Skip to content

jopo666/StrongAugment

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

Augment like there's no tomorrow: Consistently performing neural networks for medical imaging [arXiv]

This repository contains implementations for StrongAugment and creating distribution-shifted datasets.

Installation

pip3 install strong-augment

Training with strong augmentation.

To train your neural networks with strong augmentatiom simply include StrongAugment to your image transformation pipeline!

import torchvision.transforms as T
from strong_augment import StrongAugment

trnsf = T.Compose(
    T.RandomResizedCrop(224),
    T.RandomVerticalFlip(0.5),
    T.RandomHorizontalFlip(0.5),
    StrongAugment(operations=[2, 3, 4], probabilities=[0.5, 0.3, 0.2]), # Just one line!
    T.ToTensor(),
    T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.2, 0.2, 0.2])
    T.RandomErase(0.2)
)

Creating shifted datasets.

Function shift_dataset can be used create the distribution-shifted datasets for shifted evaluation.

from functools import partial
import torchvision.transforms.functional as F
from strong_augment import shift_dataset

# Let's define the distribution shift function.
shift_fn = partial(F.adjust_gamma, gamma=0.2)

# Now we can shift the dataset!
shift_dataset(
    paths=paths_to_dataset_images,
    output_dir="/data/shifted_datasets/gamma_02",
    function=shift_fn,
    num_workers=20,
)
Processing images |##########| 100000/100000 [00:49<00:00]

Citation

If you use StrongAugment or shifted evaluation, please cite us!

@paper{strong_augment2022,
    title = {Augment like there's no tomorrow: Consistently performing neural networks for medical imaging},
    author = {Pohjonen, Joona and Stürenberg, Carolin and Föhr, Atte and Randen-Brady, Reija and Luomala, Lassi and Lohi, Jouni and Pitkänen, Esa and Rannikko, Antti and Mirtti, Tuomas},
    url = {https://arxiv.org/abs/2206.15274},
    publisher = {arXiv},
    year = {2022},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages