinized by many
researchers across a great variety of scientific and technical
fields.

Literally, the general scattering formulation of GMM does
not place any restriction on the size, shape, material compo-
sition, structure, and morphology of the constituent units in an
ensemble. Accordingly, all current public-domain computer
codes of GMM solve individual (or partial) scattered fields
for every component particle in respective particle-centered

reference systems. While the generality is advantageous on
one hand, there are disadvantages in practical calculations
on the other hand, as regards computing time requirements
in particular. For an array consisting of N component par-
ticles, the required computing time is roughly proportional
to N2. An array of ∼104 wavelength-sized constituent particles
usually needs several days to complete scattering calculations
for a single, fixed spatial orientation, using a Dell Precision
T7500 desktop computer. When the number of the component
particles increases to ∼105, ∼10 times larger, it may demand
up to a year of computing time. It is inevitable that the multi-
particle scattering calculations via the general approach (GA)
of GMM encounter a severe limitation on the maximum
number of component particles allowed in an ensemble with
regard to an acceptable length of computing time period.
Moreover, it is also evident that larger numerical errors will
be introduced into numerical solutions to an ensemble con-
sisting of a larger number of component particles and with
larger overall dimensions. One of the possible causes for this
is that multibody scattering calculations involve the evalu-
ation of a huge amount of vector translation coefficients
and there could be enormous differences in the magnitudes
of this type of coefficients for small and large translation
distances.

A special version of the GMM scattering formulation
for one- and two-dimensional (1D and 2D) periodic arrays
(PAs) of identical particles has been presented in a recent
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article [22], which will be referred to as Paper I hereafter. The
development of the special PA approach relies on the favor-
able periodicity of the spatial structures of PAs combined with
beneficial features of GMM, such as the direct use of precise
phase terms for both incident and scattered radiation when
solving far-field scattering. It brings remarkable savings
in computing time, in comparison with the GA procedure.
Scattering calculations for a PA consisting of ∼105 wave-
length-sized particles requires only a fewminutes to complete.
As stressed in Paper I, however, the special PA formulation
holds precise merely for PAs of infinite extents that have
no edge (and thus lack of practical meanings). For PAs of
finite lengths, the trade-off is that the “edge effect” introduces
certain numerical errors into numerical solutions, the signifi-
cance of which depends on the total number of replica units in
a PA. As the illustrative examples in Paper I indicate, the edge
effect recedes as the number of component particles in a PA
increases. In other words, the PA approach provides suffi-
ciently accurate numerical solutions to the finite PAs that
have a sufficiently large number of component units (and thus
have sufficiently large overall dimensions in comparison with
the incident wavelength and the dimensions of an individual
unit cell).

The intent of the present work is to extend the PA version
of GMM initiated in Paper I to the general three-dimensional
(3D) case. As a feasibility study for the intended extension and
as suggested in Paper I, the edge effect has been further in-
vestigated for 1D and 2D PAs at arbitrary spatial orientations.
Numerical solutions obtained from the PA approach are sys-
tematically tested against those from the benchmark GA pro-
cedure. Outcomes of this study suggest that the diminishing of
the edge effect with the increase of the total number of com-
ponent particles in a PA is independent of the PA’s spatial
orientation and the intrinsic properties of the component
particles. When the total number of particles in a PA reaches
certain level, the edge effect begins to fade away and becomes
negligible. It is also evident that, to depress the edge effect
down to a similar low level, the total number of component
particles in a 2D PA must be much larger than that for a
1D PA. Generally speaking, the number of component par-
ticles in a PA must be sufficiently large along each dimension
in order to obtain satisfactorily accurate numerical solutions
via the PA approach. Illustrative numerical examples are
given in the next section to show supportive evidence.

Section 3 presents specific scattering solutions to 3D regu-
lar particle arrays, giving only final results without detailed
derivations. These include the PA-type formulas for cross
sections of extinction, scattering, backscattering, and radia-
tion pressure, which are simply the special form of the general
and more complicated GMM formulation. To demonstrate the
practical implementation of the newly derived analytical for-
mulation, Section 4 provides sample numerical solutions to a
3D PA of ∼5 × 107 identical constituents for three different
cases, showing how its scattering behavior responds to the
change in the material composition of component particles
and its spatial orientation, as well as the polarization state
of incident radiation.

A new theoretical development always needs an adequate
way to verify and to validate as well as to identify its regime of
validity. For 1D and 2D PAs, systematic PA-to-GA compari-
sons proved to be an effective means to serve such a purpose.

But this type of testing is too time-consuming to be feasible for
the 3D case and is not pursued at this stage. To depress the
edge effect to a sufficiently low level, i.e., to bring PA and GA
numerical solutions sufficiently close to each other, a finite PA
must have a much larger number of constituent units when
extending to more dimensions. It is highly desirable to be able
to calculate 3D PAs that have >106 wavelength-sized compo-
nent particles via the standard GA procedure of GMM. Such
GA-type scattering calculations would demand an intolerably
lengthy computing time (even when computer memory
allows) and become impractical for ordinary desktops and
laptops at this point. Nevertheless, there are other ways to ex-
amine the validity of the formulation, such as to compare with
other widely tested and well-established theories in common
applications or to compare with corresponding experimental
measurements in areas of common interest. Some preliminary
consideration and work toward such further study is dis-
cussed in Sections 5 and 6.

