Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| //! > NOTE: This crate is generally *slower* than using `Vec::binary_search` over a pre-sorted | |
| //! > vector, contrary to the claims in the referenced paper, and is mainly presented for | |
| //! > curiosity's sake at this point. | |
| //! | |
| //! This crate provides a data structure for approximate lookups in ordered collections. | |
| //! | |
| //! More concretely, given a set `A` of `n` values, and a query value `x`, this library provides an | |
| //! efficient mechanism for finding the smallest value in `A` that is greater than or equal to `x`. | |
| //! In particular, this library caters to the important case where there are many such queries to | |
| //! the same array, `A`. | |
| //! | |
| //! This library is constructed from the best solution identified in [Array Layouts for | |
| //! Comparison-Based Searching](https://arxiv.org/abs/1509.05053) by Paul-Virak Khuong and Pat | |
| //! Morin. For more information, see the paper, [their | |
| //! website](http://cglab.ca/~morin/misc/arraylayout-v2/), and the [C++ implementation | |
| //! repository](https://github.com/patmorin/arraylayout). | |
| //! | |
| //! # Current implementation | |
| //! | |
| //! At the time of writing, this implementation uses a branch-free search over an | |
| //! Eytzinger-arranged array with masked prefetching based on the [C++ | |
| //! implementation](https://github.com/patmorin/arraylayout/blob/3f20174a2a0ab52c6f37f2ea87d087307f19b5ee/src/eytzinger_array.h#L253) | |
| //! written by the authors of the aforementioned paper. This is the recommended algorithm from the | |
| //! paper, and what the authors suggested in | |
| //! https://github.com/patmorin/arraylayout/issues/3#issuecomment-338472755. | |
| //! | |
| //! Note that prefetching is *only* enabled with the (non-default) `nightly` feature due to | |
| //! https://github.com/aweinstock314/prefetch/issues/1. Suggestions for workarounds welcome. | |
| //! | |
| //! # Performance | |
| //! | |
| //! The included benchmarks can be run with | |
| //! | |
| //! ```console,ignore | |
| //! $ cargo +nightly bench --features nightly | |
| //! ``` | |
| //! | |
| //! This will benchmark both construction and search with different number of values, and | |
| //! differently sized values -- look for the line that aligns closest with your data. The general | |
| //! trend is that `ordsearch` is faster when `n` is smaller and `T` is larger as long as you | |
| //! compile with | |
| //! [`target-cpu=native`](https://github.com/jonhoo/ordsearch/issues/2#issuecomment-390441137) and | |
| //! [`lto=thin`](https://github.com/jonhoo/ordsearch/issues/2#issuecomment-390446671). The | |
| //! performance gain seems to be best on Intel processors, and is smaller since the (relatively) | |
| //! recent improvement to [SliceExt::binary_search | |
| //! performance](https://github.com/rust-lang/rust/pull/45333). | |
| //! | |
| //! Below are [summarized](https://github.com/BurntSushi/cargo-benchcmp) results from an AMD | |
| //! ThreadRipper 2600X CPU run with: | |
| //! | |
| //! ```console | |
| //! $ rustc +nightly --version | |
| //! rustc 1.28.0-nightly (e3bf634e0 2018-06-28) | |
