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Rapid and stable determination of rotation matrices between
spherical harmonics by direct recursion

Cheol Ho Choi, Joseph Ivanic, Mark S. Gordon, and Klaus Ruedenberg
Department of Chemistry and Ames Laboratory USDOE, lowa State University, Ames, lowa 50011

(Received 19 April 1999; accepted 6 August 1999

Recurrence relations are derived for constructing rotation matrices between complex spherical
harmonics directly as polynomials of the elements of the generati§) ®tation matrix, bypassing

the intermediary of any parameters such as Euler angles. The connection to the rotation matrices for
real spherical harmonics is made explicit. The recurrence formulas furnish a simple, efficient, and
numerically stable evaluation procedure for the real and complex representations of the rotation
group. The advantages over the Wigner formulas are documented. The results are relevant for
directing atomic orbitals as well as multipoles. 99 American Institute of Physics.
[S0021-960629)01341-7

I. INTRODUCTION In practical applications, one typically deatsmulta-

. . . . neouslywith the spherical harmonics @fll azimuthal quan-
Spherical harmonics play important roles in many areag - Limbers =123 L. wherel is the length of some
of theoretical and applied physics. In quantum chemistry, . . e

they occur for instance as factors of atomic orbitals and ag]

factors in multipole expansions. Our current interest derivedion Of Wigner's formulas is inefficient because it entails the
from their use in the identification of atoms in molecules andndependent calculation of the rotation matrices for evesy

in the fast multipole methodMM)* for the calculation of ~Procedure embodying a large amount of duplication in the
Fock matrices. In this as in many other contexts, it is oftercalculation of factorial factors. It moreover loses significant
necessary or expedient to rotate the spatial coordinate axéigures for larger values df. Recurrence relations with re-
and there then arises the need to express the spherical hapect tom for fixed | were given by Edmondsand recently
monics defined with respect to one coordinate axis system ifimplemented by White and Head-Gordofor use in fast
terms of the spherical harmonics defined with respect to thenultipole method calculations. They are unstable in the vi-
other. cinity of particular polar angles and, although the instability
It follows from group theory that the two sets of har- can pe partially remedied through alternative algorithms,
monics associated with the two axis systems are related 9,0 ms remain with regard to the consistent calculation of
each other by a.transformatlon thatbk)c!(—dlagonalwuh all terms to the same accuracy.
respect to the azimuthal quantum numbeire., lvanic and Ruedenbetchave recently shown that the
. ! | rotation matrices betweereal spherical harmonics obey a
Y'm’:m;l YimPmuy » (1.} set of recurrence relations that allow for a much more effi-
cient determination of th& Their analysis differs from

mm’ *

for complex spherical harmonicé, and the aforementioned approaches in two respects:

- | (i) It is based on the recognition that the elements of the
Y|m,=m§iI YimRy » (1.2

rotation matricesR'mm, can be directly expressed as
polynomials of degreé in terms of the matrix ele-
mentsR;, of the original 3x 3 axis rotation.

(ii) These polynomials can be obtained recursively be-
cause the eIemenR'mm, can be represented as bi-
linear expressions in terms of the elemeﬁﬁﬁnf,

for real spherical harmoni¢,,,, where the summations do
not go overl. The D'mm, are complex unitary matrices and
the R'mm, are real orthogonal matrices. These so-caitzd-

tion matricesare determined by the>33 orthogonal matrix

R that defines the original rotation between the basis vectors

of the two axis systems, and the elementB; .
Since the original axis rotatioR is typically defined in terms
ék=2 eRiy . 1.3 of a number of interatomic distance vectors in a molecule,
I

this approach also avoids the detour over the Euler angles.
Manifestly, Y|, Y, refer to the basig whereasY,,, ¥,,  The procedure has since been used for image analysis at the
refer to the basi®,. Wignef has given explicit direct for- University of Uppsala, Sweden, and in electronic engineer-
mulas for the elements of the complex rotation matricesng at the University of Auckland, New Zealand.
D'mm, in terms of the Euler angles of the matiik In the present article, we establish the analogous system
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8826 J. Chem. Phys., Vol. 111, No. 19, 15 November 1999 Choi et al.