It is easy to see that the PA-approach of GMM leads to for-
mulations consistent with what is derived from Fourier analy-
sis, as far as the angular distributions of scattered amplitude
and intensity are concerned. In this regard and as a starting
point for the comparison with existing diffraction theories,
Section 5 provides additional numerical examples for 2D
and 3D regular arrays with rectangular openings. As it is sup-
posed to be, the predicted scattering patterns in the far field of
such spatial structures exhibits familiar features of the
Fraunhofer diffraction pattern known for a rectangular aper-
ture. This is by no means a coincidence. Scattering solutions
extended from Mie theory struggle to formulate rigorously the
interaction of light and other electromagnetic radiation with
obstacles of complex forms, on the basis of Maxwell’s equa-
tions together with appropriate boundary conditions. A scat-
tering theory aims to make testable predictions to scattered
field distributions within its range of validity, including the
prediction of diffraction patterns universally observed. Since
diffraction theories provide analytical interpretations to the
same physical phenomena based on seemingly rather differ-
ent theoretical foundations, it is worthwhile to comprehen-
sively compare with insight between the scattering and
diffraction formulations. Besides being a mutual test, such
further work might be able to build a bridge to connect the
two and help to clarify inherent ambiguity or misconception
in the theoretical expositions, if there is any. In addition to
concluding remarks, the last Section 6 contains some discus-
sion on the potential further work on the theory and its tests.

2. REGIME OF VALIDITY OF THE PA
APPROACH: DIMINISHING OF THE EDGE
EFFECT FOR 1D AND 2D PERIODIC
STRUCTURES
As is shown and clearly stated in related earlier publications
[4–12], a distinct feature of the GMM is that its theoretical
treatment of far-field scattering uses explicitly and precisely
both incident and scattered phase shifts, referring to respec-
tive centers of individual component units in an ensemble of
scattering bodies. This advantageous feature, together with
the spatial periodicity of PAs, helps to radically simplify the
scattering solution to periodic structures and leads to the
development of the special PA version of GMM [22]. It is
worthwhile to emphasize and remind repeatedly that the
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PA approach has its range of validity in connection with the
edge effect.

Prior to the extension of the PA formulation initiated in
Paper I to the general 3D case, the edge effect has been further
investigated for finite 1D and 2D PAs at arbitrary, fixed spatial
orientations. Reliability of the numerical solutions obtained
from the PA approach is examined against the benchmark
given by the GA procedure of the standard GMM for different
material compositions of the component particles, such as
dielectric, nonabsorbing, and perfectly conducting, and for
different polarization states of the incident plane wave, as well
as for different spatial orientations of a PA in the incident
beam. Because the GA-type calculations are awfully time-
consuming for an array with a large number of constituent
particles, especially when the size parameter of an individual
particle is not small, PAs calculated in this investigation are
limited to those consisting of <105 small (wavelength compat-
ible) particles. Results from this study indicate that the total
number of component units in a PA is the determinative factor
to the edge effect. Although dependent on the size parameter
and material composition of the individual constituent par-
ticles, as well as on the geometrical structure of a PA, it seems
that the edge effect for a 1D array having a few thousand or
more replica units is generally negligible. For a 2D array with
the total number of replicas between ∼104 and 105, the PA-
to-GA deviations are roughly at the level of a couple of percent.

A. Specification of the Spatial Orientation of an Array
of Particles
The spatial orientation of a PA, i.e., the position vector of the
center of every component particle in the array, is specified by
three successive rotations of the reference frame about origin
in terms of the Euler-angle triad (αβγ) from an initial orienta-
tion, conveniently chosen prior to the rotation. The conven-
tion used here for the rotation matrix in terms of the triad
of Euler angles follows what is described in Edmonds [23],
which is

R�αβγ� � Rz�γ�Ry�β�Rz�α�: (1)

The rotation about the z or y axis is defined by

Rz�α��
" cos α sin α 0
−sin α cos α 0

0 0 1

#
; Ry�β��

"cos β 0 −sin β
0 1 0

sin β 0 cos β

#
:

(2)

Accordingly, the position vector of every component particle
center l in an array under calculation is given by dl �
êxXl � êyY l � êzZl, where ê designates a unit vector and

0
B@
Xl

Y l

Zl

1
CA � R�αβγ�

0
B@
Xl

0

Yl
0

Zl
0

1
CA; (3)

with �Xl
0; Y

l
0; Z

l
0� being the coordinates at the initial

orientation.

B. Diminishing of the Edge Effect for 1D and 2D PAs at
an Arbitrary Spatial Orientation: Two Examples
Two examples are presented below to show that the
edge effect declines and dies away as the total number of

component particles in a PA increases. The first is a 1D linear
array and the second is a 2D square array of identical spheres.
These two finite PAs are calculated using both GA and PA
approaches when the total number of component spheres
gradually increases up to ∼30; 000, which keeps the maximum
computing time for a single PA at a single fixed orientation no
more than about a month for the GA-type calculations.
Numerical solutions provided by the special PA approach be-
come practically identical to those calculated through the GA
procedure when the total number of component particles in
the 1D array is ≳3000. The PA-to-GA deviations for the 2D
array with a similar number of constituent particles are larger
than the 1D array, which is simply due to the increase in the
number of dimensions.

Shown in Fig. 1 is the regular 1D array of identical dielectric
spheres, which are nonabsorbing, having a refractive index
of 1.6, and of 1 mm diameter. The spheres are equally
1 mm apart, i.e., neighboring spheres are in contact. The
z-propagating incident plane wave is of 31.416 mmwavelength
and each individual sphere has a size parameter of 0.1. The
Euler-angle triad specifying the orientation of the linear array
is (0°,45°,20°). In its initial orientation, all sphere centers are
aligned along the x axis. The left panel shows the PA-to-GA
deviations of the calculated cross sections of extinction, back-
scattering, and radiation pressure versus the total number of
component spheres in the linear chain, when the incident
wave is unpolarized. The right panel shows the CPU time re-
quired by both the GA- and PA-type calculations.

Similarly, Fig. 2 is for the square array of identical spheres
that are of 1 mm diameter and complex refractive index (1.6,
0.1). The Euler-angle triad defining the orientation of this 2D
array is (0°,20°,30°). Its initial orientation is such that all the
component sphere centers are in the initial x–y plane with
rows parallel to the x axis and columns parallel to the y axis
and equally spaced by 1 mm in each row and column.
Compared with the results shown in Fig. 1, it is evident that
a 2D array needs a much larger number of component
particles than a 1D array in order to obtain a comparable
accuracy for the numerical solutions.

Fig. 1. Comparison between PA- and GA-type GMM scattering cal-
culations for a linear chain of identical nonabsorbing spheres, illumi-
nated by a monochromatic plane wave of wavelength 31.416 mm. Its
spatial orientation is specified by the Euler-angle triad (0°,45°,20°),
referring to the initial orientation of x alignment, i.e., all sphere cen-
ters are initially aligned along the x axis. The component spheres are
of 1 mm diameter and of refractive index 1.6, equally spaced 1 mm
apart. The left panel shows the relative PA-to-GA deviations (%) of
the calculated cross sections of extinction, backscattering, and radi-
ation pressure when the total number of component spheres in the 1D
array gradually increases. The right panel shows the CPU time elapsed
in both the GA- and PA-type calculations.
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3. SCATTERING FORMULATIONS FOR 3D
PERIODIC STRUCTURES
Consider a 3D array of identical particles illuminated by a
plane wave of wavelength λ:

Einc � E0 exp�ik̂ · r − iωt�; (4)

where i �
������
−1

p
, r is the position vector, and k̂ is the unit in-

cident vector. As usual, the harmonic time term exp�−iωt�will
be suppressed hereafter. In a primary reference system (PRS),
the incident plane wave propagates in the direction specified
by the spherical coordinates �ϑinc;φinc� and the unit incident
vector can be written as

k̂ � êx sin ϑinc cos φinc � êy sin ϑinc sin φinc � êz cos ϑinc:

(5)

When ϑinc � 0, k̂ � êz, the incident wave vector points to the
positive z direction, which will be referred to as the incident
reference system (IRS). As defined earlier, the spatial orien-
tation of the array in a PRS is specified by the rotation of the
reference frame in terms of the triad of Euler angles (αβγ).
Given the initial coordinates �Xl

0; Y
l
0; Z

l
0� of every component

particle center l, their position vectors in the PRS, i.e., the co-
ordinates �Xl; Y l; Zl� in the PRS, are determined by Eq. (3).
Recall that, in the PA-type of formulation, the total scattered
far-field coefficients, amnp, and the total scattering amplitude
matrix S of a PA consisting of L identical particles are
approximately [22]

amnp � almnp ·Φ�θ;ϕ�; S � Sl ·Φ�θ;ϕ�;

Φ�θ;ϕ� �
XL
j�1

exp�idj · �k̂ − r̂��: (6)

Here, almnp and Sl represent, respectively, the partial scatter-
ing coefficients and the individual scattering amplitude matrix
of any component particle l, dj is the position vector of com-
ponent particle center j, θ and ϕ are the two angular polar
coordinates, and r̂ is the unit position vector. One needs al-
ways to bear in mind that, throughout this paper, all involved

linear dimensions are normalized (i.e., multiplied) by the wave
number k � 2π∕λ.

The total incident and scattered phase term Φ in Eq. (6)
involves only the incident direction and the geometrical struc-
ture of an array and is independent of the scattering behavior
of component particles. It varies with direction and is gener-
ally a function of the polar coordinates θ and ϕ. This section
provides explicit formulas for the total phase term Φ of 3D
PAs. Also presented are analytical expressions for cross sec-
tions of extinction, scattering, backscattering, and radiation
pressure, derived specifically to be applicable to the periodic
structures. All of these are given in the final form with no
lengthy derivations.

A. Total Incident and Scattered Phase Shift Term of a
3D PA
The 3D PA under consideration is a cubic array consisting of
L � Nx · Ny · Nz identical particles. Its initial orientation is
such that the three pairs of “surfaces” are parallel to the
x–y, y–z, and x–z planes, respectively. In the initial frame
of reference, component particles are equally spaced by
Δx, Δy, and Δz, respectively, in the three primary directions
parallel to the x, y, and z axes. The maximum physical dimen-
sions of the array are thus, respectively, NxΔx, NyΔy, and
NzΔz in the x, y, and z directions. For such a regular 3D array
with its orientation in a PRS defined by the Euler-angle triad
(αβγ), the function Φ takes the form

Φ�θ;ϕ� � Φx ·Φy ·Φz; Φx � sin�NxΔx∕2 · ux�
sin�Δx∕2 · ux�

;

Φy � sin�NyΔy∕2 · uy�
sin�Δy∕2 · uy�

; Φz � sin�NzΔz∕2 · uz�
sin�Δz∕2 · uz�

; (7)

where

ux � t1 cos α − s1 sin α; uy � t1 sin α� s1 cos α;

uz � cos η�β; π − γ;ϑinc;φinc� − cos η�β; π − γ; θ;ϕ�; (8)

and

t1 � cos η

�
β −

π

2
; π − γ; ϑinc;φinc

�

− cos η

�
β −

π

2
; π − γ; θ;ϕ

�
;

s1 � sin ϑinc · sin�γ � φinc� − sin θ · sin�γ � ϕ�; (9)

with cos η�β; α; ϑ;φ� � sin β sin ϑ cos�α − φ� � cos β cos ϑ.
For the special case of normal incidence in the IRS,

�αβγ� � �000�, ϑinc � φinc � 0°, and we have

Φ�θ;ϕ� � sin�NxΔx∕2 · sin θ cos ϕ�
sin�Δx∕2 · sin θ cos ϕ�

×
sin�NyΔy∕2 · sin θ sin ϕ�
sin�Δy∕2 · sin θ sin ϕ�

sin�NzΔz∕2 · �1− cos θ��
sin�Δz∕2 · �1− cos θ�� :

(10)

For 2D PAs, Nz � 1, Δz � 0, and Φz≡ 1. Similarly, for 1D
PAs, Ny � Nz � 1, Δy � Δz � 0, so that Φy � Φz ≡ 1.

Fig. 2. Similar to Fig. 1 but for square arrays of densely packed iden-
tical spheres of 1 mm diameter and of complex refractive index (1.6,
0.1). The orientation of the 2D arrays is specified by the Euler-angle
triad (0°,20°,30°). Their initial orientation is such that all component
sphere centers are in the initial x–y plane with rows parallel to the
x axis and columns parallel to the y axis.
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For 1D and 2D PAs, Eqs. (7)–(10) reduce to what given in
Paper I.

B. Scattering in Exact Forward and Backward
Directions: Total Extinction and Backscattering Cross
Sections
Radiative scattering in the exact forward and backward direc-
tions has distinct features that other directions do not possess.
Without loss of generality, it is advantageous to formulate the
scattering in these two special cases of θ � 0° and 180° in IRS,
which are both independent of ϕ. For the forward scattering in
the direction of θ � 0° in the IRS, r̂ � k̂. It follows from
Eqs. (7)–(9) that ux � uy � uz ≡ 0, and Φ�0°�≡ L �
Nx · Ny · Nz. These result in the following simple formulas
for the scattered amplitude in this particular direction,
S�0°� � S1�0°� � S2�0°�, and for the total extinction cross-
section Cext of a PA:

S�0°��L ·Sl�0°�; Cext �L ·Cl
ext; Cl

ext �
4π
k2

ReSl�0°�;
(11)

where, Sl�0°�, the forward scattered amplitude of an individ-
ual component particle, is given by [3–12]

Sl�0°� �
XNmax

n�1

X2
p�1

���������������
2n� 1

p

2

× �al�βp�1np exp�iβp� � �−1�pal�βp�−1np exp�−iβp��; (12)

with βp being the linear polarization angle of the incident
plane wave that is either 0° or 90°. The extinction cross sec-
tion of a PA consisting of L component particles is exactly L
times larger than that of an individual component particle.
However, the forward scattered intensity becomes L2 times
stronger than the individual one, which explains the common
observation of “forward scattering enhancement.”

