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Rapid and stable determination of rotation matrices between
spherical harmonics by direct recursion

Cheol Ho Choi, Joseph Ivanic, Mark S. Gordon, and Klaus Ruedenberg
Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011

~Received 19 April 1999; accepted 6 August 1999!

Recurrence relations are derived for constructing rotation matrices between complex spherical
harmonics directly as polynomials of the elements of the generating 333 rotation matrix, bypassing
the intermediary of any parameters such as Euler angles. The connection to the rotation matrices for
real spherical harmonics is made explicit. The recurrence formulas furnish a simple, efficient, and
numerically stable evaluation procedure for the real and complex representations of the rotation
group. The advantages over the Wigner formulas are documented. The results are relevant for
directing atomic orbitals as well as multipoles. ©1999 American Institute of Physics.
@S0021-9606~99!01341-0#

I. INTRODUCTION

Spherical harmonics play important roles in many areas
of theoretical and applied physics. In quantum chemistry,
they occur for instance as factors of atomic orbitals and as
factors in multipole expansions. Our current interest derives
from their use in the identification of atoms in molecules and
in the fast multipole method~FMM!1 for the calculation of
Fock matrices. In this as in many other contexts, it is often
necessary or expedient to rotate the spatial coordinate axes
and there then arises the need to express the spherical har-
monics defined with respect to one coordinate axis system in
terms of the spherical harmonics defined with respect to the
other.

It follows from group theory2 that the two sets of har-
monics associated with the two axis systems are related to
each other by a transformation that isblock-diagonalwith
respect to the azimuthal quantum numberl, i.e.,

Ŷlm85 (
m521

l

YlmDmm8
l , ~1.1!

for complex spherical harmonicsYlm and

Ŷlm85 (
m52 l

l

YlmRmm8
l , ~1.2!

for real spherical harmonics3 Ylm , where the summations do
not go over l. The Dmm8

l are complex unitary matrices and
the Rmm8

l are real orthogonal matrices. These so-calledrota-
tion matricesare determined by the 333 orthogonal matrix
R that defines the original rotation between the basis vectors
of the two axis systems,

êk5(
i

eiRik . ~1.3!

Manifestly, Ylm , Ylm refer to the basisei whereasŶlm , Ŷlm

refer to the basisêk . Wigner2 has given explicit direct for-
mulas for the elements of the complex rotation matrices
Dmm8

l in terms of the Euler angles of the matrixR.

In practical applications, one typically dealssimulta-
neouslywith the spherical harmonics ofall azimuthal quan-
tum numbersl 51,2,3,...L, where L is the length of some
initially presumed expansion. In such a context, the applica-
tion of Wigner’s formulas is inefficient because it entails the
independent calculation of the rotation matrices for everyl, a
procedure embodying a large amount of duplication in the
calculation of factorial factors. It moreover loses significant
figures for larger values ofL. Recurrence relations with re-
spect tom for fixed l were given by Edmonds4 and recently
implemented by White and Head-Gordon5 for use in fast
multipole method calculations. They are unstable in the vi-
cinity of particular polar angles and, although the instability
can be partially remedied through alternative algorithms,
problems remain with regard to the consistent calculation of
all terms to the same accuracy.

Ivanic and Ruedenberg3 have recently shown that the
rotation matrices betweenreal spherical harmonics obey a
set of recurrence relations that allow for a much more effi-
cient determination of theRmm8

l . Their analysis differs from
the aforementioned approaches in two respects:

~i! It is based on the recognition that the elements of the
rotation matricesRmm8

l can be directly expressed as
polynomials of degreel in terms of the matrix ele-
mentsRjk of the original 333 axis rotation.

~ii ! These polynomials can be obtained recursively be-
cause the elementsRmm8

l can be represented as bi-

linear expressions in terms of the elementsRmm8
l 21

and the elementsRjk .

Since the original axis rotationR is typically defined in terms
of a number of interatomic distance vectors in a molecule,
this approach also avoids the detour over the Euler angles.
The procedure has since been used for image analysis at the
University of Uppsala, Sweden, and in electronic engineer-
ing at the University of Auckland, New Zealand.

