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Abstract

Scattered light from particles near a plane interface has important impli-
cations for many branches of science. Applications range from radar de-
tection and remote sensing to clean-room monitoring and quality control
in the manufacture of silicon wafers. The most fundamental system of this
type is that of a sphere near a plane interface. Calculating the scattering
is complicated because the boundary conditions at the sphere and plane
surfaces must be satisfied simultaneously, and these two systems represent
two fundamentally different geometries. In this report we present an an-
alytical solution to this problem that retains the physics and may be used
as a basis for more numerically intensive techniques necessary when the
system constituents become irregular.
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1. Scattering System

Physically, we can consider four field components that interact with the
system of a sphere near a plane interface shown in figure 1. For one compo-
nent, the incident light strikes the sphere and is scattered into the far-field
region beneath the plane interface. For a second component, the incident
light reflects off the plane interface before it is scattered by the sphere into
the far-field region beneath the plane interface. For a third component, the
incident light strikes the sphere and is scattered toward the plane interface,
which reflects this light toward the far-field region beneath the plane inter-
face. And for a fourth component, the incident light reflects off the plane
interface before it is scattered by the sphere toward the plane interface; the
plane interface reflects this light toward the far-field region beneath the
plane interface. The total scattered field can be found as the superposition
of these four components, since it is widely known how a plane wave in-
teracts with isolated spheres and plane interfaces. However, this “double
interaction” model does not include the interaction fields, i.e., fields that
are scattered by the sphere, reflected off the plane interface, and are once
again incident upon the sphere. To include the effects of this interaction, we
must use more complicated models.

In this report, we discuss a multipole solution, based on image theory, to
the problem of a sphere in proximity to a plane interface. This type of solu-
tion is valuable, since it retains the individual field components interacting
with the individual system components that many numerical techniques
cannot. In this way, the physics is preserved. The incident, scattered, and in-
teraction fields are expanded in terms of vector spherical harmonics about
coordinate systems centered on the sphere and its image. The boundary
conditions on each subsystem can then be satisfied individually. Because
the field expansions are in terms of vector spherical harmonics, it is rela-
tively easy to satisfy the boundary conditions on the spherical interface. To
satisfy the boundary conditions at the plane interface, an image (or interac-
tion) field is introduced that is physically equivalent to the scattered field
from the sphere that reflects off the plane interface and is incident upon the
sphere. For a perfectly conducting plane interface, this interaction field is
the image of the scattered field from the sphere. When the half-space not
encompassing the particle is dielectric or lossy, some approximation or nu-
merical technique must be used to represent this interaction field.
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Figure 1. Diagram of
scattering system. A
sphere of radius rsph,
complex refractive index
msph, lies a distance d
beneath a plane interface
separating a medium of
refractive index m1 below
interface (z1 < d) from a
region of complex
refractive index m2 above
interface (z1 > d). A plane
wave, whose wave vector
lies in the x1 − z1 plane
and is oriented at angle θ◦
with respect to z1 axis, is
incident upon system. To
help satisfy boundary
conditions, an image
coordinate system
(x2, y2, z2) is introduced a
distance 2d above
coordinate system
centered on sphere.
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2. Field Expansions

Figure 1 shows the scattering system. The isotropic, homogeneous sphere
of refractive index msph and radius rsph is located in air, centered on the
(x1, y1, z1) coordinate system located a distance d beneath a plane interface
separating region 2 of complex refractive index m2 (z1 > d) from region
1 of real refractive index m1 (z1 < d). We denote k1, k2, and ksph to be the
propagation constants of waves in region 1, region 2, and within the sphere.
To satisfy the boundary conditions at the plane interface, we introduce an
image coordinate system (x2, y2, z2), located a distance d above the plane
interface on the z1 axis. This coordinate system is the source of the image
or interaction fields. Incident upon the scattering system is a plane wave of
wavelength λ whose wavevector k◦ is oriented in the x1−z1 plane at angle
θ◦ with respect to the z1 axis. The electromagnetic fields may be expanded
in terms of the vector spherical harmonics centered about the j coordinate
system (j = 1, 2):