| //! $ env CARGO_INCREMENTAL=0 RUSTFLAGS='-C target-cpu=native -C lto=thin' cargo +nightly bench --features nightly | |
| //! ``` | |
| //! | |
| //! Compared to binary search over a sorted vector: | |
| //! | |
| //! ```diff,ignore | |
| //! name sorted_vec ns/iter this ns/iter diff ns/iter diff % speedup | |
| //! -u32::l1 49 54 5 10.20% x 0.91 | |
| //! +u32::l1_dup 40 35 -5 -12.50% x 1.14 | |
| //! -u32::l2 63 72 9 14.29% x 0.88 | |
| //! +u32::l2_dup 64 62 -2 -3.12% x 1.03 | |
| //! -u32::l3 120 273 153 127.50% x 0.44 | |
| //! -u32::l3_dup 117 219 102 87.18% x 0.53 | |
| //! +u8::l1 42 37 -5 -11.90% x 1.14 | |
| //! +u8::l1_dup 29 28 -1 -3.45% x 1.04 | |
| //! +u8::l2 43 49 6 13.95% x 0.88 | |
| //! -u8::l2_dup 33 35 2 6.06% x 0.94 | |
| //! -u8::l3 45 66 21 46.67% x 0.68 | |
| //! -u8::l3_dup 35 51 16 45.71% x 0.69 | |
| //! -usize::l1 49 54 5 10.20% x 0.91 | |
| //! +usize::l1_dup 38 37 -1 -2.63% x 1.03 | |
| //! -usize::l2 65 76 11 16.92% x 0.86 | |
| //! +usize::l2_dup 65 64 -1 -1.54% x 1.02 | |
| //! -usize::l3 141 303 162 114.89% x 0.47 | |
| //! -usize::l3_dup 140 274 134 95.71% x 0.51 | |
| //! ``` | |
| //! | |
| //! Compared to a `BTreeSet`: | |
| //! | |
| //! ```diff,ignore | |
| //! name btreeset ns/iter this ns/iter diff ns/iter diff % speedup | |
| //! +u32::l1 68 54 -14 -20.59% x 1.26 | |
| //! +u32::l1_dup 45 35 -10 -22.22% x 1.29 | |
| //! +u32::l2 88 72 -16 -18.18% x 1.22 | |
| //! -u32::l2_dup 61 62 1 1.64% x 0.98 | |
| //! +u32::l3 346 273 -73 -21.10% x 1.27 | |
| //! -u32::l3_dup 136 219 83 61.03% x 0.62 | |
| //! +u8::l1 45 37 -8 -17.78% x 1.22 | |
| //! +u8::l1_dup 31 28 -3 -9.68% x 1.11 | |
| //! -u8::l2 44 49 5 11.36% x 0.90 | |
| //! -u8::l2_dup 31 35 4 12.90% x 0.89 | |
| //! -u8::l3 43 66 23 53.49% x 0.65 | |
| //! -u8::l3_dup 30 51 21 70.00% x 0.59 | |
| //! +usize::l1 67 54 -13 -19.40% x 1.24 | |
| //! +usize::l1_dup 44 37 -7 -15.91% x 1.19 | |
| //! +usize::l2 89 76 -13 -14.61% x 1.17 | |
| //! -usize::l2_dup 60 64 4 6.67% x 0.94 | |
| //! +usize::l3 393 303 -90 -22.90% x 1.30 | |
| //! -usize::l3_dup 163 274 111 68.10% x 0.59 | |
| //! ``` | |
| //! | |
| //! # Future work | |
| //! | |
| //! - [ ] Implement aligned operation: https://github.com/patmorin/arraylayout/blob/3f20174a2a0ab52c6f37f2ea87d087307f19b5ee/src/eytzinger_array.h#L204 | |
| //! - [ ] Implement deep prefetching for large `T`: https://github.com/patmorin/arraylayout/blob/3f20174a2a0ab52c6f37f2ea87d087307f19b5ee/src/eytzinger_array.h#L128 | |
| //! | |
| #![deny(missing_docs)] | |
| #![cfg_attr(feature = "nightly", feature(test))] | |
| #![cfg_attr(feature = "nightly", feature(concat_idents))] | |
| #![cfg_attr(feature = "nightly", feature(core_intrinsics))] | |
| #[cfg(feature = "nightly")] | |
| extern crate test; | |
| use std::borrow::Borrow; | |
| /// A collection of ordered items that can efficiently satisfy queries for nearby elements. | |
| /// | |
| /// The most interesting method here is `find_gte`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # use ordsearch::OrderedCollection; | |
| /// let x = OrderedCollection::from(vec![1, 2, 4, 8, 16, 32, 64]); | |
| /// assert_eq!(x.find_gte(0), Some(&1)); | |
| /// assert_eq!(x.find_gte(1), Some(&1)); | |