In the present article, we establish the analogous system
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of recurrence relations for thecomplex rotation matrices
Dmm8

l . The formal reasoning as well as the organization of
the material follow the paper of Ivanic and Ruedenberg.3 The
required background mathematics is assembled and laid out
in Secs. II to V. The heart of the investigation is Sec. VI
which presents three sets of recursion relations, analogous to
those in Ref. 3. The derivation is contained in Sec. VI B. For
the execution of actual calculations, the complex identities of
Sec. VI are transformed into real equations in Sec. VII. In
Sec. VIII, the quantitative relations between the complex ro-
tation matricesDmm8

l of Eq. ~1.1! and the real rotation ma-
trices Rmm8

l of Eq. ~1.2! are formalized. The final section
provides information about the computational implementa-
tion and a documentation of the advantages of the new ap-
proach as regards speed and accuracy.

II. DEFINITION OF COMPLEX SPHERICAL
HARMONICS

Using the spherical coordinate definition

~x,y,z!5r ~sinu cosf,sinu sinf,cosu!, ~2.1!

and adopting the phase conventions of Condon and
Shortley,6 we define the complex spherical harmonics by the
equations

Ylm~u,f!5~21!mPl
m~cosu!eimf/A2p. ~2.2!

with the normalized Legendre functions as defined by Bethe7

Pl
m~ t !5F ~2l 11!~ l 2m!!

2~ l 1m!! G1/2

Pl
m~ t !, ~2.3!

where t5cosu and the standard Legendre functions are
given by

Pl
m~ t !5

1

2l l !
~12t2!m/2

dl 1m

dtl 1m ~ t221! l . ~2.4!

By virtue of these definitions, it is readily verified that

Pl
2m~ t !5~21!mPl

m~ t !. ~2.5!

Since the so-called ‘‘solid’’ spherical harmonicsr lYlm

are well known to behomogeneouspolynomials of degreel
in the Cartesian coordinatesx,y,z, the ‘‘surface’’ harmonics
Ylm can be expressed as homogenous polynomials

Ylm5Ylm~j!, ~2.6!

in terms of the complex componentsj of the real unit vector
in the basise1 ,e2 ,e3 ,

j5~j2 ,j0 ,j1!, ~2.7!

where

j152eif sinu/&5~2x2 iy !/&r ,

j25e2 if sinu/&5~x2 iy !/&r , ~2.8!

j05cosu5z/r ,

which satisfy

j0
22j2j15uj2u21uj0u21uj1u25~x21y21z2!/r 251.

~2.9!

For example, for the azimuthal quantum numberl 51, one
has

Y11~j!5~4p/3!1/2j1 ,

Y1,21~j!5~4p/3!1/2j2 , ~2.10!

Y10~j!5~4p/3!1/2j0 .

Because of the identity~2.9!, the homogeneous form~2.6!
can of course be converted into various nonhomogeneous
forms, but we shall consider these as ‘‘nonstandard.’’ In
what follows, we shall always think of the spherical harmon-
ics as thestandardhomogeneous functions~2.6! of the Car-
tesian coordinatesj in a given frame defined by basis vectors
e1 ,e2 ,e3 @see Eq.~1.3!#, rather than as functions of the cor-
responding anglesu andf as is conventionally done.

III. RECURRENCE RELATIONS FOR COMPLEX
SPHERICAL HARMONICS

All subsequent derivations are deduced from the follow-
ing three recurrence relations7 for the normalized Legendre
functions of Eq.~2.2!:

cosu Pl
m5Al

mPl 21
m 1Al 11

m Pl 11
m , ~3.1!

sinu Pl
m5Bl

mPl 21
m212Bl 11

2m11Pl 11
m21, ~3.2!

sinu Pl
m52Bl

2mPl 21
m111Bl 11

m11Pl 11
m11, ~3.3!

where

Al
m5F ~ l 1m!~ l 2m!