of recurrence relations for theomplexrotation matrices For example, for the azimuthal quantum numberl, one

D'mm,. The formal reasoning as well as the organization ofhas

the material follow the paper of Ivanic and Ruedenb&fe Y, (&)= (4mI3)V%

required background mathematics is assembled and laid out 1 o

in Secs. Il to V. The heart of the investigation is Sec. VI Y _1(&)=(4m/3)*%_, (2.10

which presents three sets of recursion relations, analogous to v —(47/3)12
those in Ref. 3. The derivation is contained in Sec. VI B. For 1o €)= (4773) .

the execution of actual calculations, the complex identities oBecause of the identity2.9), the homogeneous forr2.6)

Sec. VI are transformed into real equations in Sec. VII. Incan of course be converted into various nonhomogeneous
Sec. VIII, the quantitative relations between the complex roforms, but we shall consider these as “nonstandard.” In
tation matricei)'mm, of Eqg. (1.1) and the real rotation ma- Wwhat follows, we shall always think of the spherical harmon-
trices Rl of Eq. (1.2 are formalized. The final section ics as thestandardhnomogeneous function.6) of the Car-
provides information about the computational implementa{€sian coordinatesin a given frame defined by basis vectors
tion and a documentation of the advantages of the new ajft-€2,€; [see Eq(1.3)], rather than as functions of the cor-
proach as regards speed and accuracy. responding angleg and ¢ as is conventionally done.

IlI. RECURRENCE RELATIONS FOR COMPLEX

1. DEFINITION OF COMPLEX SPHERICAL SPHERICAL HARMONICS
HARMONICS o
All subsequent derivations are deduced from the follow-

Using the spherical coordinate definition ing three recurrence relationfor the normalized Legendre

(X,Y,2)=r(sin 6 cose,sin 6 sin ¢, cosé), (2.1  functions of Eq.(2.2):
and adopting the phase conventions of Condon and C0S? PI=A"PL 1+ AT P, 3.1
Shortl_ey‘,5 we define the complex spherical harmonics by the ;o PM=BMPM - B M P 3.2
equations

) ; m_ _ p-—mpm+1 m+1sm+1

Yim( 0,8) = (—1)™P'(co0)€™/ 27, (22 SINORT= =By TR B P 3

with the normalized Legendre functions as defined by B7etheWhere
12 (I+m)(1—m) ¥
PM(t)= @ na=mt PM(t) (2.3 Ty 34
P20 2(+m)! P '
_ 1/2
where t=cosf and the standard Legendre functions are BI'= (I+m+m 1)} (3.5
given by (21+1)(21-1)
1 gi+m Multiplication of Eq.(3.1) by (—1)™e'™?%/\/27 yields
PI'(t) = 5r7 (1=t ™ (12— 1)1 (2.4 m .
21! dt EYVim=AY —1mt AL Y e 1m, (3.9

By virtue of these definitions, it is readily verified that and similar multiplications for Eqg2.3) and (2.4) yield

Pt = (= D)™P(Y). (2.9 V2E Yim==BM™ | _1m 1B Yiiimo1, (3.7

Since the so-called “solid” spherical harmonicY,, VIE, Y = —B|_mY|71,m+1+Brl+1lY|+1,m+1- 3.9

are well known to behomogeneoupolynomials of degreé .
in the Cartesian coordinatesy,z the “surface” harmonics ~Equations(3.1), (3.2), (3.3) as well as Eqs(3.6), (3.7), (3.8)

Ylm can be expressed as homogenous po|ynomia|s are valid form being pOSitiVE, negative, or zero. In accor-
dance with the remarks at the end of Sec. Il, we perceive
Yim=Yim(&), (2.6 Egs.(3.6) to (3.8 as identities between the standard homo-
in terms of the complex componerg®f the real unit vector geneous polynomial representations of Mg, in terms of
in the basise; ,e,,e3, € ,60,6+ .
§:(§—I§Oi§+)v (27)