| /// assert_eq!(x.find_gte(3), Some(&4)); | |
| /// assert_eq!(x.find_gte(6), Some(&8)); | |
| /// assert_eq!(x.find_gte(8), Some(&8)); | |
| /// assert_eq!(x.find_gte(64), Some(&64)); | |
| /// assert_eq!(x.find_gte(65), None); | |
| /// ``` | |
| pub struct OrderedCollection<T> { | |
| items: Vec<T>, | |
| #[cfg(feature = "nightly")] | |
| mask: usize, | |
| } | |
| impl<T: Ord> From<Vec<T>> for OrderedCollection<T> { | |
| /// Construct a new `OrderedCollection` from a vector of elements. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # use ordsearch::OrderedCollection; | |
| /// let a = OrderedCollection::from(vec![42, 89, 7, 12]); | |
| /// assert_eq!(a.find_gte(50), Some(&89)); | |
| /// ``` | |
| fn from(mut v: Vec<T>) -> OrderedCollection<T> { | |
| v.sort_unstable(); | |
| Self::from_sorted_iter(v.into_iter()) | |
| } | |
| } | |
| /// Insert items from the sorted iterator `iter` into `v` in complete binary tree order. | |
| /// | |
| /// Requires `iter` to be a sorted iterator. | |
| /// Requires v's capacity to be set to the number of elements in `iter`. | |
| /// The length of `v` will not be changed by this function. | |
| fn eytzinger_walk<I, T>(v: &mut Vec<T>, iter: &mut I, i: usize) | |
| where | |
| I: Iterator<Item = T>, | |
| { | |
| if i >= v.capacity() { | |
| return; | |
| } | |
| // visit left child | |
| eytzinger_walk(v, iter, 2 * i + 1); | |
| // put data at the root | |
| // we know the get_unchecked_mut and unwrap below are safe because we set the Vec's capacity to | |
| // the length of the iterator. | |
| *unsafe { v.get_unchecked_mut(i) } = iter.next().unwrap(); | |
| // visit right child | |
| eytzinger_walk(v, iter, 2 * i + 2); | |
| } | |
| impl<T: Ord> OrderedCollection<T> { | |
| /// Construct a new `OrderedCollection` from an iterator over sorted elements. | |
| /// | |
| /// Note that if the iterator is *not* sorted, no error will be given, but lookups will give | |
| /// incorrect results. The given iterator must also implement `ExactSizeIterator` so that we | |
| /// know the size of the lookup array. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Using an already-sorted iterator: | |
| /// | |
| /// ``` | |
| /// # use std::collections::BTreeSet; | |
| /// # use ordsearch::OrderedCollection; | |
| /// | |
| /// let mut s = BTreeSet::new(); | |
| /// s.insert(42); | |
| /// s.insert(89); | |
| /// s.insert(7); | |
| /// s.insert(12); | |
| /// let a = OrderedCollection::from_sorted_iter(s); | |
| /// assert_eq!(a.find_gte(50), Some(&89)); | |
| /// ``` | |
| /// | |
| /// Sorting a collection and then iterating (in this case, you'd likely use `new` instead): | |
| /// | |
| /// ``` | |
| /// # use ordsearch::OrderedCollection; | |
| /// let mut v = vec![42, 89, 7, 12]; | |
| /// v.sort_unstable(); | |
| /// let a = OrderedCollection::from_sorted_iter(v); | |
| /// assert_eq!(a.find_gte(50), Some(&89)); | |
| /// ``` | |
| /// | |
| /// The `OrderedCollection` can also be over references to somewhere else: | |
| /// | |
| /// ``` | |
| /// # use std::collections::BTreeSet; | |
| /// # use ordsearch::OrderedCollection; | |
| /// | |
| /// let mut s = BTreeSet::new(); | |
| /// s.insert(42); | |
| /// s.insert(89); | |
| /// s.insert(7); | |