~2l 11!~2l 21!G
1/2

, ~3.4!

Bl
m5F ~ l 1m!~ l 1m21!

~2l 11!~2l 21! G1/2

. ~3.5!

Multiplication of Eq. ~3.1! by (21)meimf/A2p yields

j0Ylm5Al
mYl 21,m1Al 11

m Yl 11,m , ~3.6!

and similar multiplications for Eqs.~2.3! and ~2.4! yield

&j2Ylm52Bl
mYl 21,m211Bl 11

2m11Yl 11,m21 , ~3.7!

&j1Ylm52Bl
2mYl 21,m111Bl 11

m11Yl 11,m11 . ~3.8!

Equations~3.1!, ~3.2!, ~3.3! as well as Eqs.~3.6!, ~3.7!, ~3.8!
are valid form being positive, negative, or zero. In accor-
dance with the remarks at the end of Sec. II, we perceive
Eqs. ~3.6! to ~3.8! as identities between the standard homo-
geneous polynomial representations of theYlm in terms of
j2 ,j0 ,j1 .

IV. INTEGRAL FORMULAS

Explicit expressions will be needed in the subsequent
sections for the transition moment integrals^Yl 11,muj i uYlm&
where the implied integration is defined to extend over the
unit sphere in the Cartesian space. By virtue of the orthonor-
mality of the spherical harmonics, they are readily derived
from the recurrence relations of the previous section. From
Eq. ~3.6! one obtains

^Yl 11,muj0uYlm&5Al 11
m dmm , ~4.1!
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and from Eqs.~3.7! and ~3.8! follows that, for l given and
fixed, the only nonvanishing integrals involvingj1 and j2

are

^Yl 11,muj1uYlm&5
1

A2
Bl 11

m11dm,m11 , ~4.2!

and

^Yl 11,muj2uYlm&5
1

A2
Bl 11

2m11dm,m21 . ~4.3!

Eqs.~4.1!, ~4.2!, and~4.3! are valid form being positive,
negative, or zero.

V. ROTATION OF COMPLEX SPHERICAL HARMONICS

In the present section, we collect some elementary rela-
tions regarding rotation matrices that will be used in the
subsequent sections.

A. Decomposition into real and imaginary parts

The rotation of the basis vectors in real three-
dimensional space, introduced by Eq.~1.3!, implies the fol-
lowing transformation between the coordinates of any one
vector with respect to the two bases:

~ x̂,ŷ,ẑ!5~x,y,z!S Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rxy Rzz

D 5~x,y,z!R. ~5.1!

By virtue of the invariance ofr 5(x21y21z2)1/2, the com-
plex components of the unit vector with respect to the two
bases transform therefore as follows:

ĵ5~ ĵ2 ,ĵ0 ,ĵ1!5~j2 ,j0 ,j1!D5jD, ~5.2!

with

D5F1 iG ~5.3!

where the real and imaginary parts ofD are given by the
following expressions in terms of the elements ofR:

S F2,2 F2,0 F2,1

F0,2 F0,0 F0,1

F1,2 F1,0 F1,1

D
5S (Ryy1Rxx)/2 Rxz /& (Ryy2Rxx)/2

Rzx /& Rzz 2Rzx /&

(Ryy2Rxx)/2 2Rxz /& (Ryy1Rxx)/2
D , ~5.4!

S G2,2 G2,0 G2,1

G0,2 G0,0 G0,1

G1,2 G1,0 G1,1

D
5S ~Ryx2Rxy!/2 Ryz /& 2~Ryx1Rxy!/2

2Rzy /& 0 2Rzy /&

~Ryx1Rxy!/2 Ryz /& ~Rxy2Ryx!/2
D . ~5.5!

In analogy to Eq.~5.3!, all complex rotation matrices of
Eq. ~1.1! can be resolved into their real and complex parts,
i.e.,

Dmm8
l

5Fmm8
l

1 iGmm8
l . ~5.6!