IV. INTEGRAL FORMULAS
where

i Explicit expressions will be needed in the subsequent
& =—¢€Ysinolv2=(—x—iy)IVar, xplicit expressions wi i ubsequ

sections for the transition moment integr@4 . 1 | &1Y),,)

E_=e ?sinolvVa=(x—iy)V2r, (2.8  Where the implied integration is defined to extend over the
unit sphere in the Cartesian space. By virtue of the orthonor-

§o=cosO=12/r, mality of the spherical harmonics, they are readily derived
which satisfy from the recurrence relations of the previous section. From

e 6ol Pl e POy im0 one obtane
(29) <Y| +1,m| gOlYl,u.):AIMJr 15m,u. ' (41)
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and from Eqgs.(3.7) and (3.8) follows that, forl given and
fixed, the only nonvanishing integrals involvig and &_
are

1
(Yisaml&4 Y= N By O 1 (4.2)
and
. —u+l
<YI+1,m|§—|YI,u.>:_BI+Ml 5m,,u—1- (4-3)

V2

Egs.(4.1), (4.2), and(4.3) are valid form being positive,
negative, or zero.

V. ROTATION OF COMPLEX SPHERICAL HARMONICS

In the present section, we collect some elementary relag general rotation matrices D'

Recurrence relations for rotation matrices 8827

In analogy to Eq(5.3), all complex rotation matrices of
Eqg. (1.1) can be resolved into their real and complex parts,
ie.,

I [ .
Dmm’:me’_HGmm’ ' (5'6)
Since, from Eqgs(1.1), (2.2), and (2.5 one readily deduces
I 1ol
D_m’_mr:(_l)m+m (Dmmr)*v (57)
it follows that
[ el
F—m,—m’:(_l)erm me’ !
| N (58)
G—m,—m’: —(= 1)m+m Gmm’ :

These general identities account in particular for the relation-
ships seen to exist between the matrix elements in the case of
Egs.(5.4), (5.5).

mm, as homogeneous

tions regarding rotation matrices that will be used in thepolynomials of D,

subsequent sections.

A. Decomposition into real and imaginary parts

In analogy to Eq.2.6), the transformed harmonics on
the left hand side of Eq(l.1) are defined as the standard

The rotation of the basis vectors in real three-homogeneous polynomials in terms of the transformed com-

dimensional space, introduced by Ed.3), implies the fol-

lowing transformation between the coordinates of any one

vector with respect to the two bases:
Rxx ny sz

(%,9.2)=(x,y,2)| Ryx Ryy Ry;
R,x ny R,,

By virtue of the invariance of = (x?>+y?+z%)'2 the com-

=(x,y,2)R. (5.1

plex components of the unit vector with respect to the tw

bases transform therefore as follows:

E=(&_,&,E.)=(£_,&,&,)D=¢D,
with

(5.2
D=F+iG (5.3

where the real and imaginary parts bf are given by the
following expressions in terms of the elementshof

F__ F_o F_4

F0,— FO,O FO,+

F+,— F+,o F+,+
(RyytRu12  R,IV2  (Ryy—Ry)/2

= R,«/V2 R,, —R, V2 . (5.9
(Ryy=Rwd/2 =Ry, IV2Z  (Ryy+Ry,)/2

G__ G_p G_

GO,— G0,0 GO,+

G+,— G+,o G+,+
(Ryx—R)/12 Ry, IvV2  —(Ryx+Ryy)/2

= —R,,/V2 0 —R,, V2 (5.5

(Ryx+R)2 Ry, V2  (Ry—Ry,)/2

(0]

plex coordinatesd_ ,&,,%.), i.e.,

Yim=Yim(&). (5.9

The transformatioril.1) can therefore be determined by first
substituting the transformatiofb.2) into the polynomials
given by Eq.(5.9) and, then, transforming back to tg,(&)
using one of the possible inverses of EJ.6). From this
reasoning, it is apparent that the elements of the general ro-
tation matricedD' can be expressed as homogenous polyno-
mials of degred in terms of the elements db. They can
thus be calculated directly from the elements of the rotation
matrix R without the detour over the Euler angles. In par-
ticular, Eq.(2.10 shows that the matrix fdr=1 is identical
with the matrixD given by Eqs(5.3) to (5.5), i.e.,