M(ρ)
mn (krj) = θ̂j

[
z(ρ)
n (krj)iπ̃mn (cos θj) exp (imφj)

]
(1)

− φ̂j
[
z(ρ)
n (krj)τ̃mn (cos θj) exp (imφj)

]
,

N(ρ)
mn (krj) = r̂j

[
1
krj

z(ρ)
n (krj)n(n+ 1)P̃mn (cos θj) exp (imφj)

]
(2)

+ θ̂j

{
1
krj

d

drj

[
rjz

(ρ)
n (krj)

]
τ̃mn (cos θj) exp (imφj)

}

+ φ̂j

{
i
krj

d

drj

[
rjz

(ρ)
n (krj)

]
π̃mn (cos θj) exp (imφj)

}
,

where z(ρ)
n (krj) are the spherical Bessel functions of the first, second, third,

or fourth kind (ρ = 1, 2, 3, 4), and

π̃mn (cos θ) =
m

sin θ
P̃mn (cos θ) (3)

τ̃mn (cos θ) =
d

dθ
P̃mn (cos θ) (4)
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P̃mn (cos θ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn (cos θ), (5)

where Pmn (cos θ) are the associated Legendre polynomials. We assume a
time dependence of exp(−iωt) throughout.

To satisfy the boundary conditions, we use the linearity property of the
electromagnetic fields and consider the components of the electromagnetic
field individually. These components are each expressed as a multipole ex-
pansion of vector spherical harmonics, and the boundary conditions at the
interfaces of the sphere and of the plane are satisfied simultaneously. We
first consider the incident fields.
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3. Incident Field

The incident electric field that strikes the sphere is expanded in vector
spherical harmonics about the sphere coordinate system as

Einc =
∞∑
n=1

n∑
m=−n

a(1)
mnM

(1)
mn (k1r1) + a(2)

mnN
(1)
mn (k1r1) , (6)

where a(j)
mn are the incident field coefficients. This component of the electric

field is made up of two parts: (1) the plane wave that strikes the sphere
directly and (2) the plane wave that strikes the sphere after it is reflected
off the plane interface. We consider these subcomponents individually, and
because we are dealing with a linear system, the incident field coefficients
are each composed of two elements:

a(j)
mn = a(j)◦

mn + a(j)R
mn , (7)

where a(j)◦
mn are the coefficients of the incident plane wave that strike the

sphere directly, and a(j)R
mn are the coefficients of the incident plane wave that

were reflected off the plane substrate. In general, we consider two different
polarization states of the incident field: (1) A unit-normalized TE-incident
(transverse electric) plane wave of the form ETE = exp ik1(z1 cos θ◦ +
x1 sin θ◦)ŷ1 and (2) a unit-normalized TM-incident (transverse magnetic)
plane wave of the form ETM = exp ik1(z1 cos θ◦ + x1 sin θ◦) × (x̂1 cos θ◦ −
ẑ1 sin θ◦). We denote the coefficients for these two cases with an additional
superscript: a(j)◦,TE

mn and a
(j)◦,TM
mn . We can find these coefficients using the

orthogonality properties of the vector spherical wave functions. The first
coefficient can be expressed as

a(1)◦,TE
mn =

∫
ETE ·M(1)∗

mn (k1r1) dV∫
M(1)

mn (k1r1) ·M(1)∗
mn (k1r1) dV

, (8)

where the asterisk denotes the complex conjugate and the integral is taken
over all space. With a little bit of algebra and calculus, we find

a(1)◦,TE
mn =

−2in

n (n+ 1)
τ̃mn(cos θ◦). (9)
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Similarly, the coefficients

a(2)◦,TE
mn =

∫
ETE ·N(1)∗

mn (k1r1) dV∫
N(1)
mn (k1r1) ·N(1)∗

mn (k1r1) dV
=

−2in

n (n+ 1)
π̃mn(cos θ◦). (10)

