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When investigating the behaviour of particle suspensions, for example in the Stokesian
dynamics simulation technique, it is sometimes necessary to use near-field asymptotic
forms of scalar resistance functions for two unequal rigid spheres, commonly notated
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The required expressions for generating these scalars were initially published in Jeffrey &
Onishi (1984) and Jeffrey (1992).

These important papers suffer from a number of small errors, and furthermore, the reader
may find it difficult to generate the required expressions (and therefore the value of these
functions) independently, given the omission of intermediate formulae.

A partial list of errata has been published by Kengo Ichiki (http://ryuon.sourceforge.
net/twobody/errata.html), and some of these errors appear to have been noticed by
authors using these papers in their extensions. However, I have not found a comprehensive
description of how to fully generate, from scratch, expressions for these functions.

This short article is a compilation of the relevant equations, with those originally omitted
now added, and with any errors fixed. Equations from Jeffrey & Onishi (1984) are labelled
(JO 1.1), those from Jeffrey (1992) are labelled (J 1), and those from the helpful Ichiki
et al. (2013) are labelled (I 1).

At the end of the article, the questions ‘how do we know there are errors?’ and ‘how do
we know they are fixed?’ are addressed.

Throughout this article, we use the same notation as these papers. For two spheres of
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radius a1, a2 a distance s apart, we define the non-dimensional gap ξ and size ratio λ as

ξ =
2s

a1 + a2
− 2, λ =

a2
a1
. (2)

The near-field forms are valid for ξ � 1 and ξ � λ.

In order to match the far-field forms, it is necessary to scale the terms
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XA terms

Here the XA formulae are given in full, with changes from the source material when noted.
The same directions for alteration, when required, will be given for the other terms in
later sections.

Set up the recurrence relations

Pn00 = δ1n, (5)

Vn00 = δ1n, (6)

Vnpq = Pnpq −
2n

(n+ 1)(2n+ 3)

q∑
s=1

(
n+ s
n

)
Ps(q−s)(p−n−1), (7)

Pnpq =

q∑
s=1

(
n+ s
n

)(
n(2n+ 1)(2ns− n− s+ 2)

2(n+ 1)(2s− 1)(n+ s)
Ps(q−s)(p−n+1)

−n(2n− 1)

2(n+ 1)
Ps(q−s)(p−n−1) −

n (4n2 − 1)

2(n+ 1)(2s+ 1)
Vs(q−s−2)(p−n+1)

)
, (8)

(JO 3.6–3.9). Then define the formulae

fk(λ) = 2k

k∑
q=0

P1(k−q)qλ
q, (9)

g1(λ) = 2λ2(1 + λ)−3, (10)

g2(λ) =
1

5
λ(1 + 7λ+ λ2)(1 + λ)−3, (11)

g3(λ) =
1

42
(1 + 18λ− 29λ2 + 18λ3 + λ4)(1 + λ)−3, (12)

m1(m) = −2δm2 + (m− 2)(1 − δm2), (13)
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(JO 3.15, 3.19); and

AX
11 = 1 − 1

4
g1 +

∞∑
m=2

m even

[
2−m(1 + λ)−mfm − g1 − 2m−1g2 + 4m−1m−11 g3

]
, (14)

−1

2
(1 + λ)AX

12 =
1

4
g1 + 2g2 log 2 − 2g3

+
∞∑

m=1
m odd

[
2−m(1 + λ)−mfm − g1 − 2m−1g2 + 4m−1(m+ 2)−1g3

]
, (15)

(JO 3.22–3.23), noting the correction from m1 to m+ 2 in AX
12. Then the resistance scalars

are given by

XA
11 = g1ξ

−1 + g2 log(ξ−1) + AX
11 + g3ξ log(ξ−1), (16)

−XA
12 = g1ξ

−1 + g2 log(ξ−1) − 1

2
(1 + λ)AX

12 + g3ξ log(ξ−1), (17)

from (JO 3.17–3.18) up to O(ξ log(ξ−1)): note the different factor on XA
12.

Y A terms

The recurrence relations are (JO 4.6–4.11), but with Vnpq corrected to

Vnpq = Pnpq +
2n

(n+ 1)(2n+ 3)

q∑
s=1

(
n+ s
n+ 1

)
Ps(q−s)(p−n−1), (18)

noticing the sign change on the 1 in the last subscript.

The required intermediate formulae for the f , g and m functions are eq. (9), (JO 4.16–4.17),
and eq. (13), respectively.

Then the AY terms are given by (JO-4.17–4.18), leaving us with the resistance scalar
formulae,

Y A
11 = g2 log(ξ−1) + AY

11 + g3ξ log(ξ−1), (19)

−Y A
12 = g2 log(ξ−1) − 1

2
(1 + λ)AY

12 + g3ξ log(ξ−1), (20)

from (JO 4.15–4.16), with a different factor on Y A
12.

Y B terms

The recurrence relations are the same as those for the Y A terms. The required intermediate
formulae for the f and g functions are

fk(λ) = 2k+1

k∑
q=0

Q1(k−q)qλ
q, (21)

and (JO between 5.6 and 5.7), respectively.
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The BY terms are given by

BY
11 = 2g2 log 2 − 2g3

+
∞∑

m=1
m odd

[
2−m(1 + λ)−mfm − 2m−1g2 + 4m−1(m+ 2)−1g3

]
, (22)

−1

4
(1 + λ)2BY

12 = −g3 +
∞∑

m=2
m even

[
2−m(1 + λ)−mfm − 2m−1g2 + 4m−1(m+ 2)−1g3

]
, (23)

having been corrected from (JO 5.7–5.8).

Then the resistance scalars are given by

Y B
11 = g2 log(ξ−1) +BY

11 + g3ξ log(ξ−1), (24)

−Y B
12 = g2 log(ξ−1) − 1

4
(1 + λ)2BY

12 + g3ξ log(ξ−1), (25)

from (JO 5.5–5.6), with a different factor on Y B
12 .

XC terms

Expressions for the resistance scalars can be expressed directly as

XC
11 =

λ3

(1 + λ)3
ζ

(
3,

λ

1 + λ

)
− λ2

4(1 + λ)
ξ log(ξ−1), (26)

XC
12 = − λ3

(1 + λ)3
ζ(3, 1) +

λ2

4(1 + λ)
ξ log(ξ−1), (27)

(JO 6.9–6.10), where XC
12 has been divided by 8/(1 +λ)3, and where ζ(z, a) is the Hurwitz

zeta function,

ζ(z, a) =
∞∑
k=0

1

(k + a)z
. (28)

Y C terms

The recurrence relations are the same as those for the Y A terms except the initial conditions
are replaced by (JO 7.3–7.5).

The intermediate formula for the f function is

fk(λ) = 2k

k∑
q=0

Q1(k−q)qλ
q+(k mod 2), (29)

with the g formula given by (JO between 7.10 and 7.11), with the correction to g5 of

g5(λ) =
2

125
λ(43 − 24λ+ 43λ2)(1 + λ)−4. (30)
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Then the CY terms are

CY
11 = 1 − g3 +

∞∑
m=2

m even

[
2−m(1 + λ)−mfm − 2m−1g2 + 4m−1(m+ 2)−1g3

]
, (31)

CY
12 = 2g4 log 2 − 2g5 +

∞∑
m=1
m odd

[
23−m(1 + λ)−3−mfm − 2m−1g4 + 4m−1(m+ 2)−1g5

]
, (32)

noting the corrections to both of (JO 7.11-7.12).

The resistance scalars are finally

Y C
11 = g2 log(ξ−1) + CY

11 + g3ξ log(ξ−1), (33)

8

(1 + λ)3
Y C
12 = g4 log(ξ−1) + CY

12 + g5ξ log(ξ−1), (34)

noting the different factor on Y C
12 from (JO 7.9–7.10).

XG terms

The recurrence relations are the same as those for XA, and the f and g functions are (I
94) and (J between 19b and 20a). The GX terms are given by (J 21), noting that in their

notation, f̃(λ) = 2−mf(λ). This gives us expressions for XG of

XG
11 = g1ξ

−1 + g2 log(ξ−1) +GX
11 + g3ξ log(ξ−1), (35)

XG
12 = −g1ξ−1 − g2 log(ξ−1) +

1

4
(1 + λ)2GX

12 − g3ξ log(ξ−1), (36)

from (J 19) with a different factor on the XG
12.

Y G terms

The recurrence relations are the same as those for Y A, and the f and g functions are
(I 115) and (J between 27b and 28a). The GY terms are given by (J 29), giving us
expressions for Y G of

Y G
11 = g2 log(ξ−1) +GY

11 + g3ξ log(ξ−1), (37)

Y G
12 = −g2 log(ξ−1) +

1

4
(1 + λ)2GY

12 − g3ξ log(ξ−1), (38)

from (J 27) with a different factor on the Y G
12 .

Y H terms

The recurrence relations are the same as those for Y C , and the f and g functions are
(I 120) and (J between 35b and 36a). The GY terms are given by (J 37), giving us
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expressions for Y H of

Y H
11 = g2 log(ξ−1) +HY

11 + g3ξ log(ξ−1), (39)

Y H
12 = g5 log(ξ−1) +

1

8
(1 + λ)3HY

12 + g6ξ log(ξ−1), (40)

from (J 35) with a different factor on the Y H
12 .