Since, from Eqs.~1.1!, ~2.2!, and~2.5! one readily deduces

D2m,2m8
l

5~21!m1m8~Dmm8
l

!* , ~5.7!

it follows that

F2m,2m8
l

5~21!m1m8Fmm8
l ,

~5.8!
G2m,2m8

l
52~21!m1m8Gmm8

l .

These general identities account in particular for the relation-
ships seen to exist between the matrix elements in the case of
Eqs.~5.4!, ~5.5!.

B. General rotation matrices Dmm 8
l as homogeneous

polynomials of Dmm 8

In analogy to Eq.~2.6!, the transformed harmonics on
the left hand side of Eq.~1.1! are defined as the standard
homogeneous polynomials in terms of the transformed com-
plex coordinates (ĵ2 ,ĵ0 ,ĵ1), i.e.,

Ŷlm5Ylm~ ĵ !. ~5.9!

The transformation~1.1! can therefore be determined by first
substituting the transformation~5.2! into the polynomials
given by Eq.~5.9! and, then, transforming back to theYlm(j)
using one of the possible inverses of Eq.~2.6!. From this
reasoning, it is apparent that the elements of the general ro-
tation matricesDl can be expressed as homogenous polyno-
mials of degreel in terms of the elements ofD. They can
thus be calculated directly from the elements of the rotation
matrix R without the detour over the Euler angles. In par-
ticular, Eq.~2.10! shows that the matrix forl 51 is identical
with the matrixD given by Eqs.~5.3! to ~5.5!, i.e.,

D15D. ~5.10!

C. Rotation matrices as integrals

By virtue of Eq.~1.1!, the rotation matrices can also be
expressed as the integrals

Dmm8
l

5^YlmuŶlm8&, ~5.11!

where the integration goes over the invariant Cartesian unit
sphere and the arguments ofYlm and Ŷlm8 , respectively are
the components of the same unit vector relative to the two
fixed Cartesian bases$e1 ,e2 ,e3% and$ê1 ,ê2 ,ê3% that are con-
nected byR @Eq. ~13!#.

VI. RECURRENCE RELATIONS FOR COMPLEX
ROTATION MATRICES

As seen in the preceding section, the rotation matrix el-
ementsDmm8

l can be obtained as homogeneous polynomials
of the elements ofD. We shall now build up these polyno-
mials by recursion, starting withD15D. From the identities
in Sec. III, a variety of recurrence relations can be deduced
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between the rotation matrices for the harmonics of orderl
and those of order (l 21). Here, we derive three sets that
prove useful for the quantitative evaluation of the matrices.

A. Recurrence relation for „2 l 11…<m 8<„1 l 21…

This recurrence relation is derived from the recurrence
relation ~3.6! between spherical harmonics. It yields the re-
currence relation

Dmm8
l

5am,m8
l D00Dm,m8

l 21
1bm,m8

l D10Dm21,m8
l 21

1b2m,m8
l D210Dm11,m8

l 21 , ~6.1!

for the rotation matrices, where

amm8
l

5Al
m/Al

m85F ~ l 1m!~ l 2m!

~ l 1m8!~ l 2m8!G
1/2

, ~6.2!

bmm8
l

5Bl
m/~&Al

m8!5F ~ l 1m!~ l 1m21!

2~ l 1m8!~ l 2m8! G
1/2

. ~6.3!

It should be noted that the casesm856 l are not covered and
that

amm8
l

50 for m56 l , ~6.4!

bmm8
l

50 for m52 l and m52 l 11 ~6.5!

which, in certain cases, eliminates one or two terms in Eq.
~6.1!.

B. Proof of Eq. „6.1…

The recurrence relation~3.6! applies to the spherical har-
monics in the rotated coordinate frame as well as to those in
the unrotated coordinate frame. Multiplying~3.6! in the ro-
tatedframe by theunrotated Yl 11,m and integrating over the
unit sphere in Cartesian space, as discussed at the end of the
last section, yields

^Yl 11,mu ĵ0uŶlm8&5Al
m8^Yl 11,muŶl 21,m8&

1Al 11
m8 ^Yl 11,muŶl 11,m8&. ~6.6!