| /// s.insert(12); | |
| /// let a = OrderedCollection::from_sorted_iter(s.iter()); | |
| /// assert_eq!(a.find_gte(50), Some(&&89)); | |
| /// ``` | |
| /// | |
| pub fn from_sorted_iter<I>(iter: I) -> Self | |
| where | |
| I: IntoIterator<Item = T>, | |
| I::IntoIter: ExactSizeIterator<Item = T>, | |
| { | |
| let mut iter = iter.into_iter(); | |
| let n = iter.len(); | |
| let mut v = Vec::with_capacity(n); | |
| eytzinger_walk(&mut v, &mut iter, 0); | |
| // it's now safe to set the length, since all `n` elements have been inserted. | |
| unsafe { v.set_len(n) }; | |
| #[cfg(feature = "nightly")] | |
| { | |
| let mut mask = 1; | |
| while mask <= n { | |
| mask <<= 1; | |
| } | |
| mask -= 1; | |
| OrderedCollection { | |
| items: v, | |
| mask: mask, | |
| } | |
| } | |
| #[cfg(not(feature = "nightly"))] | |
| OrderedCollection { items: v } | |
| } | |
| /// Construct a new `OrderedCollection` from a slice of elements. | |
| /// | |
| /// Note that the underlying slice will be reordered! | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # use ordsearch::OrderedCollection; | |
| /// let mut vals = [42, 89, 7, 12]; | |
| /// let a = OrderedCollection::from_slice(&mut vals); | |
| /// assert_eq!(a.find_gte(50), Some(&&89)); | |
| /// ``` | |
| pub fn from_slice<'a>(v: &'a mut [T]) -> OrderedCollection<&'a T> { | |
| v.sort_unstable(); | |
| OrderedCollection::from_sorted_iter(v.into_iter().map(|x| &*x)) | |
| } | |
| /// Find the smallest value `v` such that `v >= x`. | |
| /// | |
| /// Returns `None` if there is no such `v`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # use ordsearch::OrderedCollection; | |
| /// let x = OrderedCollection::from(vec![1, 2, 4, 8, 16, 32, 64]); | |
| /// assert_eq!(x.find_gte(0), Some(&1)); | |
| /// assert_eq!(x.find_gte(1), Some(&1)); | |
| /// assert_eq!(x.find_gte(3), Some(&4)); | |
| /// assert_eq!(x.find_gte(6), Some(&8)); | |
| /// assert_eq!(x.find_gte(8), Some(&8)); | |
| /// assert_eq!(x.find_gte(64), Some(&64)); | |
| /// assert_eq!(x.find_gte(65), None); | |
| /// ``` | |
| pub fn find_gte<'a, X>(&'a self, x: X) -> Option<&'a T> | |
| where | |
| T: Borrow<X>, | |
| X: Ord, | |
| { | |
| use std::mem; | |
| let x = x.borrow(); | |
| let mut i = 0; | |
| // this computation is a little finicky, so let's walk through it. | |
| // | |
| // we want to prefetch a couple of levels down in the tree from where we are. | |
| // however, we can only fetch one cacheline at a time (assume a line holds 64b). | |
| // we therefore need to find at what depth a single prefetch fetches all the descendants. | |
| // it turns out that, at depth k under some node with index i, the leftmost child is at: | |
| // | |
| // 2^k * i + 2^(k-1) + 2^(k-2) + ... + 2^0 = 2^k * i + 2^k - 1 | |
| // | |
| // this follows from the fact that the leftmost immediate child of node i is at 2i + 1 by | |
| // recursively expanding i. if you're curious, the rightmost child is at: | |
| // | |
| // 2^k * i + 2^k + 2^(k-1) + ... + 2^1 = 2^k * i + 2^(k+1) - 1 | |
| // | |
| // at depth k, there are 2^k children. we can fit 64/sizeof(T) children in a cacheline, so | |
| // we want to use the depth k that has 64/sizeof(T) children. so, we want: | |
| // | |