XM terms

The recurrence relations are the same as those for XA, but with the different initial
conditions (J 44). The f and g functions are given by (I 105) and (J between 48b and
49a). The MX terms are given by (J 50), giving us expressions for XM of

XM
11 = g1ξ

−1 + g2 log(ξ−1) +MX
11 + g3ξ log(ξ−1), (41)

XM
12 = g4ξ

−1 + g5 log(ξ−1) +
1

8
(1 + λ)3MX

12 + g6ξ log(ξ−1), (42)

from (J 48) with a different factor on the XM
12 .

Y M terms

The recurrence relations are the same as those for Y A, but with the different initial
conditions (J 58). The f and g functions are given by (I 125) and (J between 64b and
65a). The MY terms are given by (J 66), giving us expressions for Y M of

Y M
11 = g2 log(ξ−1) +MY

11 + g3ξ log(ξ−1), (43)

Y M
12 = g5 log(ξ−1) +

1

8
(1 + λ)3MY

12 + g6ξ log(ξ−1), (44)

from (J 64) with a different factor on the Y M
12 .

ZM terms

The recurrence relations are (J 73–76). The f and g functions are given by (I 131) and (J
between 79b and 80a). The MZ terms are given by (J 81), giving us expressions for ZM of

ZM
11 = MZ

11 + g3ξ log(ξ−1), (45)

ZM
12 =

1

8
(1 + λ)3MZ

12 − g3ξ log(ξ−1), (46)

from (J 79) with a different factor on the ZM
12 .

How do we know there are mistakes?

The original articles provide tabulated values of the intermediate scalars AX
11, etc. The

easiest way for the reader to confirm mistakes in the formulae is to confirm that the values
computed from these formulae do not match those tabulated. For example:
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value from (JO) formulae value in (JO) tables correct value

AX
12(λ = 1) −0.24300 −0.35022 −0.35022

BY
11(λ = 1) −0.8355 −0.2390 −0.2390

Alternatively, these can be spotted by either deriving the equations independently, or
observing that the values provided do not match those in the mid-field; both methods are
described below.

How do we know they are fixed?

The reader is invited to derive and confirm the above formulae themselves, should they
wish. The method is perhaps best explained in Jeffrey (1992), sections II (starting at the
paragraph containing the definition of ξ), III B & III C, where XG is used as an example.

We can also confirm that the formulae produce values of the resistance scalars which
match those in the mid-field. Figures 1 to 3 demonstrate the near-field values matching
to the mid-field values, which have been computed independently for ξ & 0.014 using the
two-sphere method of Wilson (2013), based on the solution to Stokes flow given by Lamb
(1932). Recall that the near-field equations are valid only for ξ � λ.
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Resistance scalars for λ= 1

Figure 1: Values of the scalar resistance functions over non-dimensional gap, ξ, for size ratio
λ = 1. Those generated from the near-field formulae are represented by hollow circles
(#), and those generated from Lamb’s solution (Wilson, 2013) are filled circles ( ).
The dashed vertical line appears at ξ = λ, recalling that the near-field formulae are
only valid for ξ � λ.

01
×103 XA

11

1.001.251.50 YA11

−0.5
0.0 YB11

1.33351.3340 XC
11

1.501.75 YC11

01
×103 XG

11

0
2 ×10−1 YG11

0
2 ×10−1 YH11

0
1 ×103 XM

11

1.11.21.3 YM11

2.55.07.5 ×10−4+1.111 ZM
11

−10
×103 XA

12

−5.0−2.5 ×10−1 YA12

0.0
0.5 YB12

−1.0−0.5 ×10−3 XC
12

0
1 ×10−2 YC12

−10
×103 XG

12

−2
0 ×10−1 YG12

10-4 10-2 100
ξ

0.00.5 ×10−2 YH12

10-4 10-2 100
ξ

0
1 ×102 XM

12

10-4 10-2 100
ξ

02
×10−2 YM12

10-4 10-2 100
ξ

−0.50.0 ×10−3 ZM
12

Resistance scalars for λ= 0.1

Figure 2: Values of the scalar resistance functions over non-dimensional gap, ξ, for size ratio
λ = 0.1. Those generated from the near-field formulae are represented by hollow circles
(#), and those generated from Lamb’s solution (Wilson, 2013) are filled circles ( ).
The dashed vertical line appears at ξ = λ, recalling that the near-field formulae are
only valid for ξ � λ.
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Resistance scalars for λ= 0.01

Figure 3: Values of the scalar resistance functions over non-dimensional gap, ξ, for size ratio
λ = 0.01. Those generated from the near-field formulae are represented by hollow
circles (#), and those generated from Lamb’s solution (Wilson, 2013) are filled circles
( ). The dashed vertical line appears at ξ = λ, recalling that the near-field formulae
are only valid for ξ � λ.
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