The rotated quantities on both sides of this equation are now
expanded in terms of the unrotated quantities, using Eq.~1.1!
for the harmonics and Eq.~5.2! for ĵ0 . It is noted that the
first term on the right hand side vanishes, because the rotated
Ŷl 21,m can be expressed as linear combinations of the unro-
tated Yl 21,m which, in turn, are orthogonal to theYl 11,m .
One obtains therefore

Dmm8
l 11

5~Al 11
m8 !21 (

i 52

1

(
m52 l

l

^Yl 11,muj i uYlm&Di0Dm,m8
l ,

~6.7!

which expresses the matrixDl 11 in terms of the matricesDl

andD. Inserting now, for the moment integrals occurring in
this equation, the explicit expressions derived in Sec. IV, one
finds, for any value ofm, the formula

Dmm8
l 11

5b2m,m8
l 11 D210Dm11,m8

l
1bm,m8

l 11 D10Dm21,m8
l

1am,m8
l 11 D00Dm,m8

l , ~6.8!

where the coefficients are those defined by Eqs.~6.2! and
~6.3!. Replacement ofl by (l 21) in this equation yields Eq.
~6.1!.

C. Recurrence relation for 2 l<m 8<„ l 22…

This recurrence relation is derived from the recurrence
relation ~3.7! for spherical harmonics. Starting with Eq.
~3.7!, a derivation that is entirely analogous to that just dis-
cussed yields

Dm,m8
l

5cm,2m8
l D0,21Dm,m811

l 21

1dm,2m8
l D1,21Dm21,m811

l 21

1d2m,2m8
l D21,21Dm11,m811

l 21 , ~6.9!

where

cmm8
l

5&Al
m/Bl

m85F 2~ l 1m!~ l 2m!

~ l 1m8!~ l 1m821!G
1/2

, ~6.10!

dmm8
l

5Bl
m/Bl

m85F ~ l 1m!~ l 1m21!

~ l 1m8!~ l 1m821!G
1/2

. ~6.11!

It should be noted that the casem85 l andm85( l 21)
are not covered by Eq.~6.8! and that

cmm8
l

50 for m56 l , ~6.12!

dmm8
l

50 for m52 l and m5~2 l 11!. ~6.13!

D. Recurrence relation for „2 l 12…<m 8<1 l

This recurrence relation is derived from the recurrence
relation ~3.8! for spherical harmonics. Starting with Eq.
~3.8!, a derivation that is entirely analogous to that used in
Sec. VI B yields

Dm,m8
l

5cm,m8
l D0,1Dm,m821

l 21
1dm,m8

l D11Dm2 l ,m821
l 21

1d2m,m8
l D21,1Dm11,m821

l 21 , ~6.14!

where the coefficientscmm8
l anddmm8

l are again those defined
by Eqs.~6.10! and ~6.11!. This recurrence relation does not
cover the casesm852 l andm85(2 l 11).

E. Comment

A knowledgeable referee has called the author’s atten-
tion to a very general relationship between Wigner
D-functions with arbitrary sub- and superscripts which is
listed, for instance, as Eq.~5! in Sec. 4.6.2 of the compre-
hensive formula collection for the quantum theory of angular
momenta by Varshalovichet al.8 Due to its complete gener-
ality, this identity is complex, containing numerous
Clebsch–Gordan coefficients. For the case that three super-
scripts in this equation are chosen asj 151, j 25 j 21, j 3

5 j , the general equation collapses in fact into our relations
~6.1!, ~6.9!, ~6.14!. It is because this case is so elementary,
that we were able to reach the recurrence relations given here
by a line of reasoning that is simpler than the body of deri-
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vations required to establish the general theory of the Wigner
D-functions. One has to assume that it is because of the large
number of general formulas in that theory and because of the
complexity of most of them that the practical usefulness of
our particular identities for evaluating rotation matrices has
so far escaped notice.