In the exact backward direction of θ � 180°, r̂ � −k̂,
S�180°� � S1�180°� � −S2�180°�, and Eqs. (7)–(9) tell us that

ux � 2 sin β cos α; uy � 2 sin β sin α; uz � 2 cos β;

(13)

and, thus,

Φ�180°� � sin�NxΔx · sin β cos α�
sin�Δx · sin β cos α�

×
sin�NyΔy · sin β sin α�
sin�Δy · sin β sin α�

sin�NzΔz · cos β�
sin�Δz · cos β� : (14)

As a result, for the backscattering cross section, Cbak, which is
the important quantity of radar cross section in mono-static
radar observations, we obtain

Cbak � 4π
k2

jS�180°�j2; S�180°� � Sl�180°�Φ�180°�; (15)

where [3–12]

Sl�180°� �
XNmax

n�1

X2
p�1

�−1�n�p

���������������
2n� 1

p

2

×
h
a
l�βp�
1np exp�iβp� � �−1�pal�βp�−1np exp�−iβp�

i
: (16)

Again, the incident linear polarization angle βp in Eq. (16) is
either 0° or 90°. In the special case of normal incidence in IRS,
�αβγ� � �000�,

Φ�180°� � Nx · Ny ·
sin�Nz · Δz�

sin Δz
: (17)

Unlike in the forward direction, Φ�0°�≡ L, in the backward
direction, the value of Φ�180°� is dependent on the geometri-
cal structure of a PA, which reaches L only when the last term
on the right-hand side of Eq. (17) approaches to 1. When Δz is
sufficiently small, sin Δz → Δz, Φ�180°� → L · sinc�NzΔz�. It
is therefore not surprising that there are strong and weak
backscatters, depending on the value of sinc�NzΔz�, where
sinc�x� � sin x∕x. Similar to the forward scattering at
θ � 0°, this explains why there also exists the phenomenon
known as “backscattering enhancement.”

C. Total Scattering Cross Section Csca and the
Asymmetry Parameter cos θ
From the general GMM formulation for the total scattering
cross section of an arbitrary aggregate of scattering bodies
[3–12], it is easy to show that the total scattering cross section
of a PA takes the special form Csca � L · Cl

sca, where

Cl
sca �

4π
k2

Re
XNl
max

n�1

Xn
m�−n

X2
p�1

al�mnp ~a
�l�
mnp; (18)

~a�l�mnp �
XNl
max

n0�1

Xn0

m0�−n0

X2
p0�1

~Cl
mnpm0n0p0alm0n0p0 ;

~Cl
mnpm0n0p0 �

XL
j�1

exp�ik̂ · dlj� ~Alj
mnpm0n0p0 ; (19)

with dlj � dj − dl. In the above Eq. (19), ~Alj
mnpm0n0p0 is a type of

vector translation coefficient, which can be expressed in an
integral form [6,10,12]:

~Alj
mnpm0n0p0 �

1
4π

Z
2π

0

Z
π

0
sin θdθdϕ

× exp�ir̂ · djl� exp�i�m0 −m�ϕ�
× �~τmnp�θ�~τm0n0p0 �θ� � ~τmn;3−p�θ�~τm0n0 ;3−p0 �θ��;

(20)

where ~τmnp represents modified angular functions [10–12,22].
Note that there is another type of vector translation coeffi-

cient Alj
mnpm0n0p0 for use in the transformation of the scattered

waves from particle j into incident waves for particle l. The

only difference between ~Alj
mnpm0n0p0 and Alj

mnpm0n0p0 is that the

former is associated with the spherical Bessel function of
the first kind and the latter with the spherical Hankel function

of the first kind. Consequently, the coefficients ~Cl
mnpm0n0p0
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appearing in Eq. (19) is similar to but slightly different from
Cl

mnpm0n0p0 discussed in Paper I. Future work should be able to

find an efficient means to evaluate in an integrated manner

both the ~Cl
mnpm0n0p0 and Cl

mnpm0n0p0 coefficients, in order to by-

pass time-consuming computations involving individually the
large amount of component particles.

Calculation of the total cross section for radiation pressure,
Cpr � Cext − Cscacos θ, requires evaluation of the total asym-

metry parameter cos θ. In IRS, cos θ � L · cos θl for a PA with
L component particles and [6,12]

cos θl � 4π

k2Csca
Re

XNl
max

n�1

Xn
m�−n

X2
p�1

al�mnp ~s
�l�
mnp; (21)

where [6,12]

~s�l�mnp � f 1 ~a
�l�
mn;3−p � f 2 ~a

�l�
m;n�1;p � f 3 ~a

�l�
m;n−1;p; (22)

with the three f -coefficients given by

f 1 �
m

n�n� 1� ;

f 2 �
1

n� 1

�
n�n� 2��n −m� 1��n�m� 1�

�2n� 1��2n� 3�

�
1∕2

;

f 3 �
1
n

��n − 1��n� 1��n −m��n�m�
�2n − 1��2n� 1�

�
1∕2

: (23)

The absorption cross section for an entire array is simply
Cabs � Cext − Csca, and for an individual component, Cl

abs �
Cl

ext − Cl
sca. There also exist explicit formulas for the absorp-

tion cross section of an individual component particle [4,7],
offering an alternative way to calculate Cl

abs as a check on
the accuracy of the numerical solutions.