| // 2^k = 64/sizeof(T) | |
| // | |
| // but, we don't actually *need* k. we only ever use 2^k. so, we can just use 64/sizeof(T) | |
| // directly! nice. we call this the multiplier (because it's what we'll multiply i by). | |
| let multiplier = 64 / mem::size_of::<T>(); | |
| // now for those additions we had to do above. well, we know that the offset is really just | |
| // 2^k - 1, and we know that multiplier == 2^k, so we're done. right? | |
| // | |
| // right? | |
| // | |
| // well, only sort of. the prefetch instruction fetches the cache-line that *holds* the | |
| // given memory address. let's denote cache lines with []. what if we have: | |
| // | |
| // [..., 2^k + 2^k-1] [2^k + 2^k, ...] | |
| // | |
| // essentially, we got unlucky with the alignment so that the leftmost child is not sharing | |
| // a cacheline with any of the other items at that level! that's not great. so, instead, we | |
| // prefetch the address that is half-way through the set of children. that way, we ensure | |
| // that we prefetch at least half of the items. | |
| let offset = multiplier + multiplier / 2; | |
| let _ = offset; // avoid warning about unused w/o nightly | |
| while i < self.items.len() { | |
| #[cfg(feature = "nightly")] | |
| // unsafe is safe because pointer is never dereferenced | |
| unsafe { | |
| use std::intrinsics::prefetch_read_data; | |
| prefetch_read_data( | |
| self.items | |
| .as_ptr() | |
| .offset(((multiplier * i + offset) & self.mask) as isize), | |
| 3, | |
| ) | |
| }; | |
| // safe because i < self.items.len() | |
| i = if x <= unsafe { self.items.get_unchecked(i) }.borrow() { | |
| 2 * i + 1 | |
| } else { | |
| 2 * i + 2 | |
| }; | |
| } | |
| // we want ffs(~(i + 1)) | |
| // since ctz(x) = ffs(x) - 1 | |
| // we use ctz(~(i + 1)) + 1 | |
| let j = (i + 1) >> ((!(i + 1)).trailing_zeros() + 1); | |
| if j == 0 { | |
| None | |
| } else { | |
| Some(unsafe { self.items.get_unchecked(j - 1) }) | |
| } | |
| } | |
| } | |
| #[cfg(test)] | |
| mod tests { | |
| use super::OrderedCollection; | |
| #[test] | |
| fn complete_exact() { | |
| let x = OrderedCollection::from(vec![1, 2, 4, 8, 16, 32, 64]); | |
| assert_eq!(x.find_gte(1), Some(&1)); | |
| assert_eq!(x.find_gte(2), Some(&2)); | |
| assert_eq!(x.find_gte(4), Some(&4)); | |
| assert_eq!(x.find_gte(8), Some(&8)); | |
| assert_eq!(x.find_gte(16), Some(&16)); | |
| assert_eq!(x.find_gte(32), Some(&32)); | |
| assert_eq!(x.find_gte(64), Some(&64)); | |
| } | |
| #[test] | |
| fn complete_approximate() { | |
| let x = OrderedCollection::from(vec![1, 2, 4, 8, 16, 32, 64]); | |
| assert_eq!(x.find_gte(0), Some(&1)); | |
| assert_eq!(x.find_gte(3), Some(&4)); | |
| assert_eq!(x.find_gte(5), Some(&8)); | |
| assert_eq!(x.find_gte(6), Some(&8)); | |
| assert_eq!(x.find_gte(7), Some(&8)); | |
| for i in 9..16 { | |
| assert_eq!(x.find_gte(i), Some(&16)); | |
| } | |
| for i in 17..32 { | |
| assert_eq!(x.find_gte(i), Some(&32)); | |
| } | |
| for i in 33..64 { | |
| assert_eq!(x.find_gte(i), Some(&64)); | |
| } | |
| assert_eq!(x.find_gte(65), None); | |
| } | |
| #[test] | |
| fn unbalanced_exact() { | |
| let x = OrderedCollection::from(vec![1, 2, 4, 8, 16, 32, 64, 128, 256]); | |
| assert_eq!(x.find_gte(1), Some(&1)); | |