D!=D. (5.10

C. Rotation matrices as integrals

By virtue of Eq.(1.1), the rotation matrices can also be
expressed as the integrals

Dy = Vil Vi) (5.19)

where the integration goes over the invariant Cartesian unit
sphere and the arguments yf, and Y, , respectively are
the components of the same unit vector relative to the two
fixed Cartesian basds, ,e,,e;} and{&;,&,,&;} that are con-
nected byR [Eq. (13)].

VI. RECURRENCE RELATIONS FOR COMPLEX
ROTATION MATRICES

As seen in the preceding section, the rotation matrix el-
ementsD'mm, can be obtained as homogeneous polynomials
of the elements ob. We shall now build up these polyno-
mials by recursion, starting witB!=D. From the identities
in Sec. lll, a variety of recurrence relations can be deduced
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between the rotation matrices for the harmonics of otder where the coefficients are those defined by E§s2 and
and those of orderl(-1). Here, we derive three sets that (6.3). Replacement dof by (I —1) in this equation yields Eq.

prove useful for the quantitative evaluation of the matrices.(6.1).

A. Recurrence relation for (=/+1)sm’'s(+/-1)

This recurrence relation is derived from the recurrence
relation (3.6) between spherical harmonics. It yields the re-

currence relation

Dy = @i m D00D i e + iy v D100 1
+b" D 1D e (6.1
for the rotation matrices, where
[ d+my—=m) 12
A =AMA" = m} , (6.2
_1y11/2
by = Bl (V2ZAT) = S(Tinr)n(,l)m mli 6.3

It should be noted that the cas®$= *+1 are not covered and
that
al 0

mn'

b =0

mm’

for m= =1, (6.4

(6.9

for m=—1 and m=—-1+1

which, in certain cases, eliminates one or two terms in Eq.

(6.2).

B. Proof of Eq. (6.1)

The recurrence relatiof8.6) applies to the spherical har-

monics in the rotated coordinate frame as well as to those in

the unrotated coordinate frame. Multiplyir{g.6) in the ro-
tatedframe by theunrotated Y. ; ,, and integrating over the
unit sphere in Cartesian space, as discussed at the end of
last section, yields

<Y|+1,m|50|\?|m'> :A|m <Y|+1,m|?|—1,m'>

+Am—,1<YI+l,m|?I+l,m’>' (6.6)

C. Recurrence relation for —/=sm’'<(/-2)

This recurrence relation is derived from the recurrence
relation (3.7) for spherical harmonics. Starting with Eq.
(3.7), a derivation that is entirely analogous to that just dis-
cussed vyields

| | -1

Dm,m’:Cm,—m'DO,—le’mr+l
+d|m,—m’D1,—1Dlm_—11,m'+1
| 1—
+d—m,—m’D—l,—le+11’mr+1y (69)
where
C [ 20+my(1—m) |12
I _ mipm’ _
Cmm'_‘/iA| /B| (|+m/)(|+m/_l) [l (61@
1/2
I omiem’ (I+m)(I+m—-1)
dmm’_B| /BI - (|+m/)(|+m/_1) . (611)

It should be noted that the cas® =1 andm’=(1—1)
are not covered by Ed6.8) and that

¢ =0

i for m==I,

(6.12

d =0

Y for m=—1 and m=(—-1+1).