4. ILLUSTRATIVE NUMERICAL EXAMPLES
The new PA-series FORTRAN codes of GMM mentioned in
Paper I have been expanded to the 3D case by including
the implementation of the scattering formulation for 3D
PAs described above. Illustrative numerical results presented
in this section are obtained from the newly extended
FORTRAN code “gmm01_PA.f.” These example numerical sol-
utions are for the same cubic array of 365 × 365 × 365 densely
packed, identical spheres of 1 mm diameter, illuminated by a
monochromatic plane wave of wavelength 31.416 mm. In
every 365-sphere linear chain along each of the three dimen-
sions, sphere centers are equally spaced 1 mm apart, i.e.,
neighboring spheres are in contact. Recall that the initial
orientation of the cubic array is such that its three pairs of
“surfaces” are parallel to the x–y, y–z, and x–z planes, respec-
tively. Recall also that the actual orientation of the PA to be
calculated is defined by the Euler-angle triad (αβγ) with re-
spect to its initial orientation. When �αβγ� � �000�, it is in
the initial orientation. As listed in Table 1, three different
cases are calculated for the regular 3D array, regarding the
material type of the component spheres and its spatial orien-
tation. The IRS is used for all the scattering calculations
involved in this work, meaning that the incident vector always
points to the positive z direction.

Figures 3–5 refer to Case 1, in which the cubic array is in its
initial orientation and the dielectric component spheres are
nonabsorbing, having a refractive index of (1.6, 0). Figure 3
presents the Mueller matrix element S11 as a function of the
angular polar coordinates θ and ϕ, or the scattering and azi-
muth angles in the IRS, shown as the variation with x �
sin θ cos ϕ and y � sin θ sin ϕ. There are four panels in Fig. 3.
The left two are for the forward hemisphere of 0° ≤ θ ≤ 90°
(with θ � 0° being the exact forward scattering direction)
and the right two are for the backward hemisphere of 90° ≤
θ ≤ 180° (with θ � 180° being the exact backward scattering
direction). The lower two panels are equivalent to the upper
two, presenting the same data but in an alternative way.
According to the definition of the Mueller matrix [24–26],
S11 represents the scattered intensity in the far field when
the incident plane wave is unpolarized. We see in Fig. 3 that
scattered intensities surge precipitously in the central area in
the vicinity of the exact forward and backward directions
(θ � 0° or 180°). This is due to the forward scattering and
backscattering enhancements discussed earlier. The over-
whelming central peak covers up the variations of scattering
intensity in other directions and makes the patterns looking
prosaic and featureless. In fact, this type of scattered intensity
pattern, full of precious information on the physical and
geometrical properties of the scattering bodies, is never

Table 1. Three Cases Calculated Using the FORTRAN

Program “gmm01_PA.f” for a Regular Cubic Array of

365 × 365 × 365 Identical Spheres

Case
No.

Material of Component
Particles

Refractive
Index

Spatial Orient.
(αβγ)

1 Dielectric, nonabsorbing (1.6, 0) (000)
2 Metallic (200, 200) (000)
3 Metallic (200, 200) (0°, 20°, 30°)

Fig. 3. Dependence of the Mueller matrix element S11 on scattering
angle θ and azimuth angle ϕ (shown as variation with x � sin θ cos ϕ
and y � sin θ sin ϕ) for a cubic array of 365 × 365 × 365 densely
packed identical spheres of 1 mm diameter, illuminated by a mono-
chromatic plane wave of wavelength 31.416 mm. The cubic array is
in its initial orientation and the dielectric component spheres are non-
absorbing, having a refractive index of 1.6. This is Case 1 as listed in
Table 1. The lower two panels are equivalent to the upper two, simply
presenting the same data in an alternative way.
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featureless. There are different ways to disclose graphically
the colorful angular distribution pattern of scattered intensity.
One way is to snap off a bit the sharp tip of the central peak,
which is, in the terminology of photography, to make the small
central region overexposed. Figure 4 is such an example,
which shows the dependence of the Stokes parameter I on
θ and ϕ for the same Case 1 when the incident wave is unpo-
larized. Compared to Fig. 3, it is easy to notice that the tip of
the central peak is removed in both the forward and backward
directions in Fig. 4. The maximum value of I shown in Fig. 4 is
1.5 × 105 in the left two panels and 10 in the two right panels,
meaning that all >1.5 × 105 values are set to 1.5 × 105 in

forward directions and all >10 values are set to 10 in back-
ward directions. These involve only the tiny area surrounding
the exact forward and backward directions. Were the Stokes
parameter I shown in Fig. 4 intact, Figs. 3 and 4 would look
exactly the same. With the very tip nipped off, patterns unseen
in Fig. 3 are uncovered. Another option is to exhibit the inten-
sity pattern in logarithm scale, as in Fig. 5, which displays
the Stokes parameters I and Q versus θ and ϕ for the same
Case 1 when the incident wave is linearly x polarized. The
parameter I appearing in Fig. 5 is in decibels, i.e.,10 log10�I�
instead of the value of I itself.