VII. OPERATIONAL ALGORITHM

In the context of the practical quantitative use of rotation
matrices, evaluations of real quantities are ultimately re-
quired. For the numerical execution it is therefore advanta-
geous to recast the complex recurrence scheme of the pre-
ceding section in terms of a real recurrence scheme for the
real and imaginary componentsF andG introduced through
Eq. ~5.6!. This is accomplished by inserting this resolution as
well as Eq.~5.3! into Eqs.~6.1!, ~6.9!, ~6.14! and then sepa-
rating the real and the imaginary parts. The resulting formu-
las become more transparent by use of the intermediary
quantities

Hm.m8
l

~ i , j !5Fi j Fm,m8
l 21

2Gi j Gm,m8
l 21 , ~7.1!

Km,m8
l

~ i , j !5Fi j Gm,m8
l 21

1Gi j Fm,m8
l 21 , ~7.2!

where theFi j and Gi j are defined in Eqs.~5.4! and ~5.5!.
With these definitions, one deduces from Eqs.~6.1!, ~6.9!,
~6.14! the following recurrence relations forFmm8

l and
Gmm8

l .

A. Recurrence relation for „2 l 11…<m 8<„1 l 21…

Fmm8
l

5am,m8
l Hm,m8

l
~0,0!1bm,m8

l Hm21,m8
l

~1,0!

1b2m,m8
l Hm11,m8

l
~2,0!, ~7.3!

Gmm8
l

5am,m8
l Km,m8

l
~0,0!1bm,m8

l Km21,m8
l

~1,0!

1b2m,m8
l Km11,m8

l
~2,0!. ~7.4!

B. Recurrence relation for 2 l<m 8<„ l 22…

Fm,m8
l

5cm,2m8
l Hm,m811

l
~0,2 !

1dm,2m8
l Hm21,m811

l
~1,2 !

1d2m,2m8
l Hm11,m811

l
~2,2 !, ~7.5!

Gm,m8
l

5cm,2m8
l Km,m811

l
~0,2 !

1dm,2m8
l Km21,m811

l
~1,2 !

1d2m,2m8
l Km11,m811

l
~2,2 !. ~7.6!

C. Recurrence relation for „2 l 12…<m 8<1 l

Fm,m8
l

5cm,m8
l Hm,m821

l
~0,1 !1dm,m8

l Hm21,m821
l

~1,1 !

1d2m,m8
l Hm11,m821

l
~2,1 !, ~7.7!

Gm,m8
l

5cm,m8
l Km,m821

l
~0,1 !1dm,m8

l Km21,m821
l

~1,1 !

1d2m,m8
l Km11,m821

l
~2,1 !. ~7.8!

The coefficientsamm8
l ,bmm8

l ,cmm8
l ,dmm8

l occurring in these
equations are those defined by Eqs.~6.2! to ~6.5! and ~6.10!
to ~6.13!. We note that every one of them is of the form
~a•b/g•d! wherea, b, g, d are all square-roots of integers
not larger than (2L11) with L being the largest azimuthal
quantum number considered.

VIII. RELATION TO REAL SPHERICAL HARMONICS
AND THEIR ROTATION MATRICES

In agreement with most authors,9 Ivanic and
Ruedenberg3 define the real spherical harmonics as

Ylm~u,f!5Pl
umu~cosu!Fm~f!, ~8.1!

where

Fm~f!5~2p!21/2 m50,

Fm~f!5p21/2cosmf m.0, ~8.2!

Fm~f!5p21/2sinmf m,0.

They are related to the complex harmonics of Eq.~2.2! by

~Yl ,2 l¯Yl ,2m¯Yl ,0¯Yl ,m¯Yl ,l !

5~Yl ,2 l¯Yl ,2m¯Yl ,0¯Yl ,m¯Yl ,l !W
l , ~8.3!

wherem is presumed to be a positive integer and the unitary
matricesWl are

Wl51
W2 l ,2 l W2 l ,l

� �

W2m,2m W2m,m

� �

W0,0

� �

Wm,2m Wm,m

� �

Wl ,2 l Wl ,l

2 . ~8.4!
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As indicated, they contain nonzero elements only on the two
diagonals; all other elements vanish. The nonvanishing ele-
ments are given by

W0051, ~8.5!

and form.0:

S W2m,2m W2m,m

Wm,2m Wm,m
D 5S 2 i /& i ~21!m/&

1/& ~21!m/& D . ~8.6!