It is a simple exercise of Maxwell’s equations to show that

a(1)◦,TM
mn = ia(2)◦,TE

mn (11)

and
a(2)◦,TM
mn = ia(1)◦,TE

mn . (12)

Finally, we must determine the reflected components of the incident field
coefficients. The solution to the scatter of a plane wave by an infinite plane
interface is a classic problem of electromagnetism solved by Fresnel in the
nineteenth century. The amplitude and phase of the reflected plane wave
are dependent on its polarization state, incident angle, and the refractive
index of the media at either side of the interface. The Fresnel reflection co-
efficients for a plane wave incident at angle α on the interface, traveling
from medium i and reflecting off the interface at medium j, are

RTE
ij (α) =

mi cosα−mj

√
1− (mi/mj)

2 sin2 α

mi cosα+mj

√
1− (mi/mj)

2 sin2 α
(13)

RTM
ij (α) = −

mj cosα−mi

√
1− (mi/mj)

2 sin2 α

mj cosα+mi

√
1− (mi/mj)

2 sin2 α
, (14)

where the superscripts on the reflection coefficients denote the polarization
state of the incident field. It should be noted that these particular sets of
equations are valid when the reflected electric field component is pointed
in the same direction as the incident electric field component for both TE
and TM polarization states when α = 0. From the relation

P̃mn (−x) = (−1)n+m P̃mn (x), (15)

we find
π̃mn (−x) = (−1)n+m π̃mn (x) (16)

and
τ̃mn (−x) = (−1)n+m+1 τ̃mn (x) . (17)

Using these expressions, we can write the coefficients of the reflected field
in terms of the coefficients of the direct field:

a(j)TE
mn = a(j)◦,TE

mn (−1)j+n+mRTE
12 (θ◦) exp (2ik1d cos θ◦) (18)
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for the TE-incident plane wave, and

a(j)TM
mn = a(j)◦,TM

mn (−1)j+n+mRTM
12 (θ◦) exp (2ik1d cos θ◦) (19)

for the TM-incident plane wave. The total incident field coefficients can be
written as

a(j)TE
mn = a(j)◦,TE

mn

[
1 + (−1)j+n+mRTE

12 (θ◦) exp (2ik1d cos θ◦)
]

(20)

for the TE-incident plane wave, and

a(j)TM
mn = a(j)◦,TM

mn

[
1 + (−1)j+n+mRTM

12 (θ◦) exp (2ik1d cos θ◦)
]

(21)

for the TM-incident plane wave. Equations (20) and (21) are the vector
spherical harmonic expansion coefficients for the total field of a plane wave
reflecting off a plane interface, and are nothing more than Fresnel theory ex-
pressed in a spherical coordinate system. The phase term exp (2ik1d cos θ◦)
exists in these expressions because the coordinate system from which the
waves are expanded is located a distance d beneath the plane interface.
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4. Fields at the Spherical Interface

The next step in the derivation is to satisfy the boundary conditions at the
spherical interface. All the components of the electromagnetic field must be
expanded in vector spherical harmonics as we did in the previous section
for the incident field. The scattered field component is expanded as

Esca =
∞∑
n=1

n∑
m=−n

b(1)
mnM

(3)
mn (k1r1) + b(2)

mnN
(3)
mn (k1r1) . (22)

For the chosen time dependence, the spherical Hankel functions z(3)
n (k1r1) =

h
(1)
n (k1r1) represent outgoing spherical waves and satisfy the boundary

conditions at infinity. Because there is a pole at the origin, this expansion
can only be used in the region exterior to the spherical interface.

The electric fields inside the sphere volume (r1 < rsph) are expanded in
vector spherical harmonics about the sphere coordinate system as

Esph =
∞∑
n=1

n∑
m=−n

c(1)
mnM

(1)
mn (ksphr1) + c(2)

mnN
(1)
mn (ksphr1) , (23)

where c(j)
mn are the internal field coefficients. The radial dependence of the

vector spherical harmonic expansion must be in terms of Bessel functions
z

(1)
n (ksphr1) = jn (ksphr1) .