Figure 6 is for Case 2, showing the angular distribution of
the Stokes parameters I andQ over θ and ϕ (again as the varia-
tion with x � sin θ cos ϕ and y � sin θ sin ϕ) when the inci-
dent plane wave is linearly y polarized. As listed in Table 1, the
only difference between Case 1 and Case 2 is the material type
of the component spheres. In Case 2, the spheres are metallic,
electrically conducting. The complex refractive index of (200,
200) is used in the related scattering calculations. Note that to
present the Stokes parameter I in the same way as in Fig. 4,
the maximum value shown in the upper two panels of Fig. 6
are 1.5 × 105 and 30, respectively, as labeled in the figures. The
scattered intensity patterns in Figs. 6 and 4 have both similar-
ities and differences, reflecting the same overall shape and
orientation of the scattering entity and the dependence of
scattering behaviors on the material type of component par-
ticles in a PA.

Sample numerical results for Case 3 are presented in Figs. 7
and 8. Case 3 differs from Case 2 in the PA’s spatial orientation
only. In Case 3, the Euler-angle triad, defining the orientation
of the cubic array of metallic spheres, is �αβγ� � �0°; 20°; 30°�,
instead of (000) for Case 2. Shown in Fig. 7 are the Mueller
matrix elements S11 (in decibels) and S22 versus θ and ϕ.
Figure 8 is similar to Fig. 6 but for Case 3 with the incident
wave right-circularly polarized. We see clearly from the fig-
ures that scattering characteristics of a finite PA are strongly
dependent on its orientation in the incident beam.

Fig. 5. Dependence of the Stokes parameters I and Q on scattering
angle θ and azimuth angle ϕ (shown as variation with x � sin θ cos ϕ
and y � sin θ sin ϕ) for the same cubic array in the same Case 1 as
shown in Figs. 3 and 4. The incident plane wave is linearly x-polarized.
The parameter I is shown in dB.

Fig. 6. Dependence of the Stokes parameters I and Q on scattering
angle θ and azimuth angle ϕ (shown as variation with x � sin θ cos ϕ
and y � sin θ sin ϕ) for the same cubic array shown in Figs. 3–5 but
for Case 2 (see Table 1), i.e., the component spheres are metallic, elec-
trically conducting. The incident plane wave is linearly y polarized.

Fig. 4. Dependence of the Stokes parameter I on scattering angle θ
and azimuth angle ϕ (shown as variation with x � sin θ cos ϕ and
y � sin θ sin ϕ) for the same cubic array and for the same Case 1
as shown in Fig. 3. The incident plane wave is unpolarized. Note that
the tip of the central peak is removed in both the forward and back-
ward directions, as shown in the figures. Otherwise, all the figures
would look exactly the same as those in Fig. 3.
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5. ADDITIONAL NUMERICAL EXAMPLES:
REGULAR PARTICLE ARRAYS WITH A
RECTANGULAR OPENING
In practical calculations, the PA-type scattering solutions of
GMM are applicable to arrays having a desired overall shape
or geometrical structure. For demonstration, two simple ex-
amples given in this section are a square and a cubic array
with a rectangular opening, illuminated by a z-propagating
monochromatic plane wave of 31.416 mmwavelength. The lat-
ter is just the simple extension of the former in the additional
third dimension. The square array consists of 301 × 301 iden-
tical dielectric spheres of 1 mm diameter and of refractive in-
dex (1.6, 0.1), with the inside 201 × 201 spheres removed. This
2D structure is in its initial orientation, i.e., all component
sphere centers are in the x–y plane and the “sides” of the array

and the window are parallel to the x or y axis, respectively.
Along either the x or y directions, adjacent spheres are in con-
tact. Similar to Fig. 4, Fig. 9 displays the spatial distribution of
the Stokes parameter I when the incident wave is left-
circularly polarized. Shown in the left upper panel is what is
usually referred to as the Fraunhofer diffraction pattern of
the 2D structure. Similar to Fig. 9, Fig. 10 presents the Stokes
parameter I when the incident polarization is right-circular. It
refers to the 3D array that is the simple stretch of the 2D array
shown in Fig. 9 and thus has a similar inside window opening.
In this 3D structure, every component sphere in the 2D struc-
ture becomes the same linear chain of 301 contacting spheres.
It is clear that the differences between Figs. 9 and 10 are com-
pletely due to the extension of the obstacle in the additional
dimension, in other words, due to the different geometrical
structures and overall shapes of the scattering bodies.