| assert_eq!(x.find_gte(2), Some(&2)); | |
| assert_eq!(x.find_gte(4), Some(&4)); | |
| assert_eq!(x.find_gte(8), Some(&8)); | |
| assert_eq!(x.find_gte(16), Some(&16)); | |
| assert_eq!(x.find_gte(32), Some(&32)); | |
| assert_eq!(x.find_gte(64), Some(&64)); | |
| assert_eq!(x.find_gte(128), Some(&128)); | |
| assert_eq!(x.find_gte(256), Some(&256)); | |
| } | |
| #[test] | |
| fn unbalanced_approximate() { | |
| let x = OrderedCollection::from(vec![1, 2, 4, 8, 16, 32, 64, 128, 256]); | |
| assert_eq!(x.find_gte(0), Some(&1)); | |
| assert_eq!(x.find_gte(3), Some(&4)); | |
| assert_eq!(x.find_gte(5), Some(&8)); | |
| assert_eq!(x.find_gte(6), Some(&8)); | |
| assert_eq!(x.find_gte(7), Some(&8)); | |
| for i in 9..16 { | |
| assert_eq!(x.find_gte(i), Some(&16)); | |
| } | |
| for i in 17..32 { | |
| assert_eq!(x.find_gte(i), Some(&32)); | |
| } | |
| for i in 33..64 { | |
| assert_eq!(x.find_gte(i), Some(&64)); | |
| } | |
| for i in 65..128 { | |
| assert_eq!(x.find_gte(i), Some(&128)); | |
| } | |
| for i in 129..256 { | |
| assert_eq!(x.find_gte(i), Some(&256)); | |
| } | |
| assert_eq!(x.find_gte(257), None); | |
| } | |
| } | |
| #[cfg(all(feature = "nightly", test))] | |
| mod b { | |
| use super::OrderedCollection; | |
| use std::collections::BTreeSet; | |
| use test::black_box; | |
| use test::Bencher; | |
| // these benchmarks borrow from https://github.com/rust-lang/rust/pull/45333 | |
| enum Cache { | |
| L1, | |
| L2, | |
| L3, | |
| } | |
| impl Cache { | |
| pub fn size(&self) -> usize { | |
| match *self { | |
| Cache::L1 => 1000, // 8kb | |
| Cache::L2 => 10_000, // 80kb | |
| Cache::L3 => 1_000_000, // 8Mb | |
| } | |
| } | |
| } | |
| #[inline] | |
| fn nodup_usize(i: usize) -> usize { | |
| i * 2 | |
| } | |
| #[inline] | |
| fn nodup_u8(i: usize) -> u8 { | |
| nodup_usize(i) as u8 | |
| } | |
| #[inline] | |
| fn nodup_u32(i: usize) -> u32 { | |
| nodup_usize(i) as u32 | |
| } | |
| #[inline] | |
| fn dup_usize(i: usize) -> usize { | |
| i / 16 * 16 | |
| } | |
| #[inline] | |
| fn dup_u8(i: usize) -> u8 { | |
| dup_usize(i) as u8 | |
| } | |
| #[inline] | |
| fn dup_u32(i: usize) -> u32 { | |
| dup_usize(i) as u32 | |
| } | |
| macro_rules! construction_benches { | |
| ($t:ident, $v:ident) => { | |
| mod $v { | |
| use super::*; | |
| fn nodup(c: Cache, b: &mut Bencher) { | |
| let mk = concat_idents!(make_, $t); | |
| let mapper = concat_idents!(nodup_, $v); | |
| bench_construction!(c, mk, mapper, b); | |
| } | |
| #[bench] | |
| fn l1(b: &mut Bencher) { | |
| nodup(Cache::L1, b); | |
| } | |
| #[bench] | |
| fn l2(b: &mut Bencher) { | |
| nodup(Cache::L2, b); | |
| } | |
| fn dup(c: Cache, b: &mut Bencher) { | |
| let mk = concat_idents!(make_, $t); | |
| let mapper = concat_idents!(dup_, $v); | |
| bench_construction!(c, mk, mapper, b); | |
| } | |
| #[bench] | |
| fn l1_dup(b: &mut Bencher) { | |
| dup(Cache::L1, b); | |
| } | |
| #[bench] | |
| fn l2_dup(b: &mut Bencher) { | |
| dup(Cache::L2, b); | |
| } | |
| } | |
| }; | |
| } | |
| macro_rules! search_benches { | |
| ($t:ident, $v:ident) => { | |
| mod $v { | |
| use super::*; | |
| fn nodup(c: Cache, b: &mut Bencher) { | |
| let mk = concat_idents!(make_, $t); | |