Finally, an image or interaction field must be introduced to help satisfy the
boundary conditions at the plane interface. This field is expanded in a series
of outgoing spherical waves centered on the (x2, y2, z2) coordinate system:

Eima =
∞∑
n=1

n∑
m=−n

d(1)
mnM

(3)
mn (k1r2) + d(2)

mnN
(3)
mn (k1r2) . (24)

Physically, this field corresponds to the interaction of the sphere with the
plane interface: the scattered field from the sphere reflects off the plane in-
terface and interacts with the sphere again. To satisfy the boundary condi-
tions on the spherical interface, it is convenient to expand this image field
on the (x1, y1, z1) coordinate system. Such a transformation of coordinate
systems can be performed, since the vector spherical harmonics represent
a complete orthogonal expansion. We discuss details of this expansion and
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satisfying the boundary conditions on the plane interface in the next sec-
tions. Because there is no pole in the interaction field when r1 = 0, the
radial dependence of the vector spherical harmonic expansion must be in
terms of Bessel functions z(1)

n (k1r1) = jn (k1r1):

Eima =
∞∑
n=1

n∑
m=−n

e(1)
mnM

(1)
mn (k1r1) + e(2)

mnN
(1)
mn (k1r1) . (25)

Satisfying the boundary conditions at the spherical interface is a relatively
straightforward process. This has been done well in so many texts that it
would be tedious to repeat the process. Since many applications call for
scattering from nonspherical particles, it is worthwhile to outline a more
general formulation of this scattering solution. The solution when the par-
ticle is spherical will then be provided. We express the fields incident upon
and scattered by the particle in vector spherical harmonics. Any field inci-
dent upon a three-dimensional particle

Einc = p(1)
mnM

(1)
mn (k1r1) + p(2)

mnN
(1)
mn (k1r1) (26)

has a corresponding scattered field, which can be expanded in terms of
vector spherical harmonics

Esca =
∞∑
n′=1

n′∑
m′=−n′

[
p(1)
mnT

11
mnm′n′ + p(2)

mnT
12
mnm′n′

]
M(3)

m′n′ (k1r1) (27)

+
[
p(1)
mnT

21
mnm′n′ + p(2)

mnT
22
mnm′n′

]
N(3)
m′n′ (k1r1) ;

that is, the scattered field coefficients b(j)mn are related to the incident field
coefficients via some transition matrix (or T-matrix) T jkmnm′n′ :

b(j)mn =
∞∑
n′=1

n′∑
m′=−n′

p(1)
mnT

j1
mnm′n′ + p(2)

mnT
j2
mnm′n′ . (28)

In a multiple system like that of a sphere and a plane interface, the total
field incident upon the particle is composed of the incident plane wave
and the interaction field, and the scattered field coefficients are expressed
as

b(j)mn =
∞∑
n′=1

n′∑
m′=−n′

∞∑
n=1

n∑
m=−n

[
a(1)
mn + e(1)

mn

]
T j1mnm′n′ +

[
a(2)
mn + e(2)

mn

]
T j2mnm′n′ . (29)

This equation expresses the scattering coefficients in terms of the T-matrix
of the isolated particle. This is convenient, since T-matrix routines are read-
ily available for many particle systems. For certain types of particles, the
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T-matrix can be simplified. The T-matrix of axially symmetric particles
obeys T jkmnm′n′ = δmm′T

jk
mnm′n′ . For radially symmetric particles, T jkmnm′n′ =

δnn′δmm′T
jk
mnm′n′ , and there is no mode mixing, i.e., T 12

mnm′n′ = T 21
mnm′n′ = 0.