The fascinating physical phenomenon of “diffraction” is of
common interest to scientific and technical fields that deal
with wave propagation. As far as electromagnetic radiation
is concerned, diffraction stems from the complicated interac-
tion of light and other electromagnetic waves with substances
present in the path of the electromagnetic radiation. This is
exactly what a scattering theory attempts to analyze thor-
oughly and to interpret precisely. The scattered intensity pat-
tern shown in Fig. 9 for the 2D array with a window closely
resembles the observed Fraunhofer diffraction pattern known
for a rectangular aperture [27,28]. Powerful diffraction theo-
ries, as summarized in excellent books (for example, [27–29]),
work satisfactorily in the treatment of many problems con-
cerning diffraction of light. To test the PA version of scattering
formulation developed recently, further research efforts
would be worthwhile to compare between the scattering and
diffraction theories and look deeply into the separate theoreti-
cal foundations of the formulations.

Fig. 7. Dependence of the Mueller matrix element S11 and S12∕S11 on
scattering angle θ and azimuth angle ϕ (shown as variation with
x � sin θ cos ϕ and y � sin θ sin ϕ) for the same cubic array shown
in Figs. 3–6 but for Case 3 (see Table 1), i.e., the Euler-angle triad
specifying the orientation of the 3D array is (0°,20°,30°). The Mueller
matrix element S11 is shown in decibels.

Fig. 8. Dependence of the Stokes parameters I and Q on scattering
angle θ and azimuth angle ϕ (shown as variation with x � sin θ cos ϕ
and y � sin θ sin ϕ) for the same cubic array in the same Case 3 as
shown in Fig. 7. The incident plane wave is right-circularly polarized.

Fig. 9. Dependence of the Stokes parameter I on scattering angle θ
and azimuth angle ϕ (shown as variation with x � sin θ cos ϕ and
y � sin θ sin ϕ) for a square array consisting of 301 × 301 identical
dielectric spheres of 1 mm diameter, in which the inside 201 × 201
spheres are removed. The refractive index of the spheres is (1.6,
0.1). This 2D structure is illuminated by a monochromatic plane wave
of 31.416 mm wavelength. It is in its initial orientation, i.e., all com-
ponent sphere centers are in the x–y plane and the “sides” of the array
and the window are parallel to the x or y axis, respectively. Along
either the x or y directions, adjacent spheres are in contact. The
incident plane wave is left-circularly polarized.
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6. DISCUSSION AND FUTURE WORK
The special PA version of scattering formulations of GMM has
been extended to the general 3D case, which has potentially
useful applications in many related scientific research and
engineering areas. One of its obvious advantages is that, when
implemented into practical calculations, it can handle a huge
number of component particles with no excessive require-
ments for both computing time and computer memory. This
benefit will become more apparent when the physical dimen-
sion of the component unit cells gets much smaller than the
incident wavelength and the total number of component units
gets extremely large.

A theory usually has its particular range of applications and
regime of validity. The PA-type scattering formulation of GMM
is developed specifically for periodic structures consisting of
a large number of identical unit cells. Calculations of scatter-
ing from an array with a small or moderate total number of
components must still use the standard GMM formulation
and follow the GA procedure to assure satisfactory accuracy
for numerical solutions. Moreover, the newly developed for-
mulation requires further careful tests in a variety of possible
ways, especially systematic experimental verifications and
comparisons with other theories.

Classical diffraction theories, particularly those of
Huygens, Fresnel, Rayleigh–Sommerfeld, and Kirchhoff,
adequately explain various specific cases of the diffraction
of light by obstacles and apertures. In some sense, scattering
theories such as Mie theory and its extensions can be consid-
ered as a kind of rigorous diffraction theory. Since Mie-type
scattering formulations and diffraction theories rest on quite
separate theoretical bases, it would be beneficial to scrutinize
the similarities and differences between the two formulations
and to compare their theoretical predictions in various
circumstances.

The most time-consuming part in the scattering calcula-
tions using the current PA formulation is the evaluation of
the total cross section for radiation pressure, which demands
a single-centered expansion of the total scattered field and

must translate one by one the partial scattered fields of every
component particle into a single, common reference frame.
It would be greatly beneficial to have an efficient way to evalu-

ate the ~Cl
mnpm0n0p0 and Cl

mnpm0n0p0 coefficients mentioned in

Section 3, which are determined only by the geometrical
structure of an array. Such further development would help
to considerably improve the efficiency of the scattering
solution process. It may also help to broaden the range of
applications.

The formulation presented in this work and Paper I can po-
tentially apply to particle arrays having an irregular overall
shape. An individual component unit in an array can also have
an arbitrarily complex structure, as long as the proper scatter-
ing characteristics of an individual particle can be calculated
with satisfactory precision. Furthermore, a massive collection
of regularly arranged, sufficiently small volumes could be a
satisfactory approximation to a myriad of shapes and struc-
tures of interest, to which the PA approach could quickly pro-
vide approximate scattering solutions. Future research work
may include the extension of the current formulations to such
useful areas.
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