It follows that the complex rotation matricesDl of the
present investigation and the rotation matricesRl for the real
spherical harmonics3 are related by the similarity transforma-
tion

Dl5~Wl !†RlWl , ~8.7!

where (Wl)† denotes the hermitian conjugate ofWl . Inser-
tion of Eq. ~5.8! into the left hand side of Eq.~8.7! and of
Eqs. ~8.4!, ~8.5!, ~8.6! into the right hand side of Eq.~8.7!
yields, after separation of the real and imaginary parts, the
relations

2Fmn
l 5amanRumu,unu

l 1bmbnR2umu,2unu
l , ~8.8!

2Gmn
l 5ambnRumu,2unu

l 2bmanR2umu,unu
l , ~8.9!

where m and n can be positive, zero, or negative and the
factorsam , bm are given by

am5@~11dm0!~21!~ umu1m!#1/2,
~8.10!

bm5sign~m!~12dmo!am .

The inverse identities are

Rm,n
l 5amanFm,n

l 2bmb2nFm,2n
l , ~8.11!

R2m,2n
l 5amanFm,n

l 1bmb2nFm,2n
l , ~8.12!

Rm,2n
l 5ambnGm,n

l 2bma2nGm,2n
l , ~8.13!

R2m,n
l 52ambnGm,n

l 2bma2nGm,2n
l , ~8.14!

where m and n are presumed to denote nonnegative integers.
It should be noted that the matrixRl for l 51 is not

identical with the matrixR of Eq. ~5.1! but differs from it by
a permutation of rows and columns as follows

S R21,21
1 R21,0

1 R21,1
1

R0,21
1 R0,0

1 R0,1
1

R1,21
1 R1,0

1 R1,1
1
D 5S Ryy Ryz Ryx

Rzy Rzz Rzx

Rxy Rxz Rxx

D .

~8.15!

IX. IMPLEMENTATION AND ASSESSMENT

In the implementation of the code, we have used Eqs.
~7.3!, ~7.4! to calculate all matrix elements withum8uÞ l .
Equations~7.5!, ~7.6! were used to calculate the matrix ele-
ments withm852 l , and Eqs.~7.7!, ~7.8! were used to cal-
culate the matrix elements withm851 l . The program input
consists of the axis rotation matrixR defined by Eq.~5.1!
and the highest quantum numberL. The program then finds
the real and imaginary parts of the complex rotation matrices
Dmm8

l as well as using Eqs.~8.11! to ~8.14!, the real rotation
matricesRmm8

l , for all quantum numbersl 50,1,2,3,...L. The
repeated calculation of square-roots is avoided by generating
a square-root table for all integers up to (2L11) before
beginning the recursion.

The accuracy of the program was tested by comparing
our quantitative results with those obtained with the Ivanic–
Ruedenberg program3 for rotation matrices of real spherical
harmonics for a number of cases. The results found by the
two methods agreed to 14 significant figures up toL540.
Since the two procedures go through very different se-
quences of extended numerical arithmetic, it can be inferred
that no significant figures are lost by either one of the two
algorithms. We confirmed this inference by additionally cal-
culating the elements to sufficient accuracy using
MATHEMATICA 10 and Wigner’s formulas. We also found that
the identities~5.8! were satisfied to full accuracy by the val-
ues ofFmm8

40 andF2m,2m8
40 .

Computations with the Wigner formulas have the prob-
lem that theDmn8

l , all of which have absolute values less
than unity, are obtained as sums of very large positive and
negative numbers. A transparent example is the expression
for m5m850 ~which is independent ofa andg!:

D00
l ~a,b,g!5(

k
~21!k@ l !/k! ~ l 2k!! #2xk~12x! l 2k,

x5sin2 b/2. ~9.1!