Spheres are a subgroup of this latter particle type, and the T-matrix is sim-
ply composed of the Mie scattering coefficients f jn:

T 11
mnmn = f1

n (30)

= −ksphψ
′
n (ksphrsph)ψn (k1rsph)− k1ψ

′
n (k1rsph)ψn (ksphrsph)

ksphψ′n (ksphrsph) ξn (k1rsph)− k1ψ′n (k1rsph) ξn (ksphrsph)
,

and

T 22
mnmn = f2

n (31)

= −k1ψ
′
n (ksphrsph)ψn (k1rsph)− ksphψ

′
n (k1rsph)ψn (ksphrsph)

k1ψ′n (ksphrsph) ξn (k1rsph)− ksphψ′n (k1rsph) ξn (ksphrsph)
,

where ψn (x) = xjn (x) and ξn (x) = xh
(1)
n (x) are the Riccati-Bessel func-

tions and the primes denote derivatives with respect to the argument. The
other terms of the T-matrix are zero.
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5. Translation Addition Theorem

The translation addition theorem is used to translate a set of vector spheri-
cal harmonics from one coordinate system onto another coordinate system.
We need to find in this derivation a relationship between the two sets of in-
teraction coefficients given by equations (24) and (25). The fields expressed
by these equations are identical, but they are expanded about different co-
ordinate systems. For a translation along the negative z1 axis a distance 2d
with no rotation, the vector spherical harmonics are related by

M(3)
mn (k1r2) =

∞∑
n′=1

A
(m,n)
n′ M(1)

mn′ (k1r1) +B
(m,n)
n′ N(1)

mn′ (k1r1) (32)

and

N(3)
mn (k1r2) =

∞∑
n′=1

B
(m,n)
n′ M(1)

mn′ (k1r1) +A
(m,n)
n′ N(1)

mn′ (k1r1) . (33)

This relationship is valid in the region where r1 < |2d| , i.e., out to the pole
located at r2 = 0. We can use these equations to find the relationship be-
tween the d(j)

mn and e
(j)
mn coefficients. Substituting equations (32) and (33)

into equation (24) and comparing with equation (25) yields

e(1)
mn =

∞∑
n′=1

d
(1)
mn′A

(m,n′)
n + d

(2)
mn′B

(m,n′)
n (34)

and

e(2)
mn =

∞∑
n′=1

d
(1)
mn′B

(m,n′)
n + d

(2)
mn′A

(m,n′)
n , (35)

and for a spherical particle, equation (29) can now be expressed as

b(j)mn =
∞∑
n=1

n∑
m=−n

{
a(1)
mn +

∞∑
n′=0

[
d

(1)
mn′A

(m,n′)
n + d

(2)
mn′B

(m,n′)
n

]}
f1
n

+

{
a(2)
mn +

∞∑
n′=0

[
d

(1)
mn′B

(m,n′)
n + d

(2)
mn′A

(m,n′)
n

]}
f2
n . (36)

It is beyond the scope of this report to provide a complete derivation of
the vector translation coefficientsA(m,n)

n′ andB(m,n)
n′ ; however, it is certainly
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worthwhile to write out a set of relations from which these may be calcu-
lated. The vector translation coefficients can be expressed in terms of the
scalar translation coefficients C(m,n)

n′ that are used to translate the spherical
harmonics from one coordinate system onto another coordinate system:

h(1)
n (kr2)P̃mn (cos θ2) exp (imφ2) =

∞∑
n′=0

C
(m,n)
n′ jn′(kr1)P̃mn′ (cos θ1) exp (imφ1) . (37)

The scalar translation coefficients can be found via various recursion rela-
tions. The starting point for calculating the scalar coefficients is

C
(0,0)
n′ =

√
2n′ + 1h(1)

n′ (2k1d), (38)

which results from the expression

h
(1)
0 (k1r2) =

∞∑
n′=0

(
2n′ + 1

)
jn′(k1r1)h(1)

n (2k1d). (39)

From here, the relation

C
(0,n+1)
n′ =

1
(n+ 1)

√
2n+ 3
2n′ + 1

n′
√

2n+ 1
2n′ − 1

C
(0,n)
n′−1 (40)

+ n

√
2n′ + 1
2n− 1

C
(0,n−1)
n′ − (n′ + 1)