| let s = concat_idents!(search_, $t); | |
| let mapper = concat_idents!(nodup_, $v); | |
| bench_search!(c, mk, s, mapper, b); | |
| } | |
| #[bench] | |
| fn l1(b: &mut Bencher) { | |
| nodup(Cache::L1, b); | |
| } | |
| #[bench] | |
| fn l2(b: &mut Bencher) { | |
| nodup(Cache::L2, b); | |
| } | |
| #[bench] | |
| fn l3(b: &mut Bencher) { | |
| nodup(Cache::L3, b); | |
| } | |
| fn dup(c: Cache, b: &mut Bencher) { | |
| let mk = concat_idents!(make_, $t); | |
| let s = concat_idents!(search_, $t); | |
| let mapper = concat_idents!(dup_, $v); | |
| bench_search!(c, mk, s, mapper, b); | |
| } | |
| #[bench] | |
| fn l1_dup(b: &mut Bencher) { | |
| dup(Cache::L1, b); | |
| } | |
| #[bench] | |
| fn l2_dup(b: &mut Bencher) { | |
| dup(Cache::L2, b); | |
| } | |
| #[bench] | |
| fn l3_dup(b: &mut Bencher) { | |
| dup(Cache::L3, b); | |
| } | |
| } | |
| }; | |
| } | |
| macro_rules! benches { | |
| ($t:ident) => { | |
| mod $t { | |
| pub use super::*; | |
| mod construction { | |
| pub use super::*; | |
| construction_benches!($t, u8); | |
| construction_benches!($t, u32); | |
| construction_benches!($t, usize); | |
| } | |
| mod search { | |
| pub use super::*; | |
| search_benches!($t, u8); | |
| search_benches!($t, u32); | |
| search_benches!($t, usize); | |
| } | |
| } | |
| }; | |
| } | |
| macro_rules! bench_construction { | |
| ($cache:expr, $make:ident, $mapper:ident, $b:ident) => { | |
| let size = $cache.size(); | |
| let mut v: Vec<_> = (0..size).map(&$mapper).collect(); | |
| let mut r = 0usize; | |
| $b.iter(|| { | |
| for e in v.iter_mut() { | |
| r = r.wrapping_mul(1664525).wrapping_add(1013904223); | |
| *e = $mapper(r % size); | |
| } | |
| black_box($make(&mut v)); | |
| }); | |
| }; | |
| } | |
| macro_rules! bench_search { | |
| ($cache:expr, $make:ident, $search:ident, $mapper:ident, $b:ident) => { | |
| let size = $cache.size(); | |
| let mut v: Vec<_> = (0..size).map(&$mapper).collect(); | |
| let mut r = 0usize; | |
| let c = $make(&mut v); | |
| $b.iter(move || { | |
| // LCG constants from https://en.wikipedia.org/wiki/Numerical_Recipes. | |
| r = r.wrapping_mul(1664525).wrapping_add(1013904223); | |
| // Lookup the whole range to get 50% hits and 50% misses. | |
| let x = $mapper(r % size); | |
| black_box($search(&c, x).is_some()); | |
| }); | |
| }; | |
| } | |
| fn make_this<T: Ord>(v: &mut Vec<T>) -> OrderedCollection<&T> { | |
| OrderedCollection::from_slice(v) | |
| } | |
| fn search_this<'a, T: Ord>(c: &OrderedCollection<&'a T>, x: T) -> Option<&'a T> { | |
| c.find_gte(x).map(|v| &**v) | |
| } | |
| benches!(this); | |
| fn make_btreeset<T: Ord>(v: &mut Vec<T>) -> BTreeSet<&T> { | |
| use std::iter::FromIterator; | |
| BTreeSet::from_iter(v.iter()) | |
| } | |
| fn search_btreeset<'a, T: Ord>(c: &BTreeSet<&'a T>, x: T) -> Option<&'a T> { | |
| use std::collections::Bound; | |
| c.range((Bound::Included(x), Bound::Unbounded)) | |
| .next() | |
| .map(|v| &**v) | |
| } | |
| benches!(btreeset); | |
| fn make_sorted_vec<T: Ord>(v: &mut Vec<T>) -> &[T] { | |
| v.sort_unstable(); | |
| &v[..] | |
| } | |
| fn search_sorted_vec<'a, T: Ord>(c: &'a &[T], x: T) -> Option<&'a T> { | |
| c.binary_search(&x).ok().map(|i| &c[i]) | |
| } | |
| benches!(sorted_vec); | |
| } |