(6.13

D. Recurrence relation for (=/+2)sm’'<+/

This recurrence relation is derived from the recurrence
relation (3.8) for spherical harmonics. Starting with Eq.
3.8), a derivation that is entirely analogous to that used in
Bc. VI B yields

| 1-1
+d D m—I,m’' -1

m,m’

D! c

mm’~ ¥m,m’

-1
DoiDp,

,m’'—=1

I-1
m+1,m’—1’

11D

+d" __D_,,D (6.14

m,m’

expanded in terms of the unrotated quantities, using Ed)
for the harmonics and Eq5.2) for &,. It is noted that the

by Egs.(6.10 and(6.11). This recurrence relation does not
cover the casem’=—I| andm’=(—1+1).

first term on the right hand side vanishes, because the rotated
\A(,_l,m can be expressed as linear combinations of the Unros  ~5mment

tated Y,_,, which, in turn, are orthogonal to th¥, ;.
One obtains therefore

+ |
(Alnlll)_li;_ ,u,:E—I <YI+1,m|§i|YIM>Di0D|M,m”
(6.7)

which expresses the matriX " in terms of the matricep'
andD. Inserting now, for the moment integrals occurring in
this equation, the explicit expressions derived in Sec. IV, on
finds, for any value ofm, the formula

I+1 _
mm’

D

1+1 |

1+1 | I+1
I:)mm' - b7m,m’ DfloDerl,m’ + bm,m’DloDmfl,m’
1+1 |
+am mPodPm m (6.9

A knowledgeable referee has called the author’s atten-
tion to a very general relationship between Wigner
D-functions with arbitrary sub- and superscripts which is
listed, for instance, as E@5) in Sec. 4.6.2 of the compre-
hensive formula collection for the quantum theory of angular
momenta by Varshalovicht al® Due to its complete gener-
ality, this identity is complex, containing numerous

lebsch—Gordan coefficients. For the case that three super-
scripts in this equation are chosen gs=1, j,=j—1, |3
=]j, the general equation collapses in fact into our relations
(6.1, (6.9, (6.14. It is because this case is so elementary,
that we were able to reach the recurrence relations given here
by a line of reasoning that is simpler than the body of deri-
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vations required to establish the general theory of the Wigner g! _! ' _
. . ! Cmfm’Km m'+1(o' )
D-functions. One has to assume that it is because of the large ’
number pf general formulas in that theory :_:md because of the +d|m,—m'KIm— i+t 7)
complexity of most of them that the practical usefulness of | |
our particular identities for evaluating rotation matrices has td_ _mKnem (7). (7.6

so far escaped notice. ) ,
C. Recurrence relation for (=/+2)sm'<s+1

| | | | |

VIl. OPERATIONAL ALGORITHM Fl=ch o H 0+ HE ()

In the context of the practical quantitative use of rotation +d Y (=) 7.7
matrices, evaluations of real quantities are ultimately re- -mm'im+im -1t S :
quired. For the numerical execution it is therefore advanta- Lo K (0 +)+d' K!
geous to recast the complex recurrence scheme of the pre- ~—mm'  ~“mm’ mm’—14= m,m’ " m=1m’ -1
ceding sgctior) in terms of a real recurrence scheme for the +d|—m m’Klm+1m’—1(_'+)' (7.9
real and imaginary componerfisand G introduced through ‘ ‘
Eq. (5.6). This is accomplished by inserting this resolution as

m/ il mm/ y mm/ "~'m

well as Eq.(5.9 into Egs.(6.1), (6.9), (6.14 and then sepa- . !
rating the real and the imaginary parts. The resulting formu-equ"’ltIonS are those defined by E(f2) to (6.5 and(6.10

. ._to (6.13. We note that every one of them is of the form
las become more transparent by use of the intermediar )
%/a-ﬂ/'y 8) wherea, B, v, 6 are all square-roots of integers

(+.,+)

The coefficientsqa:n bl sChoey ol w occurring in these

quantties not larger than (R+1) with L being the largest azimuthal
len,m,(i.j)=FijFL{;,—GijG'm_’;,, (7.2  quantum number considered.
I o -1 -1
Km,m’(l’J):Fiij‘m’_l—Giij‘mH (72)

VIIl. RELATION TO REAL SPHERICAL HARMONICS

where theF;; and G;; are defined in Egs(5.4) and (5.5). AND THEIR ROTATION MATRICES

With these definitions, one deduces from E(&1), (6.9),

(6.14 the following recurrence relations foF'mm, and In agreement with most authots, lvanic and
G'mm, : Ruedenbergdefine the real spherical harmonics as
A. Recurrence relation for (=/+1)<sm’'<(+/-1) Yim(6, ) =P™(cost) D (), (8.2
[ | [ [ [
me’:am,m’Hm,m’(O'0)+bm,m’Hmfl,m'(_'—’o) where
| [
+b_ o g 1 (—0), (7.3 ®, ()= (2m) 12 m=0,
| [ | [ [
Gy =8m m K (0,0 +b Ko (+,0) O (p)=7m Y2cosm¢ m>0, 8.2
[ [
+bfm,m’Km+l,m’(_’O)' (7.4 <I>m(¢)=7r’1’zsinm¢ m<O0.

B. Recurrence relation for —/<m’'<(/—2) They are related to the complex harmonics of Eg2) by

Flm,m':CIm,—m/Hlm,m'u(O'_) Yi—Y—m Yo Yim oY)
+d H (+,-) = Yiw Yo Yo Y W, 8.3
m-—m’" 'm—-1m’+1 '
| | wherem s presumed to be a positive integer and the unitary
A —mHmegmre1 (70, (7.9 matriceswW are
W_, Wo
Wom-m W_mm
W = Wo0 . (8.9
Wm,—m Wm,m
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TABLE |. Accuracy of various methods for calculating matrix elemdht)$0 for the Euler angleB=90°.

=30 =40 1=50 1=100
Wigner, exa& —0.144 464 448 094 368 0.125 370 687 619 579 —0.112 275 172 659 217 0.079589 237 387 178 7
Recursion, d.f. —0.144 464 448 094 367 0.125 370 687 619 579 —0.112 275172 659 217 0.079 589 237 387 178 6
Wigner, d.p>¢ —0.144 464 84 621 912 0.125 37 770 238 445 —0.101 160 073 432 271 Inaccessible

3Calculated by Eq(9.1) usingmaTHEMATICA 1° with the specification of 15 or more significant figures for the result.
bCalculated by the recursion procedure of Sec. VII of this paper in double precision arithmetic.

‘Calculated using a Wigner formula program in double precision arithnisgie Acknowledgmenis

dIncorrect numbers due to loss of significant figures are indicated by underlined italics.

®Because in excess of 16 significant figures are lost.

As indicated, they contain nonzero elements only on the twdX. IMPLEMENTATION AND ASSESSMENT
diagonals; all other elements vanish. The nonvanishing ele-

ments are given by In the implementation of the code, we have used Egs.

(7.3, (7.4 to calculate all matrix elements withm’|#1.

Woo=1, (8.9  Equations(7.5), (7.6) were used to calculate the matrix ele-
and form>0- ments withm’=—1I, and Eqs(7.7), (7.8) were used to cal-
. ] culate the matrix elements with’ = +1. The program input
Wom-m Womm| [—iV2 i(=1)"v2 gg consists of the axis rotation matrR defined by Eq.5.1)
Woom  Wpm/ | V2 (—1)"W2 ) 8 and the highest quantum numbderThe program then finds

the real and imaginary parts of the complex rotation matrices
D'mm, as well as using Eq$8.11) to (8.14), the real rotation
matricesR:nm, , for all quantum numbers=0,1,2,3,.L. The
repeated calculation of square-roots is avoided by generating

It follows that the complex rotation matricd® of the
present investigation and the rotation matrigésor the real
spherical harmonicsare related by the similarity transforma-

tion
a square-root table for all integers up toL(21) before
D'=(W)'RW, (8.7 peginning the recursion.
where (V)" denotes the hermitian conjugate \M. Inser- The accuracy of the program was tested by comparing

tion of Eq. (5.8 into the left hand side of Eq8.7) and of ~ Our quantitative results with those obtained with the Ivanic—
Egs.(8.4), (8.5), (8.6) into the right hand side of E(8.7) Ruedenberg prograhior rotation matrices of real spherical
yie|ds' after separation of the real and imaginary parts, th@armonics for a number of cases. The results found by the

relations two methods agreed to 14 significant figures upLte 40.
| | | Since the two procedures go through very different se-
2F 0= amanRigy 10+ BmBnR- ), |n| (8.9 guences of extended numerical arithmetic, it can be inferred
that no significant figures are lost by either one of the two
ZGImn:amIBnRIm|,—|n\_IBmaan—|m|,\n|' 8.9 significant figures are lost by either on

- _ algorithms. We confirmed this inference by additionally cal-
wherem and n can be positive, zero, or negative and theculating the elements to sufficient accuracy using

factorsa,,, B, are given by MATHEMATICA 1% and Wigner’s formulas. We also found that
apn=[(1+ 8,0)(— 1)(|m|+m)]l/2 the identities(5.8) were satisfied to full accuracy by the val-
" m ' 810 Ues ofFpy andF* .
Bm=sign(m)(1— Smo) - ' Computations with the Wigner formulas have the prob-
The inverse identities are lem that theD'mn,, all of which have absolute values less
| | | than unity, are obtained as sums of very large positive and
Rinn= am@nFmn=BmB-nFm-n (8.11 negative numbers. A transparent example is the expression

lem,fn:amanFlm,n_F:Bm:Banlm,fnv 8.12 for m=m’ =0 (which is independent o& and vy):

Rm-n= amBoGrn = Bn-1Cm-n. B13 Dh(@p )= 3 (~DIIIK A=K (A0
R. 0=~ @mBnGimn Bm@—nGry 1. (8.14

where m and n are presumed to denote nonnegative integers

| _ .
It should be noted that the matri for I=1 is not |5 examination(using Stirling’s formula shows that, for
identical with the matribR of Eq. (5.1) but differs from it by largel and 8 near/2, a loss of approximateflog(2*Y/l)]

x=sir? BI2. 9.1

a permutation of rows and columns as follows significant figuregwhere log denotes the decimal logarithm
Ril,—l Rl—l,o Rl—l,l Ry Ry, Ry is to be e.xp(_a(.:ted, s_uggestmg a loss of about 7, 10, 13, 16,

1 R R |-lr RrR. R and 29 significant figures for=30, 40, 50, 60, and 100,
Ro-1 0,0 01 [ = zy Ttzz Ttz respectively. These predictions are in fact confirmed by a
Ri’_l Ri,o Ril Ry Ryxz R comparison of the numerical results displayed in the three

(8.19  rows of Table | which listD}, values obtained in three dif-
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TABLE Il. Execution times and loss of significant figures for Wigner for- est valuel =L which have the largest errors in the Wigner
mulas.(Euler anglesy=p5=y=/4). procedure. Listed are the orders-of-magnitude of the largest
with largest errors fot=L errors found, Fhe number of elements having suc;h an error,
_ . . and the magnitude of the elements themselves. Discrepancies

L Ratio Magnitudes Number  Magnitudes of the same order-of-magnitude were also found when insert-
=Highest of CPU of Largest of of . trix el ts obtained by the Wi thod into th
Value of|  Times Errord Element8 Elements Ing matrix elements obtained by the Vvigner method Into the
identities(5.8).

Matrix elements!

mmr

— 16 _ ) o
. b 06 to 610" n 01005 The quoted quantitative results exhibit the advantages of
2 o oo e s 0031003 the described recursion
20 47 0.2 to 210712 140 0.01t0 0.2 scri ursion.
30 77 0.1 to X10°° 141 0.004 to 0.2
40 115 0510 51077 191 0.002t00.1  ACKNOWLEDGMENTS
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