√
2n+ 1
2n′ + 3

C
(0,n)
n′+1


can be used to calculate the elements C(0,n)

n′ . The remaining terms in the
matrix can be calculated using the relation

C
(m,n)
n′ =

√
(n′ −m+ 1)(n′ +m)(2n′ + 1)
(n−m+ 1)(n+m)(2n′ + 1)

C
(m−1,n)
n′ (41)

− 2k1d

√
(n′ −m+ 2)(n′ −m+ 1)

(n−m+ 1)(n+m)(2n′ + 1)(2n′ + 3)
C

(m−1,n)
n′+1

− 2k1d

√
(n′ +m)(n′ +m− 1)

(n−m+ 1)(n+m)(2n′ + 1)(2n′ − 1)
C

(m−1,n)
n′−1 .

It should be noted that
C

(m,n)
n′ = C

(−m,n)
n′ . (42)

We can find the vector translation coefficients using

A
(m,n)
n′ = C

(m,n)
n′ − 2k1d

n′ + 1

√
(n′ −m+ 1)(n′ +m+ 1)

(2n′ + 1)(2n′ + 3)
C

(m,n)
n′+1

− 2k1d

n′

√
(n′ −m)(n′ +m)
(2n′ + 1)(2n′ − 1)

C
(m,n)
n′−1 , (43)
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B
(m,n)
n′ = − 2ik1md

n′(n′ + 1)
C

(m,n)
n′ . (44)

Finally, from equations (42) to (44), the following relations are valid:

A
(−m,n)
n′ = A

(m,n)
n′ , (45)

B
(−m,n)
n′ = B

(m,n)
n′ . (46)
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6. Plane Interface

The boundary conditions at the plane interface are the most difficult to
satisfy because all the field expansions are in terms of vector spherical
harmonics. In general terms, we can introduce another transition matrix
U ijmnm′n′ , which, for our purposes, transforms any set of expanding spher-
ical waves centered on coordinate system (x1, y1, z1) incident on the plane
interface:

Eplane
inc = q(1)

mnM
(3)
mn (k1r1) + q(2)

mnN
(3)
mn (k1r1) , (47)

to its scattering response, a set of expanding spherical waves centered on
coordinate system (x2, y2, z2) that are reflected by the plane interface:

Eplane
sca =

∞∑
n′=1

n′∑
m′=−n′

[
q(1)
mnU

11
mnm′n′ + q(2)

mnU
12
mnm′n′

]
M(3)

m′n′ (k1r2)

+
[
q(1)
mnU

21
mnm′n′ + q(2)

mnU
22
mnm′n′

]
N(3)
m′n′ (k1r2) , (48)

that is, any field incident on the plane interface expressed by equation (47)
is scattered by a field expressed by equation (48). For a plane interface, all
elements U ijmnm′n′ = δmm′U

ij
mnm′n′ because of the system symmetry.

We first treat the case of a perfectly conducting plane interface. At the inter-
face (r2 = r1, θ2 = π−θ1, φ2 = φ1), the tangential components of the electric
and magnetic fields must be continuous. We can achieve this by making the
scattered field the mirror image of the incident field. Using equations (1),
(2), (16), and (17), we can easily show that the boundary conditions are sat-
isfied if the scattered field is of the form

Eplane
sca = q(1)

mn (−1)n+m+1 M (−1)n+m N(3)
mn (k1r2) (49)

or
U jkmnm′n′ = δnn′δmm′δjk (−1)n+m+j . (50)

This is equivalent to the following relationship between the scattering and
interaction coefficients

d(j)
mn = − (−1)n+m+j b(j)mn (51)

and equation (36) can now be written as
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b(j)mn =
∞∑
n=1

n∑
m=−n

{
a(1)
mn +

∞∑
n′=1

(−1)n
′+m

[
b
(1)
mn′A

(m,n′)
n − b(2)

mn′B
(m,n′)
n

]}
f1
n

+

{
a(2)
mn +

∞∑
n′=1

(−1)n
′+m

[
b
(1)
mn′B

(m,n′)
n − b(2)

mn′A
(m,n′)
n

]}
f2
n . (52)