Its examination~using Stirling’s formula! shows that, for
largel andb nearp/2, a loss of approximately@ log(2l11/pl)#
significant figures~where log denotes the decimal logarithm!
is to be expected, suggesting a loss of about 7, 10, 13, 16,
and 29 significant figures forl530, 40, 50, 60, and 100,
respectively. These predictions are in fact confirmed by a
comparison of the numerical results displayed in the three
rows of Table I which listD00

l values obtained in three dif-

TABLE I. Accuracy of various methods for calculating matrix elementsD0,0
l for the Euler angleb590°.

l530 l540 l550 l5100

Wigner, exacta 20.144 464 448 094 368 0.125 370 687 619 579 20.112 275 172 659 217 0.079 589 237 387 178 7
Recursion, d.p.b 20.144 464 448 094 367 0.125 370 687 619 579 20.112 275 172 659 217 0.079 589 237 387 178 6
Wigner, d.p.c,d 20.144 464 454 621 912 0.125 371 770 238 445 20.101 160 073 432 271 Inaccessiblee

aCalculated by Eq.~9.1! usingMATHEMATICA 10 with the specification of 15 or more significant figures for the result.
bCalculated by the recursion procedure of Sec. VII of this paper in double precision arithmetic.
cCalculated using a Wigner formula program in double precision arithmetic~see Acknowledgments!.
dIncorrect numbers due to loss of significant figures are indicated by underlined italics.
eBecause in excess of 16 significant figures are lost.
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ferent ways, viz:~i! From Eq. ~9.1! with MATHEMATICA ,10

exact to 15 significant figures,~ii ! with our recurrence pro-
cedure of Sec. VII executed in double-precision arithmetic,
and~iii ! with a general Wigner formula program executed in
double-precision arithmetic. Striking in particular are the re-
sults for l5100 inasmuch as they imply that no significant
figures whatsoever are lost by our recursion in a case where,
even with quadruple precision arithmetic, all significance is
lost by the Wigner representation.

A comparison of the performance, regarding speed as
well as accuracy, of the present method with that of the
evaluation by Wigner’s formulas is provided by Table II
which lists some statistics for the rotation matrices forL
55, 10, 20, 30, 40, deduced from the rotationR with the
Euler anglesa5b5g5p/4. Displayed are the ratios of the
execution times~for the evaluation of all matrices froml
51 to l 5L! taken by the two methods, as well as some
information pertaining to those matrix elements for the high-

est valuel 5L which have the largest errors in the Wigner
procedure. Listed are the orders-of-magnitude of the largest
errors found, the number of elements having such an error,
and the magnitude of the elements themselves. Discrepancies
of the same order-of-magnitude were also found when insert-
ing matrix elements obtained by the Wigner method into the
identities~5.8!.

The quoted quantitative results exhibit the advantages of
the described recursion.
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TABLE II. Execution times and loss of significant figures for Wigner for-
mulas.~Euler anglesa5b5g5p/4!.

L
5Highest
Value of l

Ratio
of CPU
Timesa

Matrix elementsFmm8
l with largest errors forl 5L

Magnitudes
of Largest

Errorsb

Number
of

Elementsb

Magnitudes
of

Elements

5 16 0.6 to 6310216 70 0 to 0.5
10 25 0.6 to 6310215 71 0.03 to 0.3
20 47 0.2 to 2310212 140 0.01 to 0.2
30 77 0.1 to 131029 141 0.004 to 0.2
40 115 0.5 to 531027 191 0.002 to 0.1

a~Execution time for Wigner method/execution time for present method.!
The time is that used for the calculation ofall rotation matrices up toL.

bOnly the matrices for the largest valuesl 5L are considered. Calculations
are executed with a machine accuracy of 15 significant figures. The errors
quoted are the differences between the results obtained by using the Wigner
formulas and the present method.

8831J. Chem. Phys., Vol. 111, No. 19, 15 November 1999 Recurrence relations for rotation matrices