Equation (52) represents the final solution to the scattering problem of a
sphere near a perfectly conducting interface. The scattering coefficients b(j)mn
are written in terms of a set of known quantities: translation coefficients
A

(m,n′)
n and B

(m,n′)
n , incident field coefficients a(j)

mn, and Mie coefficients f jn.
By truncating the infinite series, we can find a solution through matrix in-
version techniques. The number of terms necessary for convergence de-
pends on the required accuracy. We can obtain adequate results by carrying
the summation in n to

N = xsph + 4x1/3
sph + 2 (53)

terms, where xsph is the size parameter of the sphere. Note that this formula
is independent of the separation distance d.

Many real-world interfaces are not perfectly conducting. To solve this more
general problem, we must either make some approximation or resort to nu-
merical techniques. The simplest approximation one can make is to assume
that, for the purposes of the interaction only, the image fields are propor-
tional to the scattered fields, i.e.,

U jkmnm′n′ = δnn′δmm′δjk (−1)n+m+j RTE
12 (0) . (54)

The factor of proportionality chosen is the Fresnel coefficient at normal in-
cidence. This means that the scattered fields from the sphere that reflect off
the plane interface and strike the sphere again, strike the plane interface
at normal incidence. Geometrically, there is some justification to this argu-
ment: rays emanating from the center of the sphere reflecting off the plane
interface and striking the sphere can have a maximum incident angle on the
plane interface of 30◦, and the Fresnel reflection coefficients remain nearly
constant at near-normal incident angles. Equation (54) is equivalent to the
following relationship between the scattering and interaction coefficients

d(j)
mn = − (−1)n+m+j RTE

12 (0) b(j)mn (55)
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and equation (36) can now be written as

b(j)mn =
∞∑
n=1

n∑
m=−n

(56){
a(1)
mn +

∞∑
n′=1

(−1)n
′+mRTE

12 (0)
[
b
(1)
mn′A

(m,n′)
n − b(2)

mn′B
(m,n′)
n

]}
f1
n

+

{
a(2)
mn +

∞∑
n′=1

(−1)n
′+mRTE

12 (0)
[
b
(1)
mn′B

(m,n′)
n − b(2)

mn′A
(m,n′)
n

]}
f2
n.

An exact solution for the scattering from a sphere located near an arbitrary
half space requires considerably more effort; however, we can find one us-
ing the derivation above. The only requirement is finding the matrix ele-
ments U jkmnm′n′ . One way to do this is by expanding the individual vector
spherical harmonics given by equation (47) as an angular spectrum of plane
waves. The reflected field is also expressed as an angular spectrum of plane
waves and the angle-dependent amplitudes of the reflected field are equal
to those of the incident field, mulitplied by the appropriate Fresnel reflec-
tion coefficient. Finding the matrix elements U jkmnm′n′ requires expressing
the reflected angular spectrum in terms of the vector spherical harmonics.
This final step is a minor variation on equations (8) and (10). Note that with
little modification, the equations of this report can also be modified to ac-
commodate irregularly shaped particles and roughness on the “plane” in-
terface. The only knowledge required is the appropriate T-matrix of these
constituents.
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7. Scattered Field

For many applications, only the far-field region is of interest, where

h(1)
n (kr) =

(−i)n exp (ikr)
ikr

. (57)

The scattered far fields can be expressed in terms of a scattering amplitude
matrix that contains all the polarization information of the scattered light, Eθsca

Eφsca

 =
exp [ik1r1]
−ik1r1

 S2 S3

S4 S1

 ETM
inc

ETE
inc

 , (58)

where ETE
inc and ETM

inc are the amplitudes of incident TE and TM plane
waves, andEθsca andEφsca are the θ̂1 and φ̂1 components of the scattered elec-
tric field. The total scattered field is composed of the linear superposition of
the scattered field from the sphere Esca and from its image Eima. We have
provided only an explicit expression for Eima when the interface is per-
fectly conducting (for the dielectric half space, the approximate coefficients
given are only valid for the purpose of the interaction). However, the con-
tribution of the image field in the far field is equivalent to the image of the
scattered field multiplied by the Fresnel reflection coefficient RTE (π − θ1)
or RTM (π − θ1), and a phase shift exp (−2ikd cos θ1). We can express the
image of the scattered field in terms of the scattered field using equations
(16) and (17). Separating the individual vector components of equation (22)
yields the following:

S1 =
∞∑
n=1

n∑
m=−n

(−i)n exp (imφ1) (59)

×
{[

1 +RTE
12 (π − θ1) (−1)n+m exp (−2ikd cos θ1)

]
b(2)TE
nm π̃mn (cos θ1)

+
[
1−RTE

12 (π − θ1) (−1)n+m exp (−2ikd cos θ1) b(1)TE
nm τ̃mn (cos θ1)

]}
,

S2 =
∞∑
n=1

n∑
m=−n

(−i)n+1 exp (imφ1) (60)

×
{[

1 +RTM
12 (π − θ1) (−1)n+m exp (−2ikd cos θ1)

]
b(1)TM
nm π̃mn (cos θ1)

+
[
1−RTM

12 (π − θ1) (−1)n+m exp (−2ikd cos θ1) b(2)TM
nm τ̃mn (cos θ1)

]}
,
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S3 =
∞∑
n=1

n∑
m=−n

(−i)n+1 exp (imφ1) (61)

×
{[

1 +RTM
12 (π − θ1) (−1)n+m exp (−2ikd cos θ1)

]
b(1)TE
nm π̃mn (cos θ1)

+
[
1−RTM

12 (π − θ1) (−1)n+m exp (−2ikd cos θ1) b(2)TE
nm τ̃mn (cos θ1)

]}
,

S4 =
∞∑
n=1

n∑
m=−n

(−i)n exp (imφ1) (62)

×
{[

1 +RTE
12 (π − θ1) (−1)n+m exp (−2ikd cos θ1)

]
b(2)TM
nm π̃mn (cos θ1)

+
[
1−RTE

12 (π − θ1) (−1)n+m exp (−2ikd cos θ1) b(1)TM
nm τ̃mn (cos θ1)

]}
.

The superscripts on the scattering coefficients b(j)TE
nm and b(j)TM

nm are the scat-
tering field coefficients when the system is illuminated by TE and TM plane
waves. These expressions represent the far-field solution to the problem of
a sphere near a plane interface. Scattering amplitudes are convenient, the-
oretically, because they can be manipulated to produce measureable quan-
tities like scattering intensities and polarization states. Figure 2 shows the
scatter in the plane of incidence (φ1 = 0◦) of r = 0.55 µm spheres rest-
ing on a substrate illuminated at θ◦ = 30◦ and λ = 0.6328 µm. This fig-
ure demonstrates the sensitivity of the scatter to system parameters. The
TM polarization intensities are especially sensitive to a change in the half-
space complex refractive index (m2), since the TM Fresnel reflection am-
plitudes are more sensitive than the TE amplitudes. Many sizing routines
are based on the positions and spacing of the maxima and minima intensi-
ties. This graph demonstrates that care must be taken when applying such
techniques to particles located on substrates. The spacings remain fairly
constant for the TE illumination of figure 2, but change drastically for TM
illumination.
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Figure 2. Light scattering intensities calculated for r = 0.55 µm spheres on a substrate
illuminated at λ = 0.6328 µm, θ◦ = 30◦, φ1 = 0◦, and d = 0.55 µm. Results are shown when
system is composed entirely of gold (msph = 0.226 + 3.32i) and when system is perfectly
conducting.
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8. Conclusion

We derived a solution for the scattering from a spherical particle near a
perfectly conducting plane interface. The analytical solution is in terms of
a vector spherical harmonic expansion. The equations can be modified to
accommodate an irregular particle near an irregular interface if the scat-
tering T-matrix is known for these isolated subsystems. Additionally, the
equations may also accommodate a nonperfectly conducting half space. We
provided an approximate solution for this latter case, based on a normal-
incident Fresnel reflection of the interaction